

SECO NEWS 2022.2

Seco X-HEADS :Exchangeable Head	page 3
Threading Taps	page 100
High Feed cutters SPKT	page 355
Helical SN8-13	.page 374
Hydraulic chucks	.page 394

MULTIPLE MILLING HEADS ARE BETTER THAN ONE

SECO X-HEADS

YOUR CHALLENGE

Need to purchase many different end mills and holders to machine different features on a workpiece which adds higher cost to a project.

OUR SOLUTION

Quick-change exchangeable milling head system adapts to various machining needs with a range of cutting profiles and materials without additional holders.

YOUR CHALLENGE

Tool changes require time consuming remeasuring and resetting of tool heights.

OUR SOLUTION

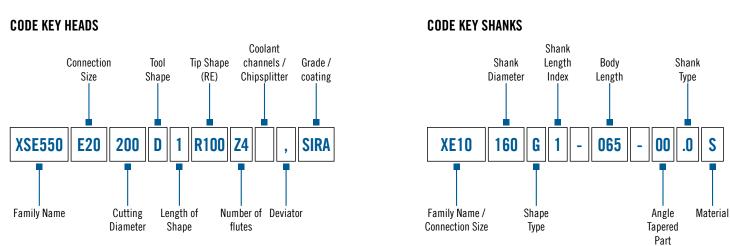
Quick-change milling heads or modular end mills eliminate the need to remove, remeasure and reset tools.

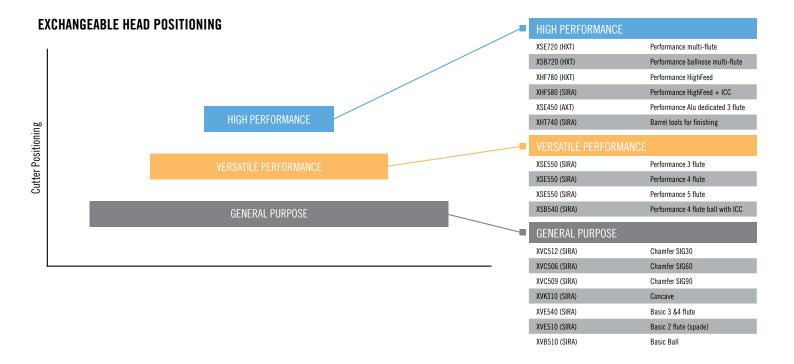
YOUR CHALLENGE

Deep part features require an inventory of various expensive long-reach holders or tools.

OUR SOLUTION

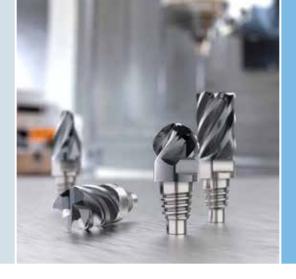

Broad range of quick-change end mills that are adaptable to long-reach shanks.

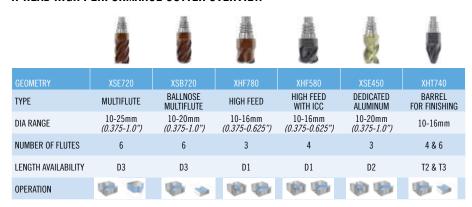



CUSTOMER BENEFITS

- Tooling speed and simplicity
- Greater machining flexibility
- Shorter tool changeout times
- Better tool setting precision
- Cost-effective tooling
- Increased milling versatility

SECO X-HEADS

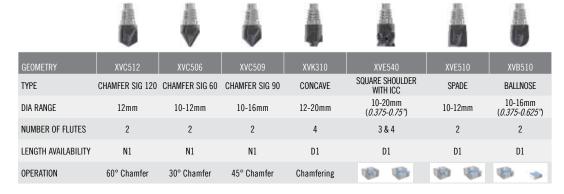



INDUSTRY TARGETS

- General Engineering: Versatile for High Mix & Low Volume.
- Aerospace: Structural Parts and Pylons, Blisks, Casings, Discs.
- Automotive: Transmission parts, Turbo Housings, Steering Knuckles.
- Medical: Implants.
- Energy: Impellers and Turbine Wheels, Turbine Blades.

SECO X-HEADS

X-HEAD HIGH PERFORMANCE CUTTER OVERVIEW



X-HEAD VERSATILE PERFORMANCE CUTTER OVERVIEW

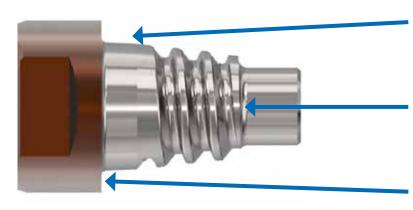
^{*}D1 (0,55 x DIAMETER) VERSION WITH STABILIZING LAND FOR LONG REACH APPLICATIONS

X-HEAD GENERAL PURPOSE CUTTER OVERVIEW

REDUCE YOUR INVENTORY

- With this system one cutter head can be used on various shanks to meet different reach requirements.
- Shanks that can accept multiple types of cutting heads.
- Many tool length options with the shank selection.

SECO X-HEADS


EXCHANGEABLE HEAD SHANKS

Metric/ <i>Inch</i> DCONWS	STEEL SHANKS ITEMS	CARBIDE/ HEAVY METAL ITEMS
10	9	3
12	9	3
16	7	3
20	4	4
25	3	2
3/8"	7	1
1/2"	9	1
5/8"	8	1
34"	2	1
1"	2	1

Cylindrical Shanks

- 80 total items
- 60 Steel Shanks
- 20 Carbide / Heavy Metal

X-HEAD CONNECTION FEATURES

Ground Taper for secure seating in the shank and optimal axial/radial runout precision.

External Thread on Heads provides easy changeability and adds density for improved performance and strength.

Contact Face with shank for secure mounting and setting height repeatability.

SECO X-HEADS

The new Seco Tools Exchangeable Head range is a comprehensive offering to meet most customer demands. Utilizing our proven solid carbide geometries, we offer various types to machine most materials and complete various machining operations. The connection is a proven exchangeable head design to give high process security and reliability. The shanks offer many types for short reach up to long reach applications. Straight necking and tapered necks to give the best combination of stability depending on the needs for your machining operation.

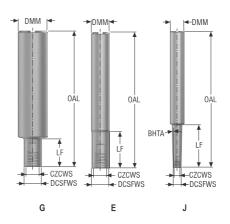
- XSE550, XSE720, XSE450, XHF580, XHF780 XVE540 and XVE510 for chamfer or radius type.
- XSB540, XSB720 and XVB510 for ball-nose type.
- XVC506, XVC509 and XVC512 for conical type.
- XHT740 for barrel type.

Minimaster

Tool sel	ection X-Heads						
					21		5
Name		XSE550	XSB540	XSE720	XSB720	XSE450	XHT740
age(s)		483-490	499	501-502	507	513-514	289
amily nan	ne	X-HEADS SOLID ²	X-HEADS HSM/TORNA				
Type of mil	II	r 45°				90°	
lumber of	Flutes	3,4,5	4	6	6	3	4,6
CC			•				
iameter	Metric	10-20	10-16	10-25	10-20	10-20	10-16
ange	Inch	3/8-1		3/8-1	3/8-1	3/8-1	-
ength ava	ailability	1,2	1	3	3	2	2,3
		1				1	
Operation		-		*	49	-	
pperauon			*		*		-
				•			
	SMG						
	P1-8	•	•	0	0		0
	P11-12	•	0	•	•		•
	M1-3	•	•	•	•		•
	M4-5	•	•	•	•		
	K1-7 S1-3	•	•		•		0
	S11-13	•	•	•			0
	18 H11 H12 H21 H31		0				
	N1	•	•			•	
	N2-3	•	•			•	
	N11	•	•			•	
	TS1	•	•			•	
	TP1	•	•			•	
	GR	0	0				

Preferred choice,
 Alternative choice

						W.		
								1
lame		XHF580	XHF780	XVE540	XVE510	XVB510	XVC506/509/512	XVK310
age(s)		520	525	538	543	546-547	550	554
amily name	е	X-HEADS HFM	X-HEADS HFM	X-HEADS VHM	X-HEADS VHM	X-HEADS VHM	X-HEADS VHM	X-HEADS VHN
ype of mill		r	r	г	r			٢
lumber of F	Flutes	4	3	3,4	2	2	2	4
cc								
Diameter	Metric	10-16	10-16	10-20	10-12	10-16	10-16	12-20
	Inch	3/8-5/8	3/8-5/8	3/8-3/4		3/8-5/8		
ength avail	lability	1	1	1	1	1	1	1
Operation								
operation						-		
	SMG							
	P1-8	•	0	•	•	•	•	•
	P11-12	•	0	•	•	•	•	•
	M1-3	•	•	•	•	•	•	•
	M4-5	•	•	•	•	•	•	•
	K1-7 S1-3	•	•	•	•	•	•	•
	S11-13	0	•	0	0	0	0	0
	8 H11 H12 H21 H31	0	0	0				0
	N1			•	0	0	0	•
	N2-3			•	0	0	0	•
	N11			•	0	0	0	•
	TS1			•	•	•	•	•
	TP1			•	•	•	•	•
							0	0

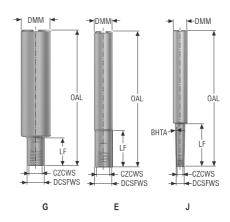

Stocked standard.

 $[\]bullet$ Preferred choice, \circ Alternative choice

Steel - Metric

- Tolerances:
 DMM= h6
 DCSFWS= ±0,05 mm
 BHTA= ±20'

				czcws	DCSFWS	DMM	LF	OAL	BHTA°	Cylindrical
					mm	mm	mm	mm		
XE10160G1-065-00.0S	10138083	1	G	E10	9,6	16,0	5,0	65,0	0,0	
XE10100E2-055-00.0S	10138092	2	Е	E10	9,6	10,0	10,0	55,0	0,0	
XE10100E2-075-00.0S	10138093	2	Е	E10	9,6	10,0	20,0	75,0	0,0	
XE10160G2-075-00.0S	10138088	2	G	E10	9,6	16,0	15,0	75,0	0,0	
XE10160J3-120-01.0S	10138099	3	J	E10	9,6	16,0	35,0	120,0	1,0	
XE10160J5-160-01.0S	10138100	5	J	E10	9,6	16,0	50,0	160,0	1,0	
XE10160J3-140-05.0S	10138106	3	J	E10	9,6	16,0	36,6	140,0	5,0	
XE10200J5-140-05.0S	10138108	5	J	E10	9,6	20,0	59,4	140,0	5,0	
XE10320J6-250-10.0S	10138113	6	J	E10	9,6	32,0	63,5	250,0	10,0	
XE12160G1-065-00.0S	10138084	1	G	E12	11,6	16,0	5,0	65,0	0,0	
XE12120E2-065-00.0S	10138094	2	Е	E12	11,6	12,0	12,0	65,0	0,0	
XE12120E2-100-00.0S	10138095	2	Е	E12	11,6	12,0	22,0	100,0	0,0	
XE12160G2-080-00.0S	10138089	2	G	E12	11,6	16,0	18,0	80,0	0,0	
XE12160J3-155-01.0S	10138101	3	J	E12	11,6	16,0	42,0	155,0	1,0	
XE12160J5-170-01.0S	10138102	5	J	E12	11,6	16,0	60,0	170,0	1,0	
XE12160J2-140-05.0S	10138107	2	J	E12	11,6	16,0	25,1	140,0	5,0	
XE12200J4-155-05.0S	10138109	4	J	E12	11,6	20,0	48,0	155,0	5,0	
XE12320J4-250-10.0S	10138114	4	J	E12	11,6	32,0	57,8	250,0	10,0	
XE16200G1-070-00.0S	10138085	1	G	E16	15,4	20,0	5,0	70,0	0,0	
XE16160E2-070-00.0S	10138096	2	Е	E16	15,4	16,0	16,0	70,0	0,0	
XE16200G2-090-00.0S	10138090	2	G	E16	15,4	20,0	24,0	90,0	0,0	
XE16200G2-110-00.0S	10138091	2	G	E16	15,4	20,0	25,0	110,0	0,0	
XE16200J3-190-01.0S	10138103	3	J	E16	15,4	20,0	56,0	190,0	1,0	
XE16200J4-190-01.0S	10138104	4	J	E16	15,4	20,0	75,0	190,0	1,0	
XE16250J3-170-05.0S	10138110	3	J	E16	15,4	25,0	54,9	170,0	5,0	
XE20250G1-080-00.0S	10138086	1	G	E20	19,2	25,0	5,0	80,0	0,0	
XE20200E2-120-00.0S	10138097	2	Е	E20	19,2	20,0	30,0	120,0	0,0	
XE20250J4-200-01.0S	10138105	4	J	E20	19,2	25,0	80,0	200,0	1,0	
XE20320J3-180-05.0S	10138111	3	J	E20	19,2	32,0	73,2	180,0	5,0	
XE25320G1-080-00.0S	10138087	1	G	E25	24,1	32,0	5,0	80,0	0,0	
XE25250E2-140-00.0S	10138098	2	Е	E25	24,1	25,0	40,0	140,0	0,0	
XE25320J2-200-05.0S	10138112	2	J	E25	24,1	32,0	45,1	200,0	5,0	


Spare Parts		Accessories		
czcws	Spanner	Replacement blade	Replacement blade 1	Torque key
	Ĭ			
E10	XW-E10	XTWH-E10.08	XTWH-E10.06	XTW-E10.E12
E12	XW-E12	XTWH-E12.10	XTWH-E12.08	XTW-E10.E12
E16	XW-E16	XTWH-E16.12	XTWH-E16.10	XTW-E16.E25
E20	XW-E20	XTWH-E20.16	-	XTW-E16.E25
E25	XW-E25	XTWH-E25.20	-	XTW-E16.E25
Stocked standard				

Stocked standard.

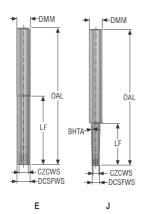
Steel - Inch

- Tolerances:
 DMM= h6
 DCSFWS= ±.002 inch
 BHTA= ±20'

Designation	Item number	Length index	Tool shape	czcws	DCSFWS	DMM	LF	OAL	BHTA°	Cylindrical
					inch	inch	inch	inch		
XE10.500G1-2.50-00.0S	10138050	1	G	E10	0.360	0.500	0.250	2.500	0,0	
XE10.375E2-2.50-00.0S	10138053	2	Е	E10	0.360	0.375	0.402	2.500	0,0	
XE10.500G2-3.00-00.0S	10138051	2	G	E10	0.360	0.500	1.000	3.000	0,0	
XE10.625J3-4.50-01.0S	10138063	3	J	E10	0.360	0.625	1.402	4.500	1,0	
XE10.625J5-6.50-01.0S	10138064	5	J	E10	0.360	0.625	2.000	6.500	1,0	
XE10.625J4-4.00-03.0S	10138071	4	J	E10	0.360	0.625	1.799	4.000	3,0	
XE10.750J9-6.00-03.0S	10138072	9	J	E10	0.360	0.750	3.720	6.000	3,0	
XE12.500E1-3.00-00.0S	10138054	1	Е	E12	0.480	0.500	0.250	3.000	0,0	
XE12.500E2-2.50-00.0S	10138055	2	Е	E12	0.480	0.500	0.500	2.500	0,0	
XE12.500E2-4.50-00.0S	10138056	2	Е	E12	0.480	0.500	1.000	4.500	0,0	
XE12.625J3-6.00-01.0S	10138065	3	J	E12	0.480	0.625	1.650	6.000	1,0	
XE12.625J4-7.50-01.0S	10138066	4	J	E12	0.480	0.625	2.400	7.500	1,0	
XE12.750J5-6.50-01.0S	10138067	5	J	E12	0.480	0.750	2.850	6.500	1,0	
XE12.750J4-4.50-03.0S	10138073	4	J	E12	0.480	0.750	2.201	4.500	3,0	
XE12.750J5-6.00-03.0S	10138074	5	J	E12	0.480	0.750	2.575	6.000	3,0	
XE12.625J2-6.50-05.0S	10138075	2	J	E12	0.480	0.625	0.827	6.500	5,0	
XE16.625E1-3.00-00.0S	10138057	1	Е	E16	0.606	0.625	0.250	3.000	0,0	
XE16.625E2-3.00-00.0S	10138058	2	Е	E16	0.606	0.625	0.650	3.000	0,0	
XE16.625E2-4.50-00.0S	10138059	2	Е	E16	0.606	0.625	1.000	4.500	0,0	
XE16.750J3-7.50-01.0S	10138068	3	J	E16	0.606	0.750	2.252	7.500	1,0	
XE16.750J4-7.50-01.0S	10138070	4	J	E16	0.606	0.750	3.000	7.500	1,0	
XE16.750J6-7.50-01.0S	10138069	6	J	E16	0.606	0.750	3.748	7.500	1,0	
XE16.750J2-6.50-05.0S	10138076	2	J	E16	0.606	0.750	0.821	6.500	5,0	
XE161.00J3-7.00-05.0S	10138077	3	J	E16	0.606	1.000	2.250	7.000	5,0	
XE20.750E1-3.00-00.0S	10138060	1	Е	E20	0.724	0.750	0.250	3.000	0,0	
XE20.750E2-4.50-00.0S	10138061	2	Е	E20	0.724	0.750	1.000	4.500	0,0	
XE251.00E1-3.50-00.0S	10138062	1	Е	E25	0.961	1.000	0.250	3.500	0,0	
XE251.25G2-6.50-00.0S	10138052	2	G	E25	0.961	1.250	2.500	6.500	0,0	

SECO I

Spare Parts		Accessories	Accessories				
czcws	Spanner	Replacement blade	Replacement blade 1	Torque key			
	Ĭ	Ä					
E10	XW-E10	XTWH-E10.08	XTWH-E10.06	XTW-E10.E12			
E12	XW-E12	XTWH-E12.10	XTWH-E12.08	XTW-E10.E12			
E16	XW-E16	XTWH-E16.12	XTWH-E16.10	XTW-E16.E25			
E20	XW-E20	XTWH-E20.16	_	XTW-E16.E25			
E25	XW-E25	XTWH-E25.20	-	XTW-E16.E25			

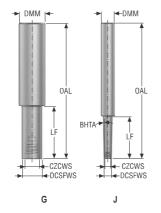

■ Stocked standard.

Solid carbide - Metric

- Tolerances:
 DMM= h6
 DCSFWS= ±0,05 mm
 BHTA= ±20'

Spare Parts

Accessories


Designation	Item number	Length index	Tool shape	czcws	DCSFWS	DMM	LF	OAL	BHTA°	Cylindrical
					mm	mm	mm	mm		
XE10100E5-100-00.0E	10138120	5	Е	E10	9,6	10,0	50,0	100,0	0,0	
XE10160J9-155-01.0E	10138126	9	J	E10	9,6	16,0	100,0	155,0	1,0	
XE12120E4-100-00.0E	10138121	4	E	E12	11,6	12,0	48,0	100,0	0,0	
XE12160J7-150-01.0E	10138127	7	J	E12	11,6	16,0	90,0	150,0	1,0	
XE16160E5-135-00.0E	10138122	5	Е	E16	15,4	16,0	80,0	135,0	0,0	
XE16200J7-175-01.0E	10138128	7	J	E16	15,4	20,0	118,0	175,0	1,0	
XE20200E2-095-00.0E	10138123	2	Е	E20	19,2	20,0	38,0	95,0	0,0	
XE20200E5-180-00.0E	10138124	5	E	E20	19,2	20,0	110,0	180,0	0,0	
XE20250J4-200-02.0E	10138129	4	J	E20	19,2	25,0	83,0	200,0	2,0	
XE25250E4-200-00.0E	10138125	4	Е	E25	24,1	25,0	120,0	200,0	0,0	

czcws	Spanner	Replacement blade	Replacement blade 1	Torque key
	Ĭ			
E10	XW-E10	XTWH-E10.08	XTWH-E10.06	XTW-E10.E12
E12	XW-E12	XTWH-E12.10	XTWH-E12.08	XTW-E10.E12
E16	XW-E16	XTWH-E16.12	XTWH-E16.10	XTW-E16.E25
E20	XW-E20	XTWH-E20.16	_	XTW-E16.E25
E25	XW-E25	XTWH-E25.20	-	XTW-E16.E25

[■] Stocked standard.

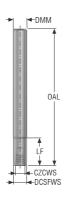
Solid carbide - inch

- Tolerances:DMM= h6DCSFWS= ±.002 inch
- BHTA= ±20'

	ltem	Length	Tool							
Designation	number	index	shape	czcws	DCSFWS	DMM	LF	OAL	BHTA°	Cylindrical
					inch	inch	inch	inch		
XE10.625J5-6.50-01.0E	10138079	5	J	E10	0.360	0.625	2.000	6.500	1,0	
XE12.625J4-7.50-01.0E	10138080	4	J	E12	0.480	0.625	2.400	7.500	1,0	
XE16.750J4-7.50-01.0E	10138081	4	J	E16	0.606	0.750	3.000	7.500	1,0	
XE201.00J4-8.00-01.0E	10138082	4	J	E20	0.724	1.000	3.150	8.000	1,0	
XE251.25G2-6.50-00.0E	10138078	2	G	E25	0.961	1.250	2.500	6.500	0,0	

Spare Parts Accessories

czcws	Spanner	Replacement blade	Replacement blade 1	Torque key
	Ĭ			
E10	XW-E10	XTWH-E10.08	XTWH-E10.06	XTW-E10.E12
E12	XW-E12	XTWH-E12.10	XTWH-E12.08	XTW-E10.E12
E16	XW-E16	XTWH-E16.12	XTWH-E16.10	XTW-E16.E25
E20	XW-E20	XTWH-E20.16	_	XTW-E16.E25
E25	XW-E25	XTWH-E25.20	-	XTW-E16.E25


■ Stocked standard.

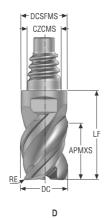
Densimet - Metric

- Tolerances:
 DMM= h6
 DCSFWS= ±0,05 mm
 BHTA= ±20'

Е

Designation	Item number	Length index	Tool shape	czcws	DCSFWS	DMM	LF	OAL	BHTA°	Cylindrical
					mm	mm	mm	mm		
XE10100E2-100-00.0DM	10138115	2	Е	E10	9,6	10,0	20,0	100,0	0,0	
XE12120E2-110-00.0DM	10138116	2	Е	E12	11,6	12,0	25,0	110,0	0,0	
XE16160E2-130-00.0DM	10138117	2	E	E16	15,4	16,0	35,0	130,0	0,0	
XE20200E2-160-00.0DM	10138118	2	Е	E20	19,2	20,0	45,0	160,0	0,0	
XE25250E2-185-00.0DM	10138119	2	Е	E25	24,1	25,0	65,0	185,0	0,0	

Spara Parte	Accossorios
Spare Parts	Accessories


czcws	Spanner	Replacement blade	Replacement blade 1	Torque key
	Ĭ			
E10	XW-E10	XTWH-E10.08	XTWH-E10.06	XTW-E10.E12
E12	XW-E12	XTWH-E12.10	XTWH-E12.08	XTW-E10.E12
E16	XW-E16	XTWH-E16.12	XTWH-E16.10	XTW-E16.E25
E20	XW-E20	XTWH-E20.16	-	XTW-E16.E25
E25	XW-E25	XTWH-E25.20	-	XTW-E16.E25

■ Stocked standard.

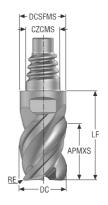
SECO I

XSE550

High performance – Universal – Square – 3 Flutes – Corner radius

- Tolerances:
 DC= e7
 RE= ±0,02 mm
 Regrind possible if DC is ≥Ø12 mm

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
					mm	mm	mm	mm	mm			SIRA
XSE550E10100D1R050Z3	10138138	1	D	E10	10,0	9,7	5,5	12,3	0,5	3	8	
XSE550E12120D1R050Z3	10138139	1	D	E12	12,0	11,7	6,6	14,4	0,5	3	10	
XSE550E16160D1R050Z3	10138140	1	D	E16	16,0	15,5	8,8	18,6	0,5	3	12	
XSE550E20200D1R050Z3	10138141	1	D	E20	20,0	19,3	11,0	21,2	0,5	3	16	
XSE550E10100D2R050Z3	10138142	2	D	E10	10,0	9,7	12,0	18,7	0,5	3	8	
XSE550E12120D2R050Z3	10138143	2	D	E12	12,0	11,7	14,4	22,1	0,5	3	10	
XSE550E16160D2R050Z3	10138144	2	D	E16	16,0	15,5	19,2	29,2	0,5	3	12	
XSE550E20200D2R050Z3	10138145	2	D	E20	20,0	19,3	24,0	34,3	0,5	3	16	


Stocked standard.

XSE550 - Inch

High performance – Universal – Square – 3 Flutes – Corner radius – *Inch*

D

- Tolerances:
 DC= e7
 RE= ±.0008 Inch
 Regrind possible if DC is ≥Ø.500 Inch

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
					Inch	Inch	Inch	Inch	Inch			SIRA
XSE550E10.375D1R030Z3	10138146	1	D	E10	0.375	0.364	0.206	0.484	0.030	3	8	
XSE550E12.500D1R030Z3	10138147	1	D	E12	0.500	0.484	0.275	0.567	0.030	3	10	•
XSE550E20.750D1R030Z3	10138148	1	D	E20	0.750	0.728	0.413	0.835	0.030	3	16	
XSE550E10.375D2R030Z3	10138149	2	D	E10	0.375	0.364	0.450	0.720	0.030	3	8	•
XSE550E12.500D2R030Z3	10138150	2	D	E12	0.500	0.484	0.600	0.906	0.030	3	10	
XSE550E20.750D2R030Z3	10138151	2	D	E20	0.750	0.728	0.900	1.295	0.030	3	16	

Stocked standard.

Cutting data – XSE550 – Side milling PCEDC 3

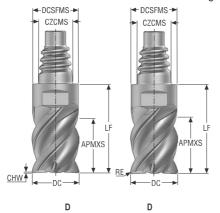
SMG	Ā	a _e /DC	a _p /DC			f _z	V _c			
SINIG				10	12	16	20			
P1	E/M/A/D	0,40	1,1	0,095	0,12	0,14	0,16	215 (190 — 240)		
P2	E/M/A/D	0.40 0,40	1.1 1,1	0.0038 0,10	0.0048 0,12	0.0055 0,15	0.0065 0,17	710 (630 — 780) 205 (180 — 230)		
		0.40 0,40	1.1 1,1	0.0040 0,095	0.0048 0,11	0.0060 0,14	0.0065 0,16	670 (600 — 750) 180 (160 — 200)		
P3	E/M/A/D	0.40	1.1	0.0038	0.0044	0.0055	0.0065	590 (530 — 650)		
P4	E/M/A/D	0,40 0.40	1,1 1.1	0,090 0.0036	0,11 0.0044	0,14 0.0055	0,16 0.0065	160 (140 — 180) 520 (460 — 590)		
P5	E/M/A/D	0,40	1,1	0,090	0,11	0,13	0,15	150 (140 — 170)		
		0.40 0,40	1.1 1,1	0.0036 0,090	0.0044 0,11	0.0050 0,13	0.0060 0,15	490 (460 — 550) 170 (150 — 190)		
P6	E/M/A/D	0.40	1.1	0.0036	0.0044	0.0050	0.0060	560 (500 — 620)		
P7	E/M/A/D	0,40 0.40	1,1 1.1	0,090 0.0036	0,11 0.0044	0,13 0.0050	0,15 0.0060	160 (140 — 180) 520 (460 — 590)		
P8	E/M/A/D	0,40 0.40	1,1 1.1	0,095 0.0038	0,11 <i>0.0044</i>	0,14 0.0055	0,16 0.0065	150 (130 — 170) 490 (430 — 550)		
P11	E/M/A/D	0,30	1,1	0,065	0,075	0,095	0,11	105 (93 — 110)		
		0.30 0,30	1.1	0.0026 0,044	0.0030 0,055	0.0038 0,065	0.0044 0,075	345 (310 — 360) 65 (60 — 75)		
P12	E/M/A/D	0.30	1.1	0.0017	0.0022	0.0026	0.0030	215 (200 — 240)		
M1	E/M/A	0,30 0.30	1,1 1.1	0,070 0.0028	0,085 0.0034	0,11 0.0044	0,12 0.0048	120 (110 — 130) 395 (370 — 420)		
M2	E/M/A	0,30	1,1	0,065	0,075	0,095	0,11	100 (88 — 110)		
		0.30 0,30	1.1 0,95	0.0026 0,055	0.0030 0,065	0.0038 0,080	0.0044 0,090	330 (290 — 360) 60 (50 — 74)		
M3	E/M/A	0.30	0.95	0.0022	0.0026	0.0032	0.0036	195 (170 — 240)		
M4	E/M/A	0,30 0.30	0,95 0.95	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	48 (39 — 57) 155 (130 — 180,		
M5	E/M/A	0,30 0.30	0,95 0.95	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	40 (32 — 47) 130 (110 — 150)		
K1	E/M/A/D	0,40	1,1	0,090	0,11	0,14	0,16	170 (160 — 200)		
		0.40 0,40	1.1 1,1	0.0036 0,085	0.0044 0,10	0.0055 0,12	0.0065 0,14	560 (530 — 650) 150 (150 — 180)		
K2	E/M/A/D	0.40	1.1	0.0034	0.0040	0.0048	0.0055	490 (500 — 590)		
K3	E/M/A/D	0,40 0.40	1,1 1.1	0,085 0.0034	0,10 0.0040	0,12 0.0048	0,14 0.0055	125 (120 — 150) 410 (400 — 490)		
K4	E/M/A/D	0,40	1,1	0,085	0,10	0,12	0,14	120 (120 — 140)		
		0.40 0,40	1.1 0,95	0.0034 0,080	0.0040 0,095	0.0048 0,12	0.0055 0,14	395 (400 — 450) 155 (140 — 170)		
K5	E/M/A/D	0.40 0,40	0.95 0,95	0.0032 0,090	0.0038 0,11	0.0048	0.0055 0,15	510 (460 — 550) 225 (200 — 250)		
K6	E/M/A/D	0.40	0.95	0.0036	0.0044	0,13 0.0050	0.0060	740 (660 — 820)		
K7	E/M/A/D	0,40 0.40	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	200 (180 — 220) 660 (600 — 720)		
N1	E/M/A	0,40	0,95	0,080	0,095	0,12	0,14	670 (560 — 780)		
		0.40 0,40	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	2200 (1900 — 250 430 (360 — 500)		
N2	E/M/A	0.40	0.95	0.0032	0.0038	0.0048	0.0055	1400 (1200 — 160		
N3	E/M/A	0,40 <i>0.40</i>	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	285 (240 — 330) 940 (790 — 1000		
N11	E/M/A	0,40 0.40	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	335 (280 — 380) 1100 (920 — 120)		
S1	E	0,15	0,95	0,090	0,11	0,13	0,15	43 (26 — 60)		
		0.15 0,15	0.95 0,95	0.0036 0,090	0.0044 0,11	0.0050 0,13	0.0060 0,15	140 (86 — 190) 35 (21 — 48)		
S2	Е	0.15	0.95	0.0036	0.0044	0.0050	0.0060	115 (69 — 150)		
S3	E	0,15 <i>0.15</i>	0,95 0.95	0,085 0.0034	0,10 0.0040	0,12 0.0048	0,14 0.0055	30 (19 — 42) 100 (63 — 130)		
S11	Е	0,40	0,95	0,060	0,070	0,090	0,10	105 (77 — 130)		
		0.40 0,40	0.95 0,95	0.0024 0,060	0.0028 0,070	0.0036 0,090	0.0040 0,10	345 (260 — 420) 80 (59 — 100)		
S12	E	0.40	0.95	0.0024	0.0028	0.0036	0.0040	260 (200 — 320)		
S13	E	0,40 0.40	0,95 0.95	0,055 0.0022	0,065 0.0026	0,080 0.0032	0,090 0.0036	65 (47 — 83) 215 (160 — 270,		
H5	M/A	0,050 0.050	0,95 0.95	0,090 0.0036	0,11 <i>0.0044</i>	0,14 0.0055	0,16 <i>0.0065</i>	75 (62 — 92) 245 (210 — 300)		
Н8	M/A	0,050	0,95	0,070	0,085	0,10	0,12	80 (64 — 95)		
		0.050 0,050	0.95 0,95	0.0028 0,070	0.0034 0,085	0.0040 0,10	0.0048 0,12	260 (210 — 310) 80 (64 — 95)		
H21	M/A	0.050	0.95	0.0028	0.0034	0.0040	0.0048	260 (210 — 310,		
H31	M/A	0,050 0.050	0,95 0.95	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 0.0040	60 (50 — 74) 195 (170 — 240)		
TS1	A/D	0,40	0,95	0,080	0,095	0,12	0,14	280 (170 — 390)		
		0.40 0,40	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	920 (560 — 1200 280 (170 — 390)		
TP1	A/D	0.40	0.95	0.0032	0.0038	0.0048	0.0055	920 (560 — 1200		
GR1	A/D	0,40 0.40	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	670 (560 — 780) 2200 (1900 — 250		

Cutting data - XSE550 - Slot milling PCEDC 3

The color of the	20 0,12 0,0048 0,12 0,0048 0,12 0,0048 0,12 0,0048 0,12 0,0048 0,12 0,0048 0,12 0,0048 0,12 0,0048 0,10 0,0040 0,070 0,0028 0,10 0,0040	190 (170 — 210) 620 (560 — 680) 185 (160 — 210) 610 (530 — 680) 160 (140 — 180) 520 (460 — 590) 140 (120 — 150) 460 (400 — 490) 135 (120 — 150) 445 (400 — 490) 150 (130 — 170) 490 (430 — 550) 140 (130 — 160) 460 (430 — 520) 135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P1 E/MA/D 1,0 0,060 0,070 0,095 0,0038 P2 E/MIA/D 1,0 0,060 0,070 0,095 0,0038 P3 E/MIA/D 1,0 0,060 0,070 0,095 0,0038 P4 E/MIA/D 1,0 0,060 0,070 0,095 0,0038 P5 E/MIA/D 1,0 0,060 0,070 0,095 0,0038 P6 E/MIA/D 1,0 0,060 0,070 0,095 0,0038 P7 E/MIA/D 1,0 0,060 0,070 0,095 0,0038 P8 E/MIA/D 1,0 0,060 0,070 0,095 0,0038 P1 E/MIA/D 1,0 0,060 0,070 0,095 0,0038 P1 E/MIA/D 1,0 0,060 0,070 0,095 0,0038 P1 E/MIA/D 0,80 0,0004 0,0024 0,0028 0,0038 P1 E/MIA/D 0,80 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,00000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,000	0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,10 0.0040 0,070 0.0028 0,10	620 (560 — 680) 185 (160 — 210) 610 (530 — 680) 160 (140 — 180) 520 (460 — 590) 140 (120 — 150) 460 (400 — 490) 135 (120 — 150) 445 (400 — 490) 150 (130 — 170) 490 (430 — 550) 140 (130 — 160) 460 (430 — 520) 135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P1 E/M/A/D 1.0 0.0024 0.0028 0.0038 P2 E/M/A/D 1.0 0.0024 0.0028 0.0038 P3 E/M/A/D 1.0 0.060 0.070 0.095 1.0 0.0024 0.0028 0.0038 P4 E/M/A/D 1.0 0.060 0.070 0.095 P5 E/M/A/D 1.0 0.060 0.070 0.095 P6 E/M/A/D 1.0 0.060 0.070 0.095 P6 E/M/A/D 1.0 0.060 0.070 0.095 P6 E/M/A/D 1.0 0.060 0.070 0.095 P7 E/M/A/D 1.0 0.060 0.070 0.095 P8 E/M/A/D 1.0 0.060 0.070 0.095 P9 E/M/A/D 1.0 0.060 0.070 0.095 P1 E/M/A/D 0.080 0.0024 0.0028 0.0038 P1 E/M/A/D 0.080 0.0024 0.0028 0.0038 P1 E/M/A/D 0.80 0.0024 0.0028 0.0038 P1 E/M/A/D 0.80 0.0024 0.0028 0.0038 P1 E/M/A/D 0.80 0.0020 0.0024 0.0022 P12 E/M/A/D 0.80 0.0016 0.0019 0.0024 D.0024 0.0029 D.0024 0.0032 D.0024 0.0032 D.0024 0.0032 D.0036 0.0016 0.0019 0.0024	0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,10 0.0040 0,070 0.0028 0,10 0.0040	620 (560 — 680) 185 (160 — 210) 610 (530 — 680) 160 (140 — 180) 520 (460 — 590) 140 (120 — 150) 460 (400 — 490) 135 (120 — 150) 445 (400 — 490) 150 (130 — 170) 490 (430 — 550) 140 (130 — 160) 460 (430 — 520) 135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P2 E/M/A/D 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,10 0.0040 0,070 0.0028 0,10 0.0040	610 (530 — 680) 160 (140 — 180) 520 (460 — 590) 140 (120 — 150) 460 (400 — 490) 135 (120 — 150) 445 (400 — 490) 150 (130 — 170) 490 (430 — 550) 140 (130 — 160) 460 (430 — 520) 135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P3 E/M/A/D 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0	0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,10 0.0040 0,070 0.0028 0,10 0.0040	160 (140 — 180) 520 (460 — 590) 140 (120 — 150) 460 (400 — 490) 135 (120 — 150) 445 (400 — 490) 150 (130 — 170) 490 (430 — 550) 140 (130 — 160) 460 (430 — 520) 135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P4 E/M/A/D 1,0 0,060 0,070 0,095 1,0 0,060 0,070 0,095 P5 E/M/A/D 1,0 0,060 0,070 0,095 1,0 0,0024 0,0028 0,0038 P6 E/M/A/D 1,0 0,060 0,070 0,095 1,0 0,0024 0,0028 0,0038 P7 E/M/A/D 1,0 0,060 0,070 0,095 P7 E/M/A/D 1,0 0,060 0,070 0,095 P8 E/M/A/D 1,0 0,060 0,070 0,095 P1 E/M/A/D 0,80 0,050 0,060 0,0024 P12 E/M/A/D 0,80 0,050 0,060 0,0029 P12 E/M/A/D 0,80 0,040 0,048 0,060 P14 E/M/A/D 0,80 0,0016 0,0019 0,0024 P15 E/M/A/D 0,80 0,0016 0,0019 0,0024 P16 E/M/A/D 0,80 0,0016 0,0019 0,0024 P17 E/M/A/D 0,80 0,0016 0,0019 0,0024 P18 E/M/A/D 0,80 0,0016 0,0019 0,0024	0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,10 0.0040 0,070 0.0028 0,10 0.0040	140 (120 — 150) 460 (400 — 490) 135 (120 — 150) 445 (400 — 490) 150 (130 — 170) 490 (430 — 550) 140 (130 — 160) 460 (430 — 520) 135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P5 E/M/A/D 1.0 0.0024 0.0028 0.0038 P6 E/M/A/D 1,0 0.060 0.070 0.095 P6 E/M/A/D 1,0 0.060 0.070 0.095 P7 E/M/A/D 1,0 0.060 0.070 0.095 P8 E/M/A/D 1,0 0.060 0.070 0.095 P1 E/M/A/D 0.0024 0.0028 0.0038 P1 E/M/A/D 0.000 0.0024 0.0028 0.0038 P1 E/M/A/D 0.80 0.0024 0.0028 0.0038 P1 E/M/A/D 0.80 0.0024 0.0028 0.0032 P1 E/M/A/D 0.80 0.0020 0.0024 0.0032 P1 E/M/A/D 0.80 0.0016 0.0019 0.0024 P1 E/M/A/D 0.80 0.0016 0.0019 0.0024	0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,10 0.0040 0,070 0.0028 0,10 0.0040	460 (400 — 490) 135 (120 — 150) 445 (400 — 490) 150 (130 — 170) 490 (430 — 550) 140 (130 — 160) 460 (430 — 520) 135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P6 E/M/A/D 1.0 0.0024 0.0028 0.0038 P6 E/M/A/D 1,0 0,060 0,070 0,095 1.0 0.0024 0.0028 0.0038 P7 E/M/A/D 1,0 0,060 0,070 0,095 1.0 0.0024 0.0028 0.0038 P8 E/M/A/D 1,0 0,060 0,070 0,095 1.0 0,060 0,070 0,095 1.0 0,060 0,070 0,095 1.0 0,060 0,070 0,095 1.0 0,060 0,070 0,095 1.0 0,060 0,0028 0.0038 P11 E/M/A/D 0,80 0,050 0,060 0,080 P12 E/M/A/D 0,80 0,040 0,048 0,060 1,080 0,0016 0,0019 0,0024 1,0 0,0016 0,0019 0,0024 1,0 0,0016 0,0019 0,0024 1,0 0,0019 0,0024 1,0 0,0019 0,0024 1,0 0,0019 0,0024 1,0 0,0019 0,0024 1,0 0,0019 0,0024 1,0 0,0019 0,0024 1,0 0,0019 0,0000 1,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0	0.0048 0,12 0.0048 0,12 0.0048 0,12 0.0048 0,10 0.0040 0,070 0.0028 0,10 0.0040	445 (400 — 490) 150 (130 — 170) 490 (430 — 550) 140 (130 — 160) 460 (430 — 520) 135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P7 E/M/A/D 1.0 0.0024 0.0028 0.0038 P7 E/M/A/D 1.0 0.060 0.070 0.095 P8 E/M/A/D 1.0 0.060 0.070 0.095 P8 E/M/A/D 1.0 0.060 0.070 0.095 P11 E/M/A/D 0.80 0.050 0.060 0.0032 P12 E/M/A/D 0.80 0.0020 0.0024 0.0032 P14 E/M/A/D 0.80 0.0016 0.0019 0.0024 P15 E/M/A/D 0.80 0.0016 0.0019 0.0024 P16 E/M/A/D 0.80 0.0016 0.0019 0.0024 P17 E/M/A/D 0.80 0.0016 0.0019 0.0024	0.0048 0,12 0.0048 0,12 0.0048 0,10 0.0040 0,070 0.0028 0,10 0.0040	490 (430 — 550) 140 (130 — 160) 460 (430 — 520) 135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P7 E/M/A/D 1,0 1,0 0,060 0,0024 0,0028 0,0038 0,070 0,095 0,0038 P8 E/M/A/D 1,0 0,060 0,060 0,070 0,095 0,0028 0,0038 P11 E/M/A/D 0,80 0,050 0,060 0,060 0,080 0,080 0,0024 0,0032 0,0024 0,0032 0,0024 0,0032 0,0024 0,0032 0,0040 0,048 0,060 0,0016 0,0019 0,0024 P12 E/M/A/D 0,80 0,0016 0,0016 0,0019 0,0024 0,0024 0,0032 0,0004 0,0004 0,0000 0,000	0,12 0.0048 0,12 0.0048 0,10 0.0040 0,070 0.0028 0,10 0.0040	140 (130 — 160) 460 (430 — 520) 135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P8 E/M/A/D 1,0 1,0 0,060 0,0024 0,0028 0,0038 0,0038 P11 E/M/A/D 0,80 0,050 0,060 0,060 0,080 0,0024 0,0032 0,0024 0,0032 P12 E/M/A/D 0,80 0,004 0,004 0,048 0,060 0,0016 0,0019 0,00024	0,12 0.0048 0,10 0.0040 0,070 0.0028 0,10 0.0040	135 (120 — 150) 445 (400 — 490) 85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P11 E/M/A/D 0,80 0,050 0,060 0,080 P12 E/M/A/D 0,80 0,000 0,000 0,000 P13 E/M/A/D 0,80 0,000 0,000 0,000 P14 E/M/A/D 0,80 0,0016 0,0019 0,00024 P15 E/M/A 0,80 0,050 0,060 0,080	0,10 0.0040 0,070 0.0028 0,10 0.0040	85 (74 — 94) 280 (250 — 300) 50 (46 — 58)
P12 E/M/A/D 0.80 0.0020 0.0024 0.0032 P12 E/M/A/D 0.80 0.040 0.048 0.060 0.80 0.0016 0.0019 0.0024 M1 E/M/A 0.80 0.050 0.060 0.080	0,070 0.0028 0,10 0.0040	50 (46 — 58)
0.80 0.0016 0.0019 0.0024 0.80 0,050 0,060 0,080	0.0028 0,10 0.0040	` '
	0.0040	165 (160 — 190)
MT E/N/A 0.80 0.0020 0.0024 0.0032		100 (87 — 110) 330 (290 — 360)
M2 E/M/A 0,80 0,050 0,060 0,080 0.0020 0.0024 0.0032	0,10 <i>0.0040</i>	80 (70 — 89) 260 (230 — 290)
M2 E/M/A 0,70 0,040 0,048 0,065	0,080	50 (41 — 60)
0.70 0.0076 0.0079 0.0026 0.70 0,040 0,048 0,065	0.0032 0,075	165 (140 — 190) 37 (30 — 45)
0.70 0.0076 0.0079 0.0026	0.0030 0,075	120 (99 — 140) 31 (25 — 37)
0.70 0.0016 0.0019 0.0026	0.0030	100 (83 — 120)
K1 E/M/A/D 1,0 0,060 0,070 0,095 0.0024 0.0028 0.0038	0,12 0.0048	150 (140 — 180) 490 (460 — 590)
K2 E/M/A/D 1,0 0,060 0,070 0,095 0.0024 0.0028 0.0038	0,12 0.0048	130 (130 — 150) 425 (430 — 490)
K3 F/M/A/D 1,0 0,060 0,070 0,095	0,12	110 (110 — 130)
1.0 0.0024 0.0028 0.0038 K4 E/M/A/D 1.0 0.060 0.070 0.095	0.0048 0,12	360 (370 — 420) 105 (99 — 120)
7.0 0.0024 0.0028 0.0038 0.80 0.050 0.060 0.080	0.0048 0,10	345 (330 — 390) 140 (120 — 150)
K5 E/M/A/D 0.80 0.0020 0.0024 0.0032 0.080 0.080 0.080	0.0040 0,10	460 (400 — 490) 205 (180 — 230)
0.80 0.0020 0.0024 0.0032	0.0040	670 (600 — 750)
K7 E/M/A/D 0,80 0,050 0,060 0,080 0.0024 0.0032	0,10 <i>0.0040</i>	180 (160 — 200) 590 (530 — 650)
N1 E/M/A 0,70 0,050 0,060 0,080 0.0032	0,10 <i>0.0040</i>	600 (510 — 690) 1975 (1700 — 2200)
N2 E/M/A 0,70 0,050 0,060 0,080	0,10	385 (330 — 440)
0.70 0.0020 0.0024 0.0032 0,70 0,050 0,060 0,080	0.0040 0,10	1275 (1100 — 1400) 255 (220 — 290)
0.70 0.0020 0.0024 0.0032	0.0040 0,10	840 (730 — 950) 300 (250 — 340)
NTI E/M/A 0.60 0.0020 0.0024 0.0032	0.0040	980 (830 — 1100)
S1 E 0,30 0,030 0,036 0,048 0.0012 0.0014 0.0019	0,060 0.0024	36 (22 — 50) 120 (73 — 160)
S2 E 0,30 0,030 0,036 0,048 0.0012 0,0014 0.0019	0,060 0.0024	29 (18 — 40) 95 (60 — 130)
S3 E 0,30 0,030 0,036 0,048 0.0019	0,060 0.0024	25 (15 — 34) 80 (50 — 110)
S11 E 0,50 0,050 0,060 0,080	0,10	90 (66 — 110)
0.50 0.0020 0.0024 0.0032	0.0040 0,10	295 (220 — 360) 70 (50 — 89)
0.50 0.0020 0.0024 0.0032	0.0040 0,090	230 (170 — 290) 55 (39 — 69)
0.50 0.0020 0.0024 0.0030	0.0036	180 (130 — 220)
H5 M/A 0,30 0,030 0,036 0,048 0.30 0.0012 0.0014 0.0019	0,060 0.0024	50 (41 — 60) 165 (140 — 190)
H8 M/A 0,30 0,030 0,036 0,044 0.0017	0,050 0.0020	50 (41 — 60) 165 (140 — 190)
H24 N/A 0,30 0,030 0,036 0,044	0,050	50 (41 — 60)
0.30 0.0072 0.0074 0.0077 H31 M/Δ 0,30 0,026 0,032 0,038	0.0020 0,044	165 (140 — 190) 39 (32 — 46)
0.30 0.0010 0.0013 0.0015	0.0017 0,10	130 (110 — 150) 250 (150 — 340)
1ST AVD 0.70 0.0020 0.0024 0.0032	0.0040	820 (500 — 1100)
TP1 A/D 0,70 0,050 0,060 0,080 0.0024 0.0032	0,10 0.0040	250 (150 — 340) 820 (500 — 1100)
GR1 A/D 0,70 0,050 0,060 0,080 0.0032	0,10 <i>0.0040</i>	600 (510 — 690) 1975 (1700 — 2200)

Cutting data – XSE550 – Side milling PCEDC 3 – inch

SMG	Ā	a _e /DC	a _p /DC			f _z		v _c
OMO				3/8	1/2	5/8	3/4	
P1	E/M/A/D	0,40 0.40	1,1 1.1	0,095 0.0038	0,12 0.0048	0,14 0.0055	0,16 0.0065	215 (190 — 240) 710 (630 — 780)
P2	E/M/A/D	0,40	1,1	0,10	0,12	0,15	0,17	205 (180 — 230)
		0.40 0,40	1.1 1,1	0.0040 0,095	0.0048 0,11	0.0060 0,14	0.0065 0,16	670 (600 — 750) 180 (160 — 200)
P3	E/M/A/D	0.40 0,40	1.1	0.0038	0.0044	0.0055 0,14	0.0065 0,16	590 (530 — 650)
P4	E/M/A/D	0.40	1,1 1.1	0.0036	0.0044	0.0055	0.0065	520 (460 — 590)
P5	E/M/A/D	0,40 0.40	1,1 1.1	0,090 0.0036	0,11 0.0044	0,13 0.0050	0,15 0.0060	150 (140 — 170) 490 (460 — 550)
P6	E/M/A/D	0,40 0.40	1,1 1.1	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 0.0060	170 (150 — 190) 560 (500 — 620)
P7	E/M/A/D	0,40	1,1	0,090	0,11	0,13	0,15	160 (140 — 180)
		0.40 0,40	1.1 1,1	0.0036 0,095	0.0044 0,11	0.0050 0,14	0.0060 0,16	520 (460 — 590) 150 (130 — 170)
P8	E/M/A/D	0.40	1.1	0.0038	0.0044	0.0055	0.0065	490 (430 — 550)
P11	E/M/A/D	0,30 0.30	1,1 1.1	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 0.0044	105 (93 — 110) 345 (310 — 360)
P12	E/M/A/D	0,30 0.30	1,1 1.1	0,044 0.0017	0,055 0.0022	0,065 0.0026	0,075 0.0030	65 (60 — 75) 215 (200 — 240)
M1	E/M/A	0,30 0.30	1,1 1.1	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	0,12 0.0048	120 (110 — 130) 395 (370 — 420)
M2	E/M/A	0,30	1,1	0,065	0,075	0,095	0,11	100 (88 — 110)
		0.30 0,30	1.1 0,95	0.0026 0,055	0.0030 0,065	0.0038 0,080	0.0044 0,090	330 (290 — 360) 60 (50 — 74)
M3	E/M/A	0.30	0.95	0.0022	0.0026	0.0032	0.0036	195 (170 — 240) 48 (39 — 57)
M4	E/M/A	0,30 0.30	0,95 0.95	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	155 (130 — 180)
M5	E/M/A	0,30 0.30	0,95 0.95	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	40 (32 — 47) 130 (110 — 150)
K1	E/M/A/D	0,40 <i>0.40</i>	1,1 1.1	0,090 0.0036	0,11 <i>0.0044</i>	0,14 0.0055	0,16 0.0065	170 (160 — 200) 560 (530 — 650)
K2	E/M/A/D	0,40	1,1	0,085	0,10	0,12	0,14	150 (150 — 180)
		0.40 0,40	1.1	0.0034 0,085	0.0040 0,10	0.0048 0,12	0.0055 0,14	490 (500 — 590) 125 (120 — 150)
K 3	E/M/A/D	0.40 0,40	1.1	0.0034 0,085	0.0040 0,10	0.0048 0,12	0.0055 0,14	410 (400 — 490) 120 (120 — 140)
K4	E/M/A/D	0.40	1,1 1.1	0.0034	0.0040	0.0048	0.0055	395 (400 — 450)
K5	E/M/A/D	0,40 0.40	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	155 (140 — 170) 510 (460 — 550)
K6	E/M/A/D	0,40 0.40	0,95 0.95	0,090 0.0036	0,11 <i>0.0044</i>	0,13 0.0050	0,15 0.0060	225 (200 — 250) 740 (660 — 820)
K7	E/M/A/D	0,40	0,95	0,080	0,095	0,12	0,14	200 (180 — 220)
		0.40 0,40	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	660 (600 — 720) 670 (560 — 780)
N1	E/M/A	0.40 0,40	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	2200 (1900 — 2500) 430 (360 — 500)
N2	E/M/A	0.40	0.95	0.0032	0.0038	0.0048	0.0055	1400 (1200 — 1600)
N3	E/M/A	0,40 <i>0.40</i>	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 <i>0.0055</i>	285 (240 — 330) 940 (790 — 1000)
N11	E/M/A	0,40 0.40	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	335 (280 — 380) 1100 (920 — 1200)
S1	Е	0,15	0,95	0,090	0,11	0,13	0,15	43 (26 — 60)
S2	E	0.15 0,15	0.95 0,95	0.0036 0,090	0.0044 0,11	0.0050 0,13	0.0060 0,15	140 (86 — 190) 35 (21 — 48)
		0.15 0,15	0.95 0,95	0.0036 0,085	0.0044 0,10	0.0050 0,12	0.0060 0,14	115 (69 — 150) 30 (19 — 42)
S3	Е	0.15	0.95	0.0034	0.0040	0.0048	0.0055	100 (63 — 130)
S11	Е	0,40 0.40	0,95 <i>0.</i> 95	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 0.0040	105 (77 — 130) 345 (260 — 420)
S12	Е	0,40 0.40	0,95 0.95	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 0.0040	80 (59 — 100) 260 (200 — 320)
S13	Е	0,40	0,95	0,055	0,065	0,080	0,090	65 (47 — 83)
H5	M/A	0.40 0,050	0.95 0,95	0.0022 0,090	0.0026 0,11	0.0032 0,14	0.0036 0,16	215 (160 — 270) 75 (62 — 92)
		0.050 0,050	0.95 0,95	0.0036 0,070	0.0044 0,085	0.0055 0,10	0.0065 0,12	245 (210 — 300) 80 (64 — 95)
H8	M/A	0.050	0.95	0.0028	0.0034	0.0040	0.0048	260 (210 — 310)
H21	M/A	0,050 <i>0.050</i>	0,95 <i>0.</i> 95	0,070 0.0028	0,085 0.0034	0,10 <i>0.0040</i>	0,12 0.0048	80 (64 — 95) 260 (210 — 310)
H31	M/A	0,050 0.050	0,95 <i>0.</i> 95	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 <i>0.0040</i>	60 (50 — 74) 195 (170 — 240)
TS1	A/D	0,40	0,95	0,080	0,095	0,12	0,14	280 (170 — 390)
TP1	A/D	0.40 0,40	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	920 (560 — 1200) 280 (170 — 390)
		0.40 0,40	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	920 (560 — 1200) 670 (560 — 780)
GR1	A/D	0.40	0.95	0.0032	0.0038	0.0048	0.0055	2200 (1900 — 2500)


Cutting data - XSE550 - Slot milling PCEDC 3 inch

SMG	Ā	a _p /DC		f,			
							V _c
		1,0	3/8 0,060	1/2 0,070	5/8 0,095	3/4 0,12	190 (170 — 210)
P1	E/M/A/D	1.0	0.0024	0.0028	0.0038	0.0048	620 (560 — 680)
P2	E/M/A/D	1,0 1.0	0,060 0.0024	0,070 0.0028	0,095 0.0038	0,12 <i>0.0048</i>	185 (160 — 210) 610 (530 — 680)
P3	E/M/A/D	1,0	0,060	0,070	0,095	0,12	160 (140 — 180)
D4		1.0 1,0	0.0024 0,060	0.0028 0,070	0.0038 0,095	0.0048 0,12	520 (460 — 590) 140 (120 — 150)
P4	E/M/A/D	1.0 1,0	0.0024 0,060	0.0028 0,070	0.0038 0,095	0.0048 0,12	460 (400 — 490) 135 (120 — 150)
P5	E/M/A/D	1.0	0.0024	0.0028	0.0038	0.0048	445 (400 — 490)
P6	E/M/A/D	1,0 1.0	0,060 0.0024	0,070 0.0028	0,095 0.0038	0,12 <i>0.0048</i>	150 (130 — 170) 490 (430 — 550)
P7	E/M/A/D	1,0 1.0	0,060 <i>0.0024</i>	0,070 0.0028	0,095 0.0038	0,12 <i>0.0048</i>	140 (130 — 160) 460 (430 — 520)
P8	E/M/A/D	1,0	0,060	0,070	0,095	0,12	135 (120 — 150)
		1.0 0,80	0.0024 0,050	0.0028 0,060	0.0038 0,080	0.0048 0,10	445 (400 — 490) 85 (74 — 94)
P11	E/M/A/D	0.80	0.0020	0.0024	0.0032	0.0040	280 (250 — 300)
P12	E/M/A/D	0,80 0.80	0,040 0.0016	0,048 0.0019	0,060 <i>0.0024</i>	0,070 0.0028	50 (46 — 58) 165 (160 — 190)
M1	E/M/A	0,80 0.80	0,050 0.0020	0,060 <i>0.0024</i>	0,080 0.0032	0,10 <i>0.0040</i>	100 (87 — 110) 330 (290 — 360)
M2	E/M/A	0,80	0,050	0,060	0,080	0,10	80 (70 — 89)
M3		0.80 0,70	0.0020 0,040	0.0024 0,048	0.0032 0,065	0.0040 0,080	260 (230 — 290) 50 (41 — 60)
	E/M/A	0.70 0,70	0.0016 0,040	0.0019 0,048	0.0026 0,065	0.0032 0,075	165 (140 — 190) 37 (30 — 45)
M4	E/M/A	0.70	0.0016	0.0019	0.0026	0.0030	120 (99 — 140)
M5	E/M/A	0,70 0.70	0,040 0.0016	0,048 <i>0.0019</i>	0,065 0.0026	0,075 0.0030	31 (25 — 37) 100 (83 — 120)
K1	E/M/A/D	1,0 1.0	0,060 <i>0.0024</i>	0,070 0.0028	0,095 0.0038	0,12 0.0048	150 (140 — 180) 490 (460 — 590)
K2	E/M/A/D	1,0	0,060	0,070	0,095	0,12	130 (130 — 150)
		1.0 1,0	0.0024 0,060	0.0028 0,070	0.0038 0,095	0.0048 0,12	425 (430 — 490) 110 (110 — 130)
K3	E/M/A/D	1.0	0.0024	0.0028	0.0038	0.0048	360 (370 — 420)
K4	E/M/A/D	1,0 1.0	0,060 <i>0.0024</i>	0,070 0.0028	0,095 <i>0.0038</i>	0,12 <i>0.0048</i>	105 (99 — 120) 345 (330 — 390)
K5	E/M/A/D	0,80 0.80	0,050 0.0020	0,060 <i>0.0024</i>	0,080 0.0032	0,10 <i>0.0040</i>	140 (120 — 150) 460 (400 — 490)
K6	E/M/A/D	0,80	0,050	0,060	0,080	0,10	205 (180 — 230)
K7	E/M/A/D	0.80 0,80	0.0020 0,050	0.0024 0,060	0.0032 0,080	0.0040 0,10	670 (600 — 750) 180 (160 — 200)
		0.80 0,70	0.0020 0,050	0.0024 0,060	0.0032 0,080	0.0040 0,10	590 (530 — 650) 600 (510 — 690)
N1	E/M/A	0.70	0.0020	0.0024	0.0032	0.0040	1975 (1700 — 2200)
N2	E/M/A	0,70 0.70	0,050 0.0020	0,060 <i>0.0024</i>	0,080 <i>0.00</i> 32	0,10 <i>0.0040</i>	385 (330 — 440) 1275 (1100 — 1400)
N3	E/M/A	0,70 <i>0.70</i>	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	0,080 <i>0.0032</i>	0,10 <i>0.0040</i>	255 (220 — 290) 840 (730 — 950)
N11	E/M/A	0,60	0,050	0,060	0,080	0,10	300 (250 — 340)
		0.60 0,30	0.0020 0,030	0.0024 0,036	0.0032 0,048	0.0040 0,060	980 (830 — 1100) 36 (22 — 50)
S1	E	0.30 0,30	0.0012 0,030	0.0014 0,036	0.0019 0,048	0.0024 0,060	120 (73 — 160) 29 (18 — 40)
S2	E	0.30	0.0012	0.0014	0.0019	0.0024	95 (60 — 130)
S 3	E	0,30 0.30	0,030 0.0012	0,036 <i>0.0014</i>	0,048 0.0019	0,060 <i>0.0024</i>	25 (15 — 34) 80 (50 — 110)
S11	E	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 0.0024	0,080 <i>0.0032</i>	0,10 <i>0.0040</i>	90 (66 — 110) 295 (220 — 360)
S12	E	0,50	0,050	0,060	0,080	0,10	70 (50 — 89)
		0.50 0,50	0.0020 0,050	0.0024 0,060	0.0032 0,075	0.0040 0,090	230 (170 — 290) 55 (39 — 69)
S13	E	0.50	0.0020 0,030	0.0024 0,036	0.0030 0,048	0.0036 0,060	180 (130 — 220)
H5	M/A	0,30 0.30	0.0012	0.0014	0.0019	0.0024	50 (41 — 60) 165 (140 — 190)
Н8	M/A	0,30 0.30	0,030 0.0012	0,036 <i>0.0014</i>	0,044 0.0017	0,050 <i>0.0020</i>	50 (41 — 60) 165 (140 — 190)
H21	M/A	0,30 0.30	0,030 0.0012	0,036 0.0014	0,044 0.0017	0,050 0.0020	50 (41 — 60) 165 (140 — 190)
H31	M/A	0,30	0,026	0,032	0,038	0,044	39 (32 — 46)
		0.30 0,70	0.0010 0,050	0.0013 0,060	0.0015 0,080	0.0017 0,10	130 (110 — 150) 250 (150 — 340)
TS1	A/D	0.70	0.0020	0.0024	0.0032	0.0040	820 (500 — 1100)
TP1	A/D	0,70 <i>0.70</i>	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	0,080 <i>0.0032</i>	0,10 <i>0.0040</i>	250 (150 — 340) 820 (500 — 1100)
GR1	A/D	0,70 0.70	0,050 0.0020	0,060 <i>0.0024</i>	0,080 0.0032	0,10 <i>0.0040</i>	600 (510 — 690) 1975 (1700 — 2200)

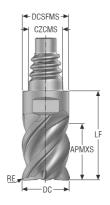
SECO I

XSE550

High performance – Universal – Square – 4 Flutes – Corner radius or chamfer

- Tolerances:
 DC= e7
 RE= ±0,02 mm
 Regrind possible if DC is ≥Ø12 mm

Designation	ltem number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	снw	RE	PCEDC	sw	Grade
					mm	mm	mm	mm	mm	mm			SIRA
XSE550E10100D2CZ4	10138152	2	D	E10	10,0	9,7	12,0	18,7	0,125	-	4	8	_
XSE550E12120D2CZ4	10138153	2	D	E12	12,0	11,7	14,4	22,1	0,15	-	4	10	
XSE550E16160D2CZ4	10138154	2	D	E16	16,0	15,5	19,2	29,2	0,2	-	4	12	
XSE550E20200D2CZ4	10138155	2	D	E20	20,0	19,3	24,0	34,3	0,25	-	4	16	
XSE550E10100D1R050Z4	10138156	1	D	E10	10,0	9,7	5,5	12,3	-	0,5	4	8	
XSE550E12120D1R050Z4	10138157	1	D	E12	12,0	11,7	6,6	14,4	-	0,5	4	10	
XSE550E16160D1R050Z4	10138158	1	D	E16	16,0	15,5	8,8	18,6	-	0,5	4	12	
XSE550E20200D1R100Z4	10138159	1	D	E20	20,0	19,3	11,0	21,2	-	1,0	4	16	
XSE550E10100D2R100Z4	10138161	2	D	E10	10,0	9,7	12,0	18,7	-	1,0	4	8	
XSE550E12120D2R100Z4	10138165	2	D	E12	12,0	11,7	14,4	22,1	-	1,0	4	10	
XSE550E16160D2R100Z4	10138169	2	D	E16	16,0	15,5	19,2	29,2	-	1,0	4	12	
XSE550E20200D2R100Z4	10138172	2	D	E20	20,0	19,3	24,0	34,3	-	1,0	4	16	
XSE550E10100D2R050Z4	10138160	2	D	E10	10,0	9,7	12,0	18,7	-	0,5	4	8	
XSE550E10100D2R200Z4	10138162	2	D	E10	10,0	9,7	12,0	18,7	-	2,0	4	8	
XSE550E10100D2R250Z4	10138163	2	D	E10	10,0	9,7	12,0	18,7	_	2,5	4	8	
XSE550E12120D2R050Z4	10138164	2	D	E12	12,0	11,7	14,4	22,1	-	0,5	4	10	
XSE550E12120D2R200Z4	10138166	2	D	E12	12,0	11,7	14,4	22,1	-	2,0	4	10	
XSE550E12120D2R300Z4	10138167	2	D	E12	12,0	11,7	14,4	22,1	-	3,0	4	10	
XSE550E16160D2R050Z4	10138168	2	D	E16	16,0	15,5	19,2	29,2	_	0,5	4	12	
XSE550E16160D2R200Z4	10138170	2	D	E16	16,0	15,5	19,2	29,2	-	2,0	4	12	
XSE550E16160D2R300Z4	10138171	2	D	E16	16,0	15,5	19,2	29,2	_	3,0	4	12	
XSE550E20200D2R200Z4	10138173	2	D	E20	20,0	19,3	24,0	34,3	-	2,0	4	16	
XSE550E20200D2R300Z4	10138174	2	D	E20	20,0	19,3	24,0	34,3	-	3,0	4	16	
XSE550E20200D2R400Z4	10138175	2	D	E20	20,0	19,3	24,0	34,3	-	4,0	4	16	


Stocked standard.

XSE550 - Inch

High performance – Universal – Square – 4 Flutes – Corner radius – *Inch*

- Tolerances:
 DC= e7
 RE= ±.0008 Inch
 Regrind possible if DC is ≥Ø.500 Inch

I-A	RECONDITIONING	

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	SW	Grade
					Inch	Inch	Inch	Inch	Inch			SIRA
XSE550E10.375D1R030Z4	10138176	1	D	E10	0.375	0.364	0.206	0.484	0.030	4	8	•
XSE550E12.500D1R030Z4	10138177	1	D	E12	0.500	0.484	0.275	0.567	0.030	4	10	
XSE550E20.750D1R030Z4	10138178	1	D	E20	0.750	0.728	0.413	0.835	0.030	4	16	
XSE550E10.375D2R030Z4	10138179	2	D	E10	0.375	0.364	0.450	0.720	0.030	4	8	•
XSE550E12.500D2R030Z4	10138180	2	D	E12	0.500	0.484	0.600	0.906	0.030	4	10	
XSE550E20.750D2R030Z4	10138181	2	D	E20	0.750	0.728	0.900	1.295	0.030	4	16	

Stocked standard.

Cutting data - XSE550 - Side milling PCEDC 4

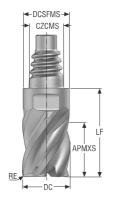
SMG	Ā	a _e /DC	a _p /DC		f	z		v _c
SIVIG				10	12	16	20	
P1	E/M/A/D	0,40	0,95	0,085	0,10	0,13	0,15	200 (180 — 220
' '	LIWIA	0.40	0.95	0.0034	0.0040	0.0050	0.0060	660 (600 — 720
P2	E/M/A/D	0,40 <i>0.40</i>	0,95 0.95	0,090 0.0036	0,10 <i>0.0040</i>	0,13 <i>0.0050</i>	0,15 0.0060	195 (170 — 220 640 (560 — 720
P3	E/M/A/D	0,40	0,95	0,085	0,10	0,12	0,14	170 (150 — 190
1 0	LIWIAD	0.40	0.95	0.0034	0.0040	0.0048	0.0055	560 (500 — 620
P4	E/M/A/D	0,40 <i>0.40</i>	0,95 0.95	0,080 0.0032	0,095 <i>0.00</i> 38	0,12 <i>0.0048</i>	0,14 0.0055	150 (130 — 170 490 (430 — 550
P5	E/M/A/D	0,40	0,95	0,080	0,095	0,12	0,14	145 (130 — 160
FJ	L/W/A/D	0.40	0.95	0.0032	0.0038	0.0048	0.0055	475 (430 — 520
P6	E/M/A/D	0,40 <i>0.40</i>	0,95 0.95	0,080 0.0032	0,095 <i>0.0038</i>	0,12 <i>0.004</i> 8	0,13 0.0050	160 (140 — 180 520 (460 — 590
P7	E/M/A/D	0,40	0,95	0,080	0,095	0,12	0,13	150 (140 — 170
	LIWIAD	0.40	0.95	0.0032	0.0038	0.0048	0.0050	490 (460 — 550
P8	E/M/A/D	0,40 <i>0.40</i>	0,95 0.95	0,085 0.0034	0,10 <i>0.0040</i>	0,12 0.0048	0,14 0.0055	140 (130 — 160 460 (430 — 520
P11	E/M/A/D	0,30	0,95	0,065	0,075	0,095	0,11	95 (84 — 100)
- 11	E/W/A/D	0.30	0.95	0.0026	0.0030	0.0038	0.0044	310 (280 — 320
P12	E/M/A/D	0,30 <i>0.30</i>	0,95 0.95	0,044 0.0017	0,055 0.0022	0,065 0.0026	0,075 <i>0.0030</i>	60 (54 — 68) 195 (180 — 220
N 4 4	E/84/A	0,30	0,95	0,070	0,085	0,11	0,12	110 (97 — 120
M1	E/M/A	0.30	0.95	0.0028	0.0034	0.0044	0.0048	360 (320 — 390
M2	E/M/A	0,30 <i>0.30</i>	0,95 0.95	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 <i>0.0044</i>	90 (80 — 100) 295 (270 — 320
MO	E/N4/A	0,30	0,95	0,055	0,065	0,080	0,090	60 (47 — 70)
M3	E/M/A	0.30	0.95	0.0022	0.0026	0.0032	0.0036	195 (160 — 22)
M4	E/M/A	0,30 <i>0.30</i>	0,95 0.95	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	45 (37 — 54) 150 (130 — 170
45	E/24/A	0,30	0,95	0,048	0,055	0,070	0,080	38 (31 — 45)
M5	E/M/A	0.30	0.95	0.0019	0.0022	0.0028	0.0032	125 (110 — 140
K1	E/M/A/D	0,40 <i>0.40</i>	0,95 0.95	0,080 0.0032	0,095 <i>0.0038</i>	0,12 0.0048	0,14 0.0055	160 (160 — 190 520 (530 — 620
140	E/14/4/D	0,40	0,95	0,075	0,090	0.0048	0,13	140 (140 — 170
K2	E/M/A/D	0.40	0.95	0.0030	0.0036	0.0044	0.0050	460 (460 — 550
K3	E/M/A/D	0,40 <i>0.40</i>	0,95 0.95	0,075 0.0030	0,090 <i>0.0036</i>	0,11 <i>0.0044</i>	0,13 0.0050	120 (120 — 140 395 (400 — 450
		0,40	0,95	0,075	0,090	0.0044	0,13	115 (110 — 130
K4	E/M/A/D	0.40	0.95	0.0030	0.0036	0.0044	0.0050	375 (370 — 420
K5	E/M/A/D	0,40	0,95	0,080	0,095 0.0038	0,12	0,14	150 (130 — 170 490 (430 — 550
		0.40 0,40	0.95 0,95	0.0032 0,090	0,0036	0.0048 0,13	0.0055 0,15	215 (190 — 240
K6	E/M/A/D	0.40	0.95	0.0036	0.0044	0.0050	0.0060	710 (630 — 780
K7	E/M/A/D	0,40	0,95	0,080	0,095	0,12	0,14	190 (170 — 210
	= 0.414	0.40 0,40	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	620 (560 — 680 670 (560 — 770
N1	E/M/A	0.40	0.95	0.0032	0.0038	0.0048	0.0055	2200 (1900 — 25
N2	E/M/A	0,40	0,95	0,080	0,095	0,12	0,14	430 (360 — 490
		0.40 0,40	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	1400 (1200 — 16 285 (240 — 330
N3	E/M/A	0.40	0.95	0.0032	0.0038	0.0048	0.0055	940 (790 — 100
N11	E/M/A	0,40	0,95	0,080	0,095	0,12	0,14	335 (280 — 380
		<i>0.40</i> 0,15	0.95 0,95	0.0032 0,090	0.0038 0,11	0.0048 0,13	0.0055 0,15	1100 (920 — 120 43 (26 — 60)
S1	E	0.15	0.95	0.0036	0.0044	0.0050	0.0060	140 (86 — 190
S2	Е	0,15	0,95	0,090	0,11	0,13	0,15	35 (21 — 48)
		0.15 0,15	0.95 0,95	0.0036 0,085	0.0044 0,10	0.0050 0,12	0.0060 0,14	115 (69 — 150) 30 (19 — 42)
S3	E	0.15	0.95	0.0034	0.0040	0.0048	0.0055	100 (63 — 130
611	Е	0,40	0,95	0,060	0,070	0,090	0,10	105 (77 — 130
		0.40 0,40	0.95 0,95	0.0024 0,060	0.0028 0,070	0.0036 0,090	0.0040 0,10	345 (260 — 420 80 (59 — 100)
512	E	0.40	0.95	0.0024	0.0028	0.0036	0.0040	260 (200 — 320
S13	Е	0,40	0,95	0,055	0,065	0,080	0,090	65 (47 — 83)
		0.40	0.95	0.0022 0,090	0.0026	0.0032 0,13	0.0036	215 (160 — 270 75 (59 — 73)
H5	M/A	0,050 <i>0.050</i>	0,95 0.95	0.0036	0,11 <i>0.0044</i>	0,13	0,15 0.0060	245 (200 — 23)
H8	M/A	0,050	0,95	0,070	0,085	0,10	0,12	75 (62 — 76)
	Will t	0.050	0.95	0.0028	0.0034	0.0040	0.0048	245 (210 — 240
121	M/A	0,050 0.050	0,95 0.95	0,070 0.0028	0,085 <i>0.0034</i>	0,10 <i>0.0040</i>	0,12 0.0048	75 (62 — 76) 245 (210 — 240
131	M/A	0,050	0,95	0,060	0,070	0,090	0,10	60 (48 — 59)
101	M/A	0.050	0.95	0.0024	0.0028	0.0036	0.0040	195 (160 — 190
ΓS1	A/D	0,40 <i>0.40</i>	0,95 0.95	0,080 0.0032	0,095 <i>0.0038</i>	0,12 <i>0.0048</i>	0,14 0.0055	275 (170 — 380 900 (560 — 120
-D4	A ID	0,40	0,95	0,080	0,095	0,12	0,14	275 (170 — 380
ГР1	A/D	0.40	0.95	0.0032	0.0038	0.0048	0.0055	900 (560 — 120
GR1	A/D	0,40 <i>0.40</i>	0,95 0.95	0,080 0.0032	0,095 <i>0.0038</i>	0,12 <i>0.0048</i>	0,14 0.0055	670 (560 — 770 2200 (1900 — 25

Cutting data - XSE550 - Slot milling PCEDC 4

Cutting a	ata – XSE550 – Slot m						
SMG	Ā	a _p /DC		f	z Z		V _c
			10	12	16	20	
P1	E/M/A/D	0,80 0.80	0,040 0.0016	0,048 <i>0.0019</i>	0,065 0.0026	0,080 0.0032	190 (170 — 210) 620 (560 — 680)
P2	E/M/A/D	0,80 <i>0.80</i>	0,040 0.0016	0,048 <i>0.001</i> 9	0,065 0.0026	0,080 0.0032	185 (160 — 210) 610 (530 — 680)
P3	E/M/A/D	0,80	0,040	0,048	0,065	0,080	160 (140 — 180)
P4		0.80 0,80	0.0016 0,040	0.0019 0,048	0.0026 0,065	0.0032 0,080	520 (460 — 590) 140 (120 — 150)
	E/M/A/D	0.80 0,80	0.0016 0,040	0.0019 0,048	0.0026 0,065	0.0032 0,080	460 (400 — 490) 135 (120 — 150)
P5	E/M/A/D	0.80	0.0016	0.0019	0.0026	0.0032	445 (400 — 490)
P6	E/M/A/D	0,80 0.80	0,040 0.0016	0,048 0.0019	0,065 0.0026	0,080 0.0032	150 (130 — 170) 490 (430 — 550)
P7	E/M/A/D	0,80 0.80	0,040 0.0016	0,048 <i>0.0019</i>	0,065 0.0026	0,080 0.0032	140 (130 — 160) 460 (430 — 520)
P8	E/M/A/D	0,80	0,040	0,048	0,065	0,080	135 (120 — 150)
P11	E/M/A/D	0.80 0,60	0.0016 0,030	0.0019 0,036	0.0026 0,048	0.0032 0,060	445 (400 — 490) 85 (74 — 94)
		0.60 0,60	0.0012 0,030	0.0014 0,036	0.0019 0,048	0.0024 0,060	280 (250 — 300) 50 (44 — 55)
P12	E/M/A/D	0.60 0,60	0.0012	0.0014	0.0019	0.0024 0,060	165 (150 — 180) 100 (87 — 110)
M1	E/M/A	0.60	0,030 0.0012	0,036 <i>0.0014</i>	0,048 0.0019	0.0024	330 (290 — 360)
M2	E/M/A	0,60 0.60	0,030 0.0012	0,036 <i>0.0014</i>	0,048 0.0019	0,060 <i>0.0024</i>	80 (70 — 90) 260 (230 — 290)
M3	E/M/A	0,60 0.60	0,030 0.0012	0,036 <i>0.0014</i>	0,048 0.0019	0,060 0.0024	50 (40 — 60) 165 (140 — 190)
M4	E/M/A	0,60	0,030	0,036	0,048	0,060	37 (30 — 45)
		0.60 0,60	0.0012 0,030	<i>0.0014</i> 0,036	0.0019 0,048	0.0024 0,060	120 (99 — 140) 31 (25 — 37)
M5	E/M/A	0.60 0,80	0.0012 0,040	0.0014 0,048	0.0019 0,065	0.0024 0,080	100 (83 — 120) 150 (150 — 180)
K1	E/M/A/D	0.80	0.0016	0.0019	0.0026	0.0032	490 (500 — 590)
K2	E/M/A/D	0,80 0.80	0,040 0.0016	0,048 0.0019	0,065 0.0026	0,080 0.0032	130 (130 — 150) 425 (430 — 490)
K3	E/M/A/D	0,80 <i>0.80</i>	0,040 0.0016	0,048 <i>0.001</i> 9	0,065 0.0026	0,080 0.0032	110 (110 — 130) 360 (370 — 420)
K4	E/M/A/D	0,80	0,040	0,048	0,065	0,080	105 (99 — 120)
K 5	E/M/A/D	0.80 0,80	0.0016 0,040	0.0019 0,048	0.0026 0,065	0.0032 0,080	345 (330 — 390) 140 (120 — 160)
		0.80 0,80	0.0016 0,040	0.0019 0,048	0.0026 0,065	0.0032 0,080	460 (400 — 520) 205 (180 — 230)
K6	E/M/A/D	0.80	0.0016	0.0019	0.0026	0.0032	670 (600 — 750)
K7	E/M/A/D	0,80 0.80	0,040 0.0016	0,048 <i>0.001</i> 9	0,065 0.0026	0,080 0.0032	180 (160 — 200) 590 (530 — 650)
N1	E/M/A	0,60 0.60	0,050 0.0020	0,060 0.0024	0,080 0.0032	0,10 <i>0.0040</i>	600 (510 — 700) 1975 (1700 — 2200)
N2	E/M/A	0,60 <i>0.60</i>	0,050 0.0020	0,060 <i>0.0024</i>	0,080 <i>0.00</i> 32	0,10 0.0040	385 (330 — 450) 1275 (1100 — 1400)
N3	E/M/A	0,60	0,050	0,060	0,080	0,10	255 (220 — 300)
		0.60 0,60	0.0020 0,050	0.0024 0,060	0.0032 0,080	0.0040 0,10	840 (730 — 980) 300 (250 — 350)
N11	E/M/A	0.60 0,30	0.0020 0,030	0.0024 0,036	0.0032 0,048	0.0040 0,060	980 (830 — 1100) 36 (22 — 50)
S1	E	0.30	0.0012	0.0014	0.0019	0.0024	120 (73 — 160)
S2	E	0,30 0.30	0,030 0.0012	0,036 <i>0.0014</i>	0,048 0.0019	0,060 0.0024	29 (18 — 40) 95 (60 — 130)
S3	E	0,30 0.30	0,030 0.0012	0,036 <i>0.0014</i>	0,048 0.0019	0,060 <i>0.0024</i>	25 (15 — 34) 80 (50 — 110)
S11	E	0,50 0.50	0,050	0,060 0.0024	0,080 0.0032	0,10 0.0040	90 (65 — 110) 295 (220 — 360)
S12	E	0,50	0.0020 0,050	0,060	0,080	0,10	70 (50 — 90)
		0.50 0,50	0.0020 0,050	0.0024 0,060	0.0032 0,075	0.0040 0,090	230 (170 — 290) 55 (39 — 69)
S13	Е	0.50	0.0020 0,025	0.0024 0,030	0.0030 0,040	0.0036 0,050	180 (130 — 220) 50 (41 — 50)
H5	M/A	0,26 0.26	0.0010	0.0012	0.0016	0.0020	165 (140 — 160)
Н8	M/A	0,26 0.26	0,025 0.0010	0,030 0.0012	0,040 0.0016	0,050 0.0020	50 (41 — 50) 165 (140 — 160)
H21	M/A	0,26 0.26	0,025 0.0010	0,030 0.0012	0,040 0.0016	0,050 0.0020	50 (41 — 50) 165 (140 — 160)
H31	M/A	0,26	0,025	0,030	0,038	0,044	38 (31 — 38)
TS1	A/D	0.26 0,60	0.0010 0,050	0.0012 0,060	0.0015 0,080	0.0017 0,10	125 (110 — 120) 250 (150 — 340)
		0.60 0,60	0.0020 0,050	0.0024 0,060	0.0032 0,080	0.0040 0,10	820 (500 — 1100) 250 (150 — 340)
TP1	A/D	0.60	0.0020	0.0024	0.0032	0.0040	820 (500 — 1100)
GR1	A/D	0,60 <i>0.60</i>	0,050 <i>0.0</i> 020	0,060 <i>0.0024</i>	0,080 0.0032	0,10 <i>0.0040</i>	600 (510 — 700) 1975 (1700 — 2200)

Cutting data - XSE550 - Side milling PCEDC 4 inch

SMG	Ā	a _e /DC	a _p /DC		1	z		V _c
SINIG				3/8	1/2	5/8	3/4	
P1	E/M/A/D	0,40	0,95	0,085	0,10	0,13	0,15	200 (180 — 220)
		0.40 0,40	0.95 0,95	0.0034 0,090	0.0040 0,10	0.0050 0,13	0.0060 0,15	660 (600 — 720) 195 (170 — 220)
P2	E/M/A/D	0.40	0.95	0.0036	0.0040	0.0050	0.0060	640 (560 — 720)
P3	E/M/A/D	0,40 <i>0.40</i>	0,95 0.95	0,085 0.0034	0,10 <i>0.0040</i>	0,12 0.0048	0,14 0.0055	170 (150 — 190) 560 (500 — 620)
P4	E/M/A/D	0,40	0,95	0,080	0,095	0,12	0,14	150 (130 — 170)
		0.40 0,40	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	490 (430 — 550) 145 (130 — 160)
P5	E/M/A/D	0.40	0.95	0.0032	0.0038	0.0048	0.0055	475 (430 — 520)
P6	E/M/A/D	0,40 0.40	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,13 0.0050	160 (140 — 180) 520 (460 — 590)
P7	E/M/A/D	0,40	0,95	0,080	0,095	0,12	0,13	150 (140 — 170)
		0.40 0,40	0.95 0,95	0.0032 0,085	0.0038 0,10	0.0048 0,12	0.0050 0,14	490 (460 — 550) 140 (130 — 160)
P8	E/M/A/D	0.40	0.95	0.0034	0.0040	0.0048	0.0055	460 (430 — 520)
P11	E/M/A/D	0,30 0.30	0,95 0.95	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 0.0044	95 (84 — 100) 310 (280 — 320)
P12	E/M/A/D	0,30	0,95	0,044	0,055	0,065	0,075	60 (54 — 68)
		0.30 0,30	0.95 0,95	0.0017 0,070	0.0022 0,085	0.0026 0,11	0.0030 0,12	195 (180 — 220) 110 (97 — 120)
M1	E/M/A	0.30	0.95	0.0028	0.0034	0.0044	0.0048	360 (320 — 390)
M2	E/M/A	0,30 0.30	0,95 0.95	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 <i>0.0044</i>	90 (80 — 100) 295 (270 — 320)
M3	E/M/A	0,30	0,95	0,055	0,065	0,080	0,090	60 (47 — 70)
IVIO	LIVIIA	0.30 0,30	0.95 0,95	0.0022 0,048	0.0026 0,055	0.0032 0,070	0.0036 0,080	195 (160 — 220) 45 (37 — 54)
M4	E/M/A	0.30	0.95	0.0019	0.0022	0.0028	0.0032	150 (130 — 170)
M5	E/M/A	0,30 0.30	0,95 0.95	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	38 (31 — 45) 125 (110 — 140)
K1	E/M/A/D	0,40	0,95	0,080	0,095	0,12	0,14	160 (160 — 190)
KI	E/M/A/D	0.40 0,40	0.95	0.0032	0.0038	0.0048 0,11	0.0055	520 (530 — 620) 140 (140 — 170)
K2	E/M/A/D	0.40	0,95 0.95	0,075 0.0030	0,090 0.0036	0.0044	0,13 0.0050	460 (460 — 550)
K 3	E/M/A/D	0,40 <i>0.40</i>	0,95 0.95	0,075 0.0030	0,090 0.0036	0,11	0,13 0.0050	120 (120 — 140)
124	E/M/A/D	0,40	0,95	0,075	0,090	0.0044 0,11	0,13	395 (400 — 450) 115 (110 — 130)
K4	E/M/A/D	0.40	0.95	0.0030	0.0036	0.0044	0.0050	375 (370 — 420)
K5	E/M/A/D	0,40 <i>0.40</i>	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	150 (130 — 170) 490 (430 — 550)
K6	E/M/A/D	0,40	0,95	0,090	0,11	0,13	0,15	215 (190 — 240)
1/7	E/MA/A/D	0.40 0,40	0.95 0,95	0.0036 0,080	0.0044 0,095	0.0050 0,12	0.0060 0,14	710 (630 — 780) 190 (170 — 210)
K7	E/M/A/D	0.40	0.95	0.0032	0.0038	0.0048	0.0055	620 (560 — 680)
N1	E/M/A	0,40 <i>0.40</i>	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	670 (560 — 770) 2200 (1900 — 250
N2	E/M/A	0,40	0,95	0,080	0,095	0,12	0,14	430 (360 — 490)
		0.40 0,40	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	1400 (1200 — 160 285 (240 — 330)
N3	E/M/A	0.40	0.95	0.0032	0.0038	0.0048	0.0055	940 (790 — 1000
N11	E/M/A	0,40 0.40	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	335 (280 — 380) 1100 (920 — 1200
S1	Е	0,15	0,95	0,090	0,11	0,13	0,15	43 (26 — 60)
		0.15 0,15	0.95 0,95	0.0036 0,090	0.0044 0,11	0.0050 0,13	0.0060 0,15	140 (86 — 190) 35 (21 — 48)
S2	E	0.15	0.95	0.0036	0.0044	0.0050	0.0060	115 (69 — 150)
S3	E	0,15 <i>0.15</i>	0,95 0.95	0,085 0.0034	0,10 0.0040	0,12 0.0048	0,14 0.0055	30 (19 — 42) 100 (63 — 130)
S11	Е	0,40	0,95	0,060	0,070	0,090	0,10	105 (77 — 130)
		0.40 0,40	0.95 0,95	0.0024 0,060	0.0028 0,070	0.0036 0,090	0.0040 0,10	345 (260 — 420) 80 (59 — 100)
S12	E	0.40	0.95	0.0024	0.0028	0.0036	0.0040	260 (200 — 320)
S13	E	0,40 0.40	0,95 0.95	0,055 0.0022	0,065 0.0026	0,080 0.0032	0,090 0.0036	65 (47 — 83) 215 (160 — 270)
H5	M/A	0,050	0,95	0,090	0,11	0,13	0,15	75 (59 — 73)
		0.050 0,050	0.95 0,95	0.0036 0,070	0.0044 0,085	0.0050 0,10	0.0060 0,12	245 (200 — 230) 75 (62 — 76)
H8	M/A	0.050	0.95	0.0028	0.0034	0.0040	0.0048	245 (210 — 240)
H21	M/A	0,050 <i>0.050</i>	0,95 0.95	0,070 0.0028	0,085 0.0034	0,10 0.0040	0,12 0.0048	75 (62 — 76) 245 (210 — 240)
H31	M/A	0,050	0,95	0,060	0,070	0,090	0,10	60 (48 — 59)
		0.050 0,40	0.95 0,95	0.0024 0,080	0.0028 0,095	0.0036 0,12	0.0040 0,14	195 (160 — 190) 275 (170 — 380)
TS1	A/D	0.40	0.95	0.0032	0.0038	0.0048	0.0055	900 (560 — 1200
TP1	A/D	0,40 <i>0.40</i>	0,95 0.95	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	275 (170 — 380) 900 (560 — 1200)
GP1	A/D	0,40	0,95	0,080	0,095	0,12	0,0055	670 (560 — 770)
GR1	A/D	0.40	0.95	0.0032	0.0038	0.0048	0.0055	2200 (1900 — 250


Cutting data - XSE550 - Slot milling PCEDC 4 inch

Cutting d	ata – XSE550 – Slot m	illing PCEDC 4 inch					
SMG	Ā	a _p /DC		f,	z		v _c
			3/8	1/2	5/8	3/4	
P1	E/M/A/D	0,80	0,040	0,048	0,065	0,080	190 (170 — 210)
		0.80 0,80	0.0016 0,040	0.0019 0,048	0.0026 0,065	0.0032 0,080	620 (560 — 680) 185 (160 — 210)
P2	E/M/A/D	0.80	0.0016	0.0019	0.0026	0.0032	610 (530 — 680)
P3	E/M/A/D	0,80 0.80	0,040 0.0016	0,048 <i>0.0019</i>	0,065 0.0026	0,080 <i>0.00</i> 32	160 (140 — 180) 520 (460 — 590)
P4	E/M/A/D	0,80	0,040	0,048	0,065	0,080	140 (120 — 150)
		0.80 0,80	0.0016 0,040	0.0019 0,048	0.0026 0,065	0.0032 0,080	460 (400 — 490) 135 (120 — 150)
P5	E/M/A/D	0.80	0.0016	0.0019	0.0026	0.0032	445 (400 — 490)
P6	E/M/A/D	0,80 0.80	0,040 0.0016	0,048 <i>0.0019</i>	0,065 0.0026	0,080 0.0032	150 (130 — 170) 490 (430 — 550)
P7	E/M/A/D	0,80 <i>0.80</i>	0,040 0.0016	0,048 <i>0.0019</i>	0,065 <i>0.0026</i>	0,080 <i>0.0032</i>	140 (130 — 160) 460 (430 — 520)
P8	E/M/A/D	0,80	0,040	0,048	0,065	0,080	135 (120 — 150)
го	LIMIAID	0.80 0,60	0.0016 0,030	0.0019 0,036	0.0026 0,048	0.0032 0,060	445 (400 — 490) 85 (74 — 94)
P11	E/M/A/D	0.60	0.0012	0.0014	0.0019	0.0024	280 (250 — 300)
P12	E/M/A/D	0,60 <i>0.60</i>	0,030 0.0012	0,036 <i>0.0014</i>	0,048 <i>0.0019</i>	0,060 0.0024	50 (44 — 55) 165 (150 — 180)
M1	E/M/A	0,60	0,030	0,036	0,048	0,060	100 (87 — 110)
		0.60 0,60	0.0012 0,030	0.0014 0,036	0.0019 0,048	0.0024 0,060	330 (290 — 360) 80 (70 — 90)
M2	E/M/A	0.60	0.0012	0.0014	0.0019	0.0024	260 (230 — 290)
M3	E/M/A	0,60 0.60	0,030 0.0012	0,036 <i>0.0014</i>	0,048 <i>0.0019</i>	0,060 0.0024	50 (40 — 60) 165 (140 — 190)
M4	E/M/A	0,60	0,030	0,036	0,048	0,060	37 (30 — 45)
ME		0.60 0,60	0.0012 0,030	0.0014 0,036	0.0019 0,048	0.0024 0,060	120 (99 — 140) 31 (25 — 37)
M5	E/M/A	0.60	0.0012	0.0014	0.0019	0.0024	100 (83 — 120)
K1	E/M/A/D	0,80 <i>0.80</i>	0,040 0.0016	0,048 <i>0.0019</i>	0,065 0.0026	0,080 0.0032	150 (150 — 180) 490 (500 — 590)
K2	E/M/A/D	0,80 0.80	0,040 0.0016	0,048 <i>0.0019</i>	0,065 <i>0.0026</i>	0,080 0.0032	130 (130 — 150) 425 (430 — 490)
K 3	E/M/A/D	0,80	0,040	0,048	0,065	0,080	110 (110 — 130)
		0.80 0,80	0.0016 0,040	0.0019 0,048	0.0026 0,065	0.0032 0,080	360 (370 — 420) 105 (99 — 120)
K4	E/M/A/D	0.80	0.0016	0.0019	0.0026	0.0032	345 (330 — 390)
K5	E/M/A/D	0,80 0.80	0,040 0.0016	0,048 <i>0.0019</i>	0,065 0.0026	0,080 0.0032	140 (120 — 160) 460 (400 — 520)
K6	E/M/A/D	0,80	0,040	0,048	0,065	0,080	205 (180 — 230)
K7	E/M/A/D	0.80 0,80	0.0016 0,040	0.0019 0,048	0.0026 0,065	0.0032 0,080	670 (600 — 750) 180 (160 — 200)
N/	E/M/A/D	0.80 0,60	0.0016 0,050	0.0019 0,060	0.0026 0,080	0.0032 0,10	590 (530 — 650) 600 (510 — 700)
N1	E/M/A	0.60	0.0020	0.0024	0.0032	0.0040	1975 (1700 — 2200)
N2	E/M/A	0,60 0.60	0,050 0.0020	0,060 <i>0.0024</i>	0,080 0.0032	0,10 <i>0.0040</i>	385 (330 — 450) 1275 (1100 — 1400)
N3	E/M/A	0,60	0,050	0,060	0,080	0,10	255 (220 — 300)
		0.60 0,60	0.0020 0,050	0.0024 0,060	0.0032 0,080	0.0040 0,10	840 (730 — 980) 300 (250 — 350)
N11	E/M/A	0.60	0.0020	0.0024	0.0032	0.0040	980 (830 — 1100)
S1	Е	0,30 <i>0.30</i>	0,030 0.0012	0,036 <i>0.0014</i>	0,048 <i>0.0019</i>	0,060 <i>0.0024</i>	36 (22 — 50) 120 (73 — 160)
S2	E	0,30 0.30	0,030 0.0012	0,036 <i>0.0014</i>	0,048 <i>0.0019</i>	0,060 <i>0.0024</i>	29 (18 — 40) 95 (60 — 130)
S 3	E	0,30	0,030	0,036	0,048	0,060	25 (15 — 34)
		0.30 0,50	0.0012 0,050	0.0014 0,060	0.0019 0,080	0.0024 0,10	80 (50 — 110) 90 (65 — 110)
S11	E	0.50	0.0020	0.0024	0.0032	0.0040	295 (220 — 360)
S12	E	0,50 0.50	0,050 0.0020	0,060 <i>0.0024</i>	0,080 0.0032	0,10 <i>0.0040</i>	70 (50 — 90) 230 (170 — 290)
S13	E	0,50	0,050	0,060	0,075	0,090	55 (39 — 69)
115	BA/A	0.50 0,26	0.0020 0,025	0.0024 0,030	0.0030 0,040	0.0036 0,050	180 (130 — 220) 50 (41 — 50)
H5	M/A	0.26 0,26	0.0010 0,025	0.0012 0,030	0.0016 0,040	0.0020 0,050	165 (140 — 160) 50 (41 — 50)
H8	M/A	0.26	0.0010	0.0012	0.0016	0.0020	165 (140 — 160)
H21	M/A	0,26 0.26	0,025 0.0010	0,030 <i>0.0012</i>	0,040 <i>0.0016</i>	0,050 <i>0.0020</i>	50 (41 — 50) 165 (140 — 160)
H31	M/A	0,26	0,025	0,030	0,038	0,044	38 (31 — 38)
		0.26 0,60	0.0010 0,050	0.0012 0,060	0.0015 0,080	0.0017 0,10	125 (110 — 120) 250 (150 — 340)
TS1	A/D	0.60	0.0020	0.0024	0.0032	0.0040	820 (500 — 1100)
TP1	A/D	0,60 <i>0.60</i>	0,050 0.0020	0,060 <i>0.0024</i>	0,080 <i>0.00</i> 32	0,10 <i>0.0040</i>	250 (150 — 340) 820 (500 — 1100)
GR1	A/D	0,60	0,050	0,060	0,080	0,10	600 (510 — 700)
		0.60	0.0020	0.0024	0.0032	0.0040	1975 (1700 — 2200)

SECO I

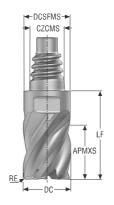
XSE550

High performance – Universal – Square – 5 Flutes – Corner radius

D

- Tolerances:
 DC= 0/-0,0508 mm
 RE= ±0,0254 mm
 Regrind possible if DC is ≥Ø12 mm

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
					mm	mm	mm	mm	mm			SIRA
XSE550E10100D2R050Z5	10138337	2	D	E10	10,0	9,7	12,0	18,7	0,5	5	8	
XSE550E10100D2R100Z5	10138338	2	D	E10	10,0	9,7	12,0	18,7	1,0	5	8	
XSE550E12120D2R050Z5	10138339	2	D	E12	12,0	11,7	14,4	22,1	0,5	5	10	
XSE550E12120D2R100Z5	10138340	2	D	E12	12,0	11,7	14,4	22,1	1,0	5	10	
XSE550E16160D2R050Z5	10138341	2	D	E16	16,0	15,5	19,2	29,2	0,5	5	12	
XSE550E16160D2R100Z5	10138342	2	D	E16	16,0	15,5	19,2	29,2	1,0	5	12	
XSE550E20200D2R050Z5	10138343	2	D	E20	20,0	19,3	24,0	34,3	0,5	5	16	
XSE550E20200D2R100Z5	10138344	2	D	E20	20,0	19,3	24,0	34,3	1,0	5	16	


Stocked standard.

XSE550

High performance – Universal – Square – 5 Flutes – Corner radius – *Inch*

D

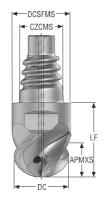
- Tolerances:
 DC= 0/-.002 Inch
 RE= ±.001 Inch
 Regrind possible if DC is ≥Ø.500 Inch

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
					Inch	Inch	Inch	Inch	Inch			SIRA
XSE550E10.375D2R015Z5	10138345	2	D	E10	0.375	0.364	0.450	0.720	0.015	5	8	-
XSE550E10.375D2R030Z5	10138346	2	D	E10	0.375	0.364	0.450	0.720	0.030	5	8	
XSE550E10.375D2R045Z5	10138347	2	D	E10	0.375	0.364	0.450	0.720	0.044	5	8	
XSE550E12.500D2R030Z5	10138348	2	D	E12	0.500	0.484	0.600	0.906	0.030	5	10	
XSE550E12.500D2R060Z5	10138349	2	D	E12	0.500	0.484	0.600	0.906	0.060	5	10	
XSE550E12.500D2R120Z5	10138350	2	D	E12	0.500	0.484	0.600	0.906	0.120	5	10	•
XSE550E16.625D2R030Z5	10138351	2	D	E16	0.625	0.610	0.750	1.150	0.030	5	12	
XSE550E16.625D2R060Z5	10138352	2	D	E16	0.625	0.610	0.750	1.150	0.060	5	12	
XSE550E16.625D2R120Z5	10138353	2	D	E16	0.625	0.610	0.750	1.150	0.120	5	12	
XSE550E20.750D2R030Z5	10138354	2	D	E20	0.750	0.728	0.900	1.295	0.030	5	16	
XSE550E20.750D2R060Z5	10138355	2	D	E20	0.750	0.728	0.900	1.295	0.060	5	16	
XSE550E20.750D2R120Z5	10138356	2	D	E20	0.750	0.728	0.900	1.295	0.120	5	16	
XSE550E251.00D2R030Z5	10138357	2	D	E25	1.000	0.965	1.200	1.673	0.030	5	20	
XSE550E251.00D2R060Z5	10138358	2	D	E25	1.000	0.965	1.200	1.673	0.060	5	20	
XSE550E251.00D2R120Z5	10138359	2	D	E25	1.000	0.965	1.200	1.673	0.120	5	20	

Stocked standard.

Cutting data – XSE550 – Side milling PCEDC 5

SMG	À	a _e /DC	a _p /DC			f _z			V _c
SIVIG				10	12	16	20		
P1	E/M/A/D	0,30	0,95	0,080	0,095	0,12	0,14	0,15	200 (180 — 220)
		0.30	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	0.0060 0,16	660 (600 — 720) 195 (170 — 220)
P2	E/M/A/D	0.30	0.95	0.0032	0.0038	0.0048	0.0055	0.0065	640 (560 — 720)
P3	E/M/A/D	0,30 0.30	0,95 <i>0.</i> 95	0,075 0.0030	0,090 <i>0.00</i> 36	0,11 0.0044	0,13 0.0050	0,15 0.0060	170 (150 — 190) 560 (500 — 620)
P4	E/M/A/D	0,30	0,95	0,075	0,090	0,11	0,13	0,14	150 (130 — 170)
		0.30 0,30	0.95 0,95	0.0030 0,075	0.0036 0,090	0.0044 0,11	0.0050 0,13	0.0055 0,14	490 (430 — 550) 145 (130 — 160)
P5	E/M/A/D	0.30	0.95	0.0030	0.0036	0.0044	0.0050	0.0055	475 (430 — 520)
P6	E/M/A/D	0,30 0.30	0,95 <i>0.</i> 95	0,075 0.0030	0,085 <i>0.0034</i>	0,11 0.0044	0,12 0.0048	0,14 0.0055	160 (140 — 180) 520 (460 — 590)
P7	E/M/A/D	0,30	0,95	0,075	0,085	0,11	0,12	0,14	150 (130 — 170)
		0.30	0.95 0,95	0.0030 0,075	0.0034 0,090	0.0044 0,11	0.0048 0,13	0.0055 0,15	490 (430 — 550) 145 (130 — 160)
P8	E/M/A/D	0.30	0.95	0.0030	0.0036	0.0044	0.0050	0.0060	475 (430 — 520)
P11	E/M/A/D	0,20 0.20	0,95 <i>0.</i> 95	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 0.0040	0,12 0.0048	100 (89 — 110) 330 (300 — 360)
P12	E/M/A/D	0,20	0,95	0,042	0,050	0,060	0,070	0,080	65 (56 — 71)
F 12	E/W/A/D	0.20	0.95	0.0017	0.0020	0.0024	0.0028 0,12	0.0032 0,13	215 (190 — 230) 115 (110 — 120)
M1	E/M/A	0,20 0.20	0,95 <i>0.</i> 95	0,070 0.0028	0,080 <i>0.0032</i>	0,10 0.0040	0.0048	0.0050	375 (370 — 390)
M2	E/M/A	0,20	0,95	0,060	0,075	0,090	0,10	0,12	95 (84 — 100)
		0.20 0,20	0.95 0,95	0.0024 0,060	0.0030 0,075	0.0036 0,090	0.0040 0,10	0.0048 0,12	310 (280 — 320) 60 (47 — 69)
M3	E/M/A	0.20	0.95	0.0024	0.0030	0.0036	0.0040	0.0048	195 (160 — 220)
M4	E/M/A	0,20 0.20	0,95 <i>0.95</i>	0,055 0.0022	0,065 0.0026	0,080 0.0032	0,090 0.0036	0,10 <i>0.0040</i>	44 (36 — 53) 145 (120 — 170)
M5	E/M/A	0,20	0,95	0,055	0,065	0,080	0,090	0,10	37 (30 — 44)
IVIO	LIWIA	0.20 0,30	0.95 0,95	0.0022 0,065	0.0026 0,075	0.0032 0,095	0.0036 0,11	0.0040 0,12	120 (99 — 140) 165 (160 — 190)
K1	E/M/A/D	0.30	0.95	0.0026	0.0030	0.0038	0.0044	0.0048	540 (530 — 620)
K2	E/M/A/D	0,30	0,95	0,060	0,070	0,085	0,10	0,11	145 (140 — 170)
1/0	E/MAIA/D	0.30 0,30	0.95 0,95	0.0024 0,060	0.0028 0,070	0.0034 0,085	0.0040 0,10	0.0044 0,11	475 (460 — 550) 125 (120 — 140)
K3	E/M/A/D	0.30	0.95	0.0024	0.0028	0.0034	0.0040	0.0044	410 (400 — 450)
K4	E/M/A/D	0,30 0.30	0,95 <i>0.95</i>	0,060 0.0024	0,070 0.0028	0,085 0.0034	0,10 0.0040	0,11 0.0044	120 (110 — 140) 395 (370 — 450)
K5	E/M/A/D	0,30	0,95	0,065	0,075	0,095	0,11	0,12	155 (140 — 170)
		0.30 0,30	0.95 0,95	0.0026 0,070	0.0030 0,085	0.0038 0,11	0.0044 0,12	0.0048 0,14	510 (460 — 550) 225 (200 — 250)
K6	E/M/A/D	0.30	0.95	0.0028	0.0034	0.0044	0.0048	0.0055	740 (660 — 820)
K7	E/M/A/D	0,30 0.30	0,95 <i>0.</i> 95	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 0.0044	0,12 0.0048	200 (170 — 220) 660 (560 — 720)
N1	E/M/A	0,30	0,95	0,065	0,075	0,095	0,11	0,12	690 (580 — 800)
141	L/10/// (0.30 0,30	0.95 0,95	0.0026 0,065	0.0030 0,075	0.0038 0,095	0.0044 0,11	0.0048 0,12	2275 (2000 — 260 445 (380 — 520)
N2	E/M/A	0.30	0.95	0.0026	0.0030	0.0038	0.0044	0.0048	1450 (1300 — 170
N3	E/M/A	0,30 0.30	0,95 <i>0.95</i>	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 <i>0.0044</i>	0,12 0.0048	300 (250 — 340) 980 (830 — 1100
NIAA	E/84/A	0,30	0.95	0,065	0,075	0,0038	0.0044	0.0048	345 (290 — 400)
N11	E/M/A	0.30	0.95	0.0026	0.0030	0.0038	0.0044	0.0048	1125 (960 — 1300
S1	E	0,15 <i>0.15</i>	0,95 <i>0.</i> 95	0,075 0.0030	0,090 <i>0.00</i> 36	0,11 0.0044	0,13 0.0050	0,14 0.0055	44 (27 — 61) 145 (89 — 200)
S2	Е	0,15	0,95	0,075	0,090	0,11	0,13	0,14	35 (22 — 49)
		0.15 0,15	0.95 0,95	0.0030 0,070	0.0036 0,080	0.0044 0,10	0.0050 0,12	0.0055 0,13	115 (73 — 160) 31 (19 — 43)
S3	Е	0.15	0.95	0.0028	0.0032	0.0040	0.0048	0.0050	100 (63 — 140)
S11	E	0,30 <i>0.30</i>	0,95 <i>0.</i> 95	0,055 0.0022	0,065 0.0026	0,080 0.0032	0,090 0.0036	0,10 <i>0.0040</i>	105 (75 — 130) 345 (250 — 420)
S12	E	0,30	0,95	0,055	0,065	0,080	0,090	0,10	80 (58 — 100)
		0.30 0,30	0.95 0,95	0.0022 0,048	0.0026 0,055	0.0032 0,070	0.0036 0,080	0.0040 0,090	260 (200 — 320) 65 (46 — 81)
S13	Е	0.30	0,95 0.95	0.0019	0.0022	0,070	0.0032	0.0036	215 (160 — 260)
H5	M/A	0,050	0,95	0,090	0,10	0,13	0,15	0,17	70 (56 — 83)
		0.050 0,050	0.95 0,95	0.0036 0,070	0.0040 0,080	0.0050 0,10	0.0060 0,11	0.0065 0,13	230 (190 — 270) 70 (58 — 86)
H8	M/A	0.050	0.95	0.0028	0.0032	0.0040	0.0044	0.0050	230 (200 — 280)
H21	M/A	0,050 0.050	0,95 <i>0.</i> 95	0,070 0.0028	0,080 0.0032	0,10 0.0040	0,11 0.0044	0,13 0.0050	70 (58 — 86) 230 (200 — 280)
H31	M/A	0,050	0,95	0,060	0,070	0,085	0,10	0,11	55 (45 — 67)
		0.050 0,30	0.95 0,95	0.0024 0,065	0.0028 0,075	0.0034 0,095	0.0040 0,11	0.0044 0,12	180 (150 — 210) 290 (180 — 400)
TS1	A/D	0.30	0.95	0.0026	0.0030	0.0038	0.0044	0.0048	950 (600 — 1300
	A/D	0,30 0.30	0,95 <i>0.</i> 95	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 <i>0.0044</i>	0,12 0.0048	290 (180 — 400) 950 (600 — 1300)
TP1									


Cutting data – XSE550 – Side milling PCEDC 5 inch

0140	Ā	a _e /DC	a _p /DC			f _z			V _c
SMG				3/8	1/2	5/8	3/4	1	
P1	E/M/A/D	0,30	0,95	0,080	0,095	0,12	0,14	0,15	200 (180 — 220)
		0.30 0,30	0.95 0,95	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	0.0060 0,16	660 (600 — 720) 195 (170 — 220)
P2	E/M/A/D	0.30	0.95	0.0032	0.0038	0.0048	0.0055	0.0065	640 (560 — 720)
P3	E/M/A/D	0,30 0.30	0,95 0.95	0,075 0.0030	0,090 0.0036	0,11 0.0044	0,13 0.0050	0,15 0.0060	170 (150 — 190) 560 (500 — 620)
P4	E/M/A/D	0,30	0,95	0,075	0,090	0,11	0,13	0,14	150 (130 — 170)
P5	E/M/A/D	0.30 0,30	0.95 0,95	0.0030 0,075	0.0036 0,090	0.0044 0,11	0.0050 0,13	0.0055 0,14	490 (430 — 550) 145 (130 — 160)
P5	E/M/A/D	0.30 0,30	0.95 0,95	0.0030 0,075	0.0036 0,085	0.0044 0,11	0.0050 0,12	0.0055 0,14	475 (430 — 520) 160 (140 — 180)
P6	E/M/A/D	0.30	0.95	0.0030	0.0034	0.0044	0.0048	0.0055	520 (460 — 590)
P7	E/M/A/D	0,30 0.30	0,95 0.95	0,075 0.0030	0,085 0.0034	0,11 0.0044	0,12 0.0048	0,14 0.0055	150 (130 — 170) 490 (430 — 550)
P8	E/M/A/D	0,30	0,95	0,075	0,090	0,11	0,13	0,15	145 (130 — 160)
		0.30 0,20	0.95 0,95	0.0030 0,060	0.0036 0,070	0.0044 0,090	0.0050 0,10	0.0060 0,12	475 (430 — 520) 100 (89 — 110)
P11	E/M/A/D	0.20	0.95	0.0024	0.0028	0.0036	0.0040	0.0048	330 (300 — 360)
P12	E/M/A/D	0,20 0.20	0,95 0.95	0,042 0.0017	0,050 0.0020	0,060 <i>0.0024</i>	0,070 0.0028	0,080 0.0032	65 (56 — 71) 215 (190 — 230)
M1	E/M/A	0,20 0.20	0,95 0.95	0,070 0.0028	0,080 0.0032	0,10 <i>0.0040</i>	0,12 0.0048	0,13 0.0050	115 (110 — 120) 375 (370 — 390)
M2	E/M/A	0,20	0,95	0,060	0,075	0,090	0,10	0,12	95 (84 — 100)
		0.20 0,20	0.95 0,95	0.0024 0,060	0.0030 0,075	0.0036 0,090	0.0040 0,10	0.0048 0,12	310 (280 — 320) 60 (47 — 69)
M3	E/M/A	0.20	0.95	0.0024	0.0030	0.0036	0.0040	0.0048	195 (160 — 220)
M4	E/M/A	0,20 0.20	0,95 0.95	0,055 0.0022	0,065 0.0026	0,080 0.0032	0,090 0.0036	0,10 0.0040	44 (36 — 53) 145 (120 — 170)
M5	E/M/A	0,20	0,95 0.95	0,055 0.0022	0,065	0,080	0,090	0,10	37 (30 — 44)
K1	E/M/A/D	0.20 0,30	0.95	0,0022	0.0026 0,075	0.0032 0,095	0.0036 0,11	0.0040 0,12	120 (99 — 140) 165 (160 — 190)
N1	E/M/A/D	0.30 0,30	0.95 0,95	0.0026 0,060	0.0030 0,070	0.0038 0,085	0.0044 0,10	0.0048 0,11	540 (530 — 620) 145 (140 — 170)
K2	E/M/A/D	0.30	0.95	0.0024	0.0028	0.0034	0.0040	0.0044	475 (460 — 550)
K3	E/M/A/D	0,30 0.30	0,95 0.95	0,060 0.0024	0,070 0.0028	0,085 0.0034	0,10 0.0040	0,11 0.0044	125 (120 — 140) 410 (400 — 450)
K4	E/M/A/D	0,30	0,95	0,060	0,070	0,085	0,10	0,11	120 (110 — 140)
		0.30 0,30	0.95 0,95	0.0024 0,065	0.0028 0,075	0.0034 0,095	0.0040 0,11	0.0044 0,12	395 (370 — 450) 155 (140 — 170)
K5	E/M/A/D	0.30	0.95	0.0026	0.0030	0.0038	0.0044	0.0048	510 (460 — 550)
K6	E/M/A/D	0,30 0.30	0,95 0.95	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	0,12 0.0048	0,14 0.0055	225 (200 — 250) 740 (660 — 820)
K7	E/M/A/D	0,30 0.30	0,95 0.95	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 <i>0.0044</i>	0,12 0.0048	200 (170 — 220) 660 (560 — 720)
N1	E/M/A	0,30	0,95	0,065	0,075	0,095	0,11	0,12	690 (580 — 800)
		0.30 0,30	0.95 0,95	0.0026 0,065	0.0030 0,075	0.0038	0.0044 0,11	0.0048 0,12	2275 (2000 — 2600) 445 (380 — 520)
N2	E/M/A	0.30	0.95	0.0026	0.0030	0.0038	0.0044	0.0048	1450 (1300 — 1700)
N3	E/M/A	0,30 0.30	0,95 0.95	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 0.0044	0,12 0.0048	300 (250 — 340) 980 (830 — 1100)
N11	E/M/A	0,30 0.30	0,95 0.95	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 <i>0.0044</i>	0,12 0.0048	345 (290 — 400) 1125 (960 — 1300)
S1	E	0,15	0,95	0,075	0,090	0,11	0,13	0,14	44 (27 — 61)
		0.15 0,15	0.95 0,95	0.0030 0,075	0.0036 0,090	0.0044 0,11	0.0050 0,13	0.0055 0,14	145 (89 — 200) 35 (22 — 49)
S2	E	0.15	0.95	0.0030	0.0036	0.0044	0.0050	0.0055	115 (73 — 160)
S3	Е	0,15 <i>0.15</i>	0,95 0.95	0,070 0.0028	0,080 0.0032	0,10 <i>0.0040</i>	0,12 0.0048	0,13 0.0050	31 (19 — 43) 100 (63 — 140)
S11	Е	0,30 0.30	0,95 0.95	0,055 0.0022	0,065 0.0026	0,080 0.0032	0,090 0.0036	0,10 <i>0.0040</i>	105 (75 — 130) 345 (250 — 420)
S12	E	0,30	0,95	0,055	0,065	0,080	0,090	0,10	80 (58 — 100)
		0.30 0,30	0.95 0,95	0.0022 0,048	0.0026 0,055	0.0032 0,070	0.0036 0,080	0.0040 0,090	260 (200 — 320) 65 (46 — 81)
S13	E	0.30	0.95	0.0019	0.0022	0.0028	0.0032	0.0036	215 (160 — 260)
H5	M/A	0,050 0.050	0,95 0.95	0,090 0.0036	0,10 <i>0.0040</i>	0,13 0.0050	0,15 0.0060	0,17 0.0065	70 (56 — 83) 230 (190 — 270)
Н8	M/A	0,050	0,95	0,070	0,080	0,10	0,11	0,13	70 (58 — 86)
		0.050 0,050	0.95 0,95	0.0028 0,070	0.0032 0,080	0.0040 0,10	0.0044 0,11	0.0050 0,13	230 (200 — 280) 70 (58 — 86)
H21	M/A	0.050 0,050	0.95 0,95	0.0028 0,060	0.0032 0,070	0.0040 0,085	0.0044 0,10	0.0050 0,11	230 (200 — 280) 55 (45 — 67)
H31	M/A	0.050	0.95	0.0024	0.0028	0.0034	0.0040	0.0044	180 (150 — 210)
TS1	A/D	0,30 0.30	0,95 0.95	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 <i>0.0044</i>	0,12 0.0048	290 (180 — 400) 950 (600 — 1300)
TP1	A/D	0,30	0,95	0,065	0,075	0,095	0,11	0,12	290 (180 — 400)
		0.30 0,30	0.95 0,95	0.0026 0,065	0.0030 0,075	0.0038 0,095	0.0044 0,11	0.0048 0,12	950 (600 — 1300) 690 (580 — 800)
GR1	A/D	0.30	0.95	0.0026	0.0030	0.0038	0.0044	0.0048	2275 (2000 — 2600)

X-HEADS - SOLID²

XSB540

High performance - Universal - Ball nose - 4 Flutes - ICC

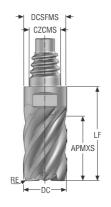
D

- Tolerances:
 DC= e8
 RE= ±0,02 mm
 Regrind possible if DC is ≥Ø12 mm

Designation	Item number	Length index	Tool shape	CSP	CZCMS	DC	DCSFMS	APMXS	LF	PCEDC	sw	Grade
						mm	mm	mm	mm			SIRA
XSB540E10100D1BZ4A	10138334	1	D		E10	10,0	9,7	5,5	12,3	4	8	
XSB540E12120D1BZ4A	10138335	1	D		E12	12,0	11,7	6,6	14,4	4	10	
XSB540E16160D1BZ4A	10138336	1	D		E16	16,0	15,5	8,8	18,6	4	12	

Stocked standard.

SECO I


Cutting data – XSB540 Copy milling roughing

2112	Ā	a _e /DC	a _p /DC		f _z		V _c
SMG	•			10	12	16	
P1	E/M/A/D	0,10	0,50	0,055	0,065	0,080	210 (190 — 240)
		0.10 0,10	0.50 0,50	0.0022 0,055	0.0026 0,065	0.0032 0,080	690 (630 — 780) 205 (180 — 230)
P2	E/M/A/D	0.10	0.50	0.0022	0.0026	0.0032	670 (600 — 750) 180 (160 — 200)
P3	E/M/A/D	0,10 <i>0.10</i>	0,50 0.50	0,050 0.0020	0,060 0.0024	0,075 0.0030	590 (530 — 650)
P4	E/M/A/D	0,10 <i>0.10</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 0.0024	0,075 0.0030	155 (140 — 170) 510 (460 — 550)
P5	E/M/A/D	0,10	0,50	0,050	0,060	0,075	150 (130 — 170)
P6	E/M/A/D	0.10 0,10	0.50 0,50	0.0020 0,050	0.0024 0,060	0.0030 0,075	490 (430 — 550) 170 (150 — 190)
		0.10 0,10	0.50 0,50	0.0020 0,050	0.0024 0,060	0.0030 0,075	560 (500 — 620) 160 (140 — 180)
P7	E/M/A/D	0.10	0.50	0.0020	0.0024	0.0030	520 (460 — 590)
P8	E/M/A/D	0,10 <i>0.10</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 0.0024	0,075 0.0030	150 (130 — 170) 490 (430 — 550)
P11	E/M/A/D	0,10 <i>0.10</i>	0,50 <i>0.50</i>	0,070 0.0028	0,085 0.0034	0,11 0.0044	190 (160 — 220) 620 (530 — 720)
P12	E/M/A/D	0,10 0.10	0,50 0.50	0,050 0.0020	0,060 0.0024	0,075 0.0030	115 (97 — 130)
M1	E/M/A	0,10	0,50	0,055	0,065	0,080	375 (320 — 420) 145 (120 — 170)
		0.10 0,10	0.50 0,50	0.0022 0,050	0.0026 0,060	0.0032 0,075	475 (400 — 550) 115 (97 — 130)
M2	E/M/A	0.10	0.50	0.0020	0.0024	0.0030	375 (320 — 420)
M3	E/M/A	0,10 <i>0.10</i>	0,50 <i>0.50</i>	0,040 0.0016	0,048 0.0019	0,060 <i>0.0024</i>	95 (75 — 110) 310 (250 — 360)
M4	E/M/A	0,10 <i>0.10</i>	0,50 <i>0.50</i>	0,036 <i>0.0014</i>	0,042 0.0017	0,050 0.0020	75 (57 — 88) 245 (190 — 280)
M5	E/M/A	0,10	0,50	0,036	0,042	0,050	60 (48 — 74)
K1	E/M/A/D	0.10 0,15	0.50 0,50	0.0014 0,040	0.0017 0,048	0.0020 0,060	195 (160 — 240) 205 (190 — 220)
		0.15 0,15	0.50 0,50	0.0016 0,036	0.0019 0,044	0.0024 0,055	670 (630 — 720) 180 (160 — 190)
K2	E/M/A/D	0.15	0.50	0.0014	0.0017	0.0022	590 (530 — 620)
K3	E/M/A/D	0,15 <i>0.15</i>	0,50 <i>0.50</i>	0,036 <i>0.0014</i>	0,044 0.0017	0,055 0.0022	150 (140 — 160) 490 (460 — 520)
K4	E/M/A/D	0,10 <i>0.10</i>	0,50 <i>0.50</i>	0,040 <i>0.0016</i>	0,048 0.0019	0,060 <i>0.0024</i>	170 (150 — 190) 560 (500 — 620)
K5	E/M/A/D	0,10	0,50	0,036	0,042	0,055	105 (90 — 110)
K6	E/M/A/D	0.10 0,10	0.50 0,50	0.0014 0,040	0.0017 0,048	0.0022 0,060	345 (300 — 360) 150 (140 — 160)
		0.10 0,10	0.50 0,50	0.0016 0,036	0.0019 0,042	0.0024 0,055	490 (460 — 520) 130 (120 — 140)
K7	E/M/A/D	0.10	0.50	0.0014	0.0017	0.0022	425 (400 — 450)
N1	E/M/A	0,20 0.20	0,50 <i>0.50</i>	0,070 0.0028	0,085 0.0034	0,10 0.0040	640 (540 — 740) 2100 (1800 — 2400)
N2	E/M/A	0,20 0.20	0,50 <i>0.50</i>	0,070 0.0028	0,085 0.0034	0,10 0.0040	415 (350 — 480) 1350 (1200 — 1500)
N3	E/M/A	0,20	0,50	0,070	0,085	0,10	275 (230 — 320)
N11	E/M/A	0.20 0,15	0.50 0,50	0.0028 0,070	0.0034 0,085	0.0040 0,10	900 (760 — 1000) 430 (380 — 480)
		0.15 0,10	0.50 0,50	0.0028 0,050	0.0034 0,060	0.0040 0,075	1400 (1300 — 1500) 65 (54 — 74)
S1	Е	0.10	0.50	0.0020	0.0024	0.0030	215 (180 — 240) 65 (59 — 75)
S2	E	0,10 <i>0.10</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 0.0024	0,075 0.0030	215 (200 — 240)
S3	E	0,10 <i>0.10</i>	0,50 <i>0.50</i>	0,020 <i>0.00080</i>	0,024 0.00095	0,030 <i>0.0012</i>	32 (22 — 42) 105 (73 — 130)
S11	E	0,15	0,50	0,050 0.0020	0,060 0.0024	0,075 0.0030	110 (98 — 120) 360 (330 — 390)
S12	E	0.15 0,15	0.50 0,50	0,050	0,060	0,075	85 (75 — 96)
		0.15 0,15	0.50 0,50	0.0020 0,044	0.0024 0,050	0.0030 0,065	280 (250 — 310) 65 (59 — 75)
S13	Е	0.15	0.50	0.0017	0.0020	0.0026	215 (200 — 240)
H5	M/A	0,030 <i>0.030</i>	0,44 0.44	0,050 0.0020	0,060 0.0024	0,075 0.0030	135 (120 — 150) 445 (400 — 490)
Н8	M/A	0,030 0.030	0,44 <i>0.44</i>	0,038 <i>0.0015</i>	0,046 0.0018	0,055 0.0022	135 (120 — 150) 445 (400 — 490)
H21	M/A	0,030 0.030	0,44 0.44	0,038 0.0015	0,046 0.0018	0,055 0.0022	135 (120 — 150) 445 (400 — 490)
H31	M/A	0,030	0,44	0,034	0,040	0,048	100 (86 — 110)
		0.030 0,15	0.44 0,50	0.0013 0,10	0.0016 0,12	0.0019 0,15	330 (290 — 360) 270 (170 — 370)
TS1	A/D	0.15	0.50	0.0040	0.0048	0.0060	890 (560 — 1200)
TP1	A/D	0,15 <i>0.15</i>	0,50 <i>0.50</i>	0,10 <i>0.0040</i>	0,12 0.0048	0,15 0.0060	270 (170 — 370) 890 (560 — 1200)
GR1	A/D	0,15 <i>0.15</i>	0,50 <i>0.50</i>	0,10 <i>0.0040</i>	0,12 0.0048	0,15 0.0060	640 (540 — 740) 2100 (1800 — 2400)

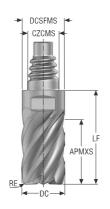
SECO I

XSE720

High performance – Superalloy – Square – 6 Flutes – Corner radius

D

- Tolerances:
 DC= e7
 RE= ±0,02 mm
 Regrind possible if DC is ≥Ø12 mm


Designation	Item number	Length index	Tool	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
_		muex	shape		mm	mm	mm	mm	mm			¥
XSE720E10100D3R050Z6	10138187	3	D	E10	10,0	9,7	15,0	21,8	0,5	6	8	
XSE720E10100D3R100Z6	10138188	3	D	E10	10,0	9,7	15,0	21,8	1,0	6	8	
XSE720E12120D3R050Z6	10138189	3	D	E12	12,0	11,7	18,0	25,9	0,5	6	10	
XSE720E12120D3R100Z6	10138190	3	D	E12	12,0	11,7	18,0	25,9	1,0	6	10	
XSE720E12120D3R200Z6	10138191	3	D	E12	12,0	11,7	18,0	25,9	2,0	6	10	
XSE720E12120D3R300Z6	10138192	3	D	E12	12,0	11,7	18,0	25,9	3,0	6	10	
XSE720E16160D3R050Z6	10138193	3	D	E16	16,0	15,5	24,0	34,1	0,5	6	12	
XSE720E16160D3R100Z6	10138194	3	D	E16	16,0	15,5	24,0	34,1	1,0	6	12	
XSE720E16160D3R200Z6	10138195	3	D	E16	16,0	15,5	24,0	34,1	2,0	6	12	
XSE720E16160D3R300Z6	10138196	3	D	E16	16,0	15,5	24,0	34,1	3,0	6	12	-
XSE720E20200D3R050Z6	10138197	3	D	E20	20,0	19,3	30,0	40,2	0,5	6	16	
XSE720E20200D3R100Z6	10138198	3	D	E20	20,0	19,3	30,0	40,2	1,0	6	16	-
XSE720E20200D3R200Z6	10138199	3	D	E20	20,0	19,3	30,0	40,2	2,0	6	16	
XSE720E20200D3R300Z6	10138200	3	D	E20	20,0	19,3	30,0	40,2	3,0	6	16	
XSE720E25250D3R200Z6	10138201	3	D	E25	25,0	24,2	37,5	49,5	2,0	6	20	
XSE720E25250D3R300Z6	10138202	3	D	E25	25,0	24,2	37,5	49,5	3,0	6	20	
XSE720E25250D3R400Z6	10138203	3	D	E25	25,0	24,2	37,5	49,5	4,0	6	20	

[■] Stocked standard.

XSE720

High performance – Superalloy – Square – 6 Flutes – Corner radius or sharp – *Inch*

D

- Tolerances:
 DC= e7
 RE= ±.0008 Inch
 Regrind possible if DC is ≥Ø.500 Inch

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
					Inch	Inch	Inch	Inch	Inch			ΤΧΉ
XSE720E10.375D3SZ6	10138204	3	D	E10	0.375	0.364	0.563	0.827	-	6	8	-
XSE720E12.500D3SZ6	10138205	3	D	E12	0.500	0.484	0.750	1.055	-	6	10	•
XSE720E16.625D3SZ6	10138206	3	D	E16	0.625	0.610	0.938	1.343	-	6	12	
XSE720E20.750D3SZ6	10138207	3	D	E20	0.750	0.728	1.125	1.524	-	6	16	
XSE720E251.00D3SZ6	10138208	3	D	E25	1.000	0.965	1.500	1.980	-	6	20	
XSE720E10.375D3R030Z6	10138209	3	D	E10	0.375	0.364	0.563	0.827	0.030	6	8	
XSE720E12.500D3R030Z6	10138210	3	D	E12	0.500	0.484	0.750	1.055	0.030	6	10	
XSE720E12.500D3R060Z6	10138211	3	D	E12	0.500	0.484	0.750	1.055	0.060	6	10	
XSE720E12.500D3R120Z6	10138212	3	D	E12	0.500	0.484	0.750	1.055	0.125	6	10	
XSE720E16.625D3R030Z6	10138213	3	D	E16	0.625	0.610	0.938	1.343	0.030	6	12	
XSE720E16.625D3R060Z6	10138214	3	D	E16	0.625	0.610	0.938	1.343	0.060	6	12	
XSE720E16.625D3R120Z6	10138215	3	D	E16	0.625	0.610	0.938	1.343	0.125	6	12	
XSE720E20.750D3R030Z6	10138216	3	D	E20	0.750	0.728	1.125	1.524	0.030	6	16	
XSE720E20.750D3R060Z6	10138217	3	D	E20	0.750	0.728	1.125	1.524	0.060	6	16	
XSE720E20.750D3R120Z6	10138218	3	D	E20	0.750	0.728	1.125	1.524	0.125	6	16	
XSE720E251.00D3R030Z6	10138219	3	D	E25	1.000	0.965	1.500	1.980	0.030	6	20	
XSE720E251.00D3R060Z6	10138220	3	D	E25	1.000	0.965	1.500	1.980	0.060	6	20	
XSE720E251.00D3R120Z6	10138221	3	D	E25	1.000	0.965	1.500	1.980	0.125	6	20	

■ Stocked standard.

Cutting data - XSE720 Side milling

SMG	Ā	a _e /DC	a _p /DC			f _z			v _c
				10	12	16	20	25	
P1	E/M/A/D	0,12 <i>0.12</i>	1,4 1.4	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	265 (200 — 320) 870 (660 — 1000)
P2	E/M/A/D	0,12 0.12	1,4 1.4	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	0,15 0.0060	255 (200 — 320) 840 (660 — 1000)
P3	E/M/A/D	0,12 0.12	1,4 1.4	0,075 0.0030	0,090 0.0036	0,11 0.0044	0,13 <i>0.0050</i>	0,15 0.0060	225 (170 — 270) 740 (560 — 880)
P4	E/M/A/D	0,12 0.12	1,4 1.4	0,075 0.0030	0,090 0.0036	0,11 0.0044	0,13 <i>0.0050</i>	0,14 0.0055	195 (150 — 240) 640 (500 — 780)
P5	E/M/A/D	0,12 0.12	1,4 1.4	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 <i>0.0040</i>	0,11 0.0044	160 (120 — 190) 520 (400 — 620)
P6	E/M/A/D	0,12 0.12	1,4 1.4	0,060 0.0024	0,070 0.0028	0,085 0.0034	0,10 <i>0.0040</i>	0,11 0.0044	180 (140 — 220) 590 (460 — 720)
P7	E/M/A/D	0,12 <i>0.12</i>	1,4 <i>1.4</i>	0,060 0.0024	0,070 0.0028	0,085 0.0034	0,10 <i>0.0040</i>	0,11 <i>0.0044</i>	170 (130 — 210) 560 (430 — 680)
P8	E/M/A/D	0,12 <i>0.12</i>	1,4 <i>1.4</i>	0,060 <i>0.0024</i>	0,075 0.0030	0,090 0.0036	0,11 <i>0.0044</i>	0,12 0.0048	160 (120 — 190) 520 (400 — 620)
P11	E/M/A/D	0,12 <i>0.12</i>	1,4 <i>1.4</i>	0,070 0.0028	0,080 0.0032	0,10 0.0040	0,12 <i>0.0048</i>	0,13 0.0050	160 (130 — 200) 520 (430 — 650)
P12	E/M/A/D	0,12 0.12	1,4 1.4	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	0,090 0.0036	95 (80 — 100) 310 (270 — 320)
M1	E/M/A	0,12 0.12	1,4 1.4	0,075 0.0030	0,090 0.0036	0,11 0.0044	0,13 <i>0.0050</i>	0,15 0.0060	170 (150 — 190) 560 (500 — 620)
M2	E/M/A	0,12 0.12	1,4 1.4	0,070 0.0028	0,085 0.0034	0,10 0.0040	0,12 0.0048	0,13 0.0050	140 (120 — 150) 460 (400 — 490)
M3	E/M/A	0,10 <i>0.10</i>	1,4 1.4	0,060 0.0024	0,075 0.0030	0,090 0.0036	0,10 0.0040	0,12 0.0048	120 (100 — 110) 395 (330 — 360)
M4	E/M/A	0,10 <i>0.10</i>	1,4 1.4	0,055 0.0022	0,065 0.0026	0,080 0.0032	0,090 0.0036	0,10 0.0040	90 (77 — 91) 295 (260 — 290)
M5	E/M/A	0,10 <i>0.10</i>	1,4 <i>1.4</i>	0,055 0.0022	0,065 0.0026	0,080 0.0032	0,090 0.0036	0,10 0.0040	75 (64 — 76) 245 (210 — 240)
S1	E	0,060 0.060	1,4 1.4	0,046 0.0018	0,055 0.0022	0,070 0.0028	0,080 0.0032	0,090 0.0036	45 (35 — 54) 150 (120 — 170)
S2	E	0,060 0.060	1,4 <i>1.4</i>	0,042 0.0017	0,050 0.0020	0,065 0.0026	0,075 0.0030	0,080 0.0032	35 (25 — 44) 115 (83 — 140)
S3	Е	0,060 0.060	1,4 1.4	0,042 0.0017	0,050 0.0020	0,065 0.0026	0,075 0.0030	0,080 0.0032	30 (20 — 39) 100 (66 — 120)
S11	E	0,10 0.10	1,4 1.4	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 0.0040	0,11 0.0044	105 (78 — 120) 345 (260 — 390)
S12	E	0,10 0.10	1,4 1.4	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 0.0040	0,11 0.0044	80 (60 — 99) 260 (200 — 320)
S13	E	0,10 0,10 0.10	1,4 1.4	0,050 0.0020	0,060 0,0024	0,075 0.0030	0,090 0.0036	0,10 0.0040	65 (48 — 79) 215 (160 — 250)

Cutting data - XSE720 advanced roughing

SMG	Ā	a _p /DC			f _z			V _c
			10	12	16	20	25	
P1	E/M/A/D	1,4 1.4	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,15 <i>0.0060</i>	0,17 <i>0.0065</i>	0,19 <i>0.0075</i>	285 (220 — 350) 940 (730 — 1100)
P2	E/M/A/D	1,4 1.4	0,10 0.0040	0,12 0.0048	0,15 0.0060	0,18 <i>0.0070</i>	0,20 0.0080	275 (210 — 340) 900 (690 — 1100)
P3	E/M/A/D	1,4 1.4	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,14 0.0055	0,17 <i>0.0065</i>	0,19 <i>0.00</i> 75	240 (180 — 290) 790 (600 — 950)
P4	E/M/A/D	1,4 1.4	0,095 0.0038	0,11 <i>0.0044</i>	0,14 0.0055	0,16 <i>0.0065</i>	0,18 0.0070	210 (160 — 260) 690 (530 — 850)
P5	E/M/A/D	1,4 1.4	0,075 0.0030	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 0.0060	175 (130 — 210) 570 (430 — 680)
P6	E/M/A/D	1,4 1.4	0,075 0.0030	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 0.0060	195 (150 — 240) 640 (500 — 780)
P7	E/M/A/D	1,4 1.4	0,075 0.0030	0,090 <i>0.00</i> 36	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	185 (140 — 220) 610 (460 — 720)
P8	E/M/A/D	1,4 1.4	0,080 0.0032	0,095 <i>0.0038</i>	0,12 0.0048	0,14 0.0055	0,15 <i>0.0060</i>	170 (130 — 210) 560 (430 — 680)
P11	E/M/A/D	1,4 1.4	0,090 <i>0.0036</i>	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	0,17 <i>0.0065</i>	170 (130 — 210) 560 (430 — 680)
P12	E/M/A/D	1,4 1.4	0,060 <i>0.0024</i>	0,070 0.0028	0,090 0.0036	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	100 (86 — 110) 330 (290 — 360)
M1	E/M/A	1,4 1.4	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,15 <i>0.0060</i>	0,17 <i>0.0065</i>	0,19 <i>0.0075</i>	180 (160 — 200) 590 (530 — 650)
M2	E/M/A	1,4 1.4	0,090 <i>0.0036</i>	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	0,17 <i>0.0065</i>	150 (130 — 170) 490 (430 — 550)
M3	E/M/A	1,4 1.4	0,075 <i>0.0030</i>	0,085 0.0034	0,11 <i>0.0044</i>	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	125 (110 — 120) 410 (370 — 390)
M4	E/M/A	1,4 1.4	0,065 <i>0.0026</i>	0,075 <i>0.0030</i>	0,095 <i>0.0038</i>	0,11 <i>0.0044</i>	0,12 <i>0.0048</i>	95 (80 — 95) 310 (270 — 310)
M5	E/M/A	1,4 1.4	0,065 <i>0.0026</i>	0,075 <i>0.0030</i>	0,095 <i>0.0038</i>	0,11 <i>0.0044</i>	0,12 <i>0.0048</i>	80 (67 — 79) 260 (220 — 250)
S1	Е	1,4 1.4	0,044 0.0017	0,050 <i>0.0020</i>	0,065 0.0026	0,075 0.0030	0,085 0.0034	44 (35 — 53) 145 (120 — 170)
S2	Е	1,4 1.4	0,040 <i>0.0016</i>	0,048 <i>0.001</i> 9	0,060 <i>0.0024</i>	0,070 0.0028	0,075 0.0030	34 (25 — 43) 110 (83 — 140)
S3	Е	1,4 1.4	0,040 <i>0.0016</i>	0,048 0.0019	0,060 <i>0.0024</i>	0,070 0.0028	0,075 0.0030	29 (20 — 39) 95 (66 — 120)
S11	E	1,4 1.4	0,070 0.0028	0,085 0.0034	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,14 0.0055	110 (82 — 130) 360 (270 — 420)
S12	Е	1,4 1.4	0,070 0.0028	0,085 0.0034	0,10 0.0040	0,12 0.0048	0,14 0.0055	85 (63 — 100) 280 (210 — 320)
S13	Е	1,4 1.4	0,060 0.0024	0,075 0.0030	0,090 0.0036	0,10 0.0040	0,12 0.0048	65 (50 — 83) 215 (170 — 270)

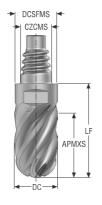
Cutting data - XSE720 Side milling inch

Ĭ	a _e /DC	a _p /DC			f _z			v _c
			3/8	1/2	5/8	3/4	1	
E/M/A/D	0,12	1,4	0,080	0,095	0,12	0,13	0,15	265 (200 — 320)
	<i>0.12</i>	<i>1.4</i>	0.0032	<i>0.00</i> 38	0.0048	<i>0.0050</i>	<i>0.0060</i>	870 (660 — 1000)
E/M/A/D	0.12	1,4 1.4	0.0032	0.0038	0.0048	0,14 0.0055	0,15 0.0060	255 (200 — 320) 840 (660 — 1000)
E/M/A/D	0.12	1.4	0.0030	0.0036	0.0044	0.0050	0.0060	225 (170 — 270) 740 (560 — 880)
E/M/A/D	0,12	1,4	0,075	0,090	0,11	0,13	0,14	195 (150 — 240)
	0.12	1.4	0.0030	0.0036	0.0044	<i>0.0050</i>	0.0055	640 (500 — 780)
E/M/A/D	0,12	1,4	0,060	0,070	0,090	0,10	0,11	160 (120 — 190)
	<i>0.12</i>	<i>1.4</i>	<i>0.0024</i>	<i>0.0028</i>	0.0036	<i>0.0040</i>	<i>0.0044</i>	520 (400 — 620)
E/M/A/D	0,12	1,4	0,060	0,070	0,085	0,10	0,11	180 (140 — 220)
	<i>0.12</i>	<i>1.4</i>	0.0024	<i>0.00</i> 28	0.0034	<i>0.0040</i>	<i>0.0044</i>	590 (460 — 720)
E/M/A/D	0,12	1,4	0,060	0,070	0,085	0,10	0,11	170 (130 — 210)
	<i>0.12</i>	<i>1.4</i>	0.0024	0.0028	0.0034	<i>0.0040</i>	<i>0.0044</i>	560 (430 — 680)
E/M/A/D	0,12	1,4	0,060	0,075	0,090	0,11	0,12	160 (120 — 190)
	0.12	1.4	0.0024	0.0030	0.0036	0.0044	0.0048	520 (400 — 620)
E/M/A/D	0,12	1,4	0,070	0,080	0,10	0,12	0,13	160 (130 — 200)
	0.12	1.4	0.0028	0.0032	0.0040	<i>0.004</i> 8	0.0050	520 (430 — 650)
E/M/A/D	0,12	1,4	0,048	0,055	0,070	0,080	0,090	95 (80 — 100)
	0.12	1.4	0.0019	0.0022	0.0028	0.0032	0.0036	310 (270 — 320)
E/M/A	0,12	1,4	0,075	0,090	0,11	0,13	0,15	170 (150 — 190)
	0.12	1.4	0.0030	0.0036	0.0044	<i>0.0050</i>	0.0060	560 (500 — 620)
E/M/A	0,12	1,4	0,070	0,085	0,10	0,12	0,13	140 (120 — 150)
	0.12	1.4	0.0028	0.0034	0.0040	0.0048	0.0050	460 (400 — 490)
E/M/A	0,10	1,4	0,060	0,075	0,090	0,10	0,12	120 (100 — 110)
	<i>0.10</i>	1.4	0.0024	0.0030	0.0036	<i>0.0040</i>	0.0048	395 (330 — 360)
E/M/A	0,10 <i>0.10</i>	1,4 1.4	0,055 0.0022	0,065	0,080 0.0032	0,090 0.0036	0,10 0.0040	90 (77 — 91) 295 (260 — 290)
E/M/A	0,10	1,4	0,055	0,065	0,080	0,090	0,10	75 (64 — 76)
	<i>0.10</i>	1.4	0.0022	0.0026	0.0032	0.0036	0.0040	245 (210 — 240)
Е	0,060	1,4	0,046	0,055	0,070	0,080	0,090	45 (35 — 54) 150 (120 — 170)
Е	0,060	1,4 1.4	0,042 0.0017	0,050	0,065 0.0026	0,075 0.0030	0,080 0.0032	35 (25 — 44) 115 (83 — 140)
Е	0,060	1,4 1.4	0,042	0,050	0,065	0,075 0.0030	0,080	30 (20 — 39) 100 (66 — 120)
Е	0,10	1,4 1.4	0,060	0,070	0,090	0,10 0.0040	0,11	105 (78 — 120) 345 (260 — 390)
Е	0,10	1,4	0,060	0,070	0,090	0,10	0,11	80 (60 — 99) 260 (200 — 320)
Е	0,10	1,4	0,050	0,060	0,075	0,090	0,10	65 (48 — 79)
	0.10	1,4	0.0020	0.0024	0.0030	0.0036	0.0040	215 (160 — 250)
	E/M/A/D E/M/A E/M/A E/M/A E/M/A E/M/A E = E E E	E/M/A/D E/M/A E/	E/M/A/D 0.12 1.4 E/M/A 0.10 1.4 E/M/	E/M/A/D 0.12 0.12 1.4 0.0032 E/M/A/D 0.12 1.4 0.0032 E/M/A/D 0.12 1.4 0.0032 E/M/A/D 0.12 1.4 0.0032 E/M/A/D 0.12 1.4 0.0030 E/M/A/D 0.12 1.4 0.0004 E/M/A/D 0.12 1.4 0.0004 E/M/A/D 0.12 1.4 0.060 0.12 1.4 0.060 0.12 1.4 0.060 0.12 1.4 0.060 0.12 E/M/A/D 0.12 1.4 0.0004 E/M/A/D 0.12 1.4 0.0008 E/M/A/D 0.12 1.4 0.0008 E/M/A 0.10 1.4 0.0008 E/M/A 0.10 1.4 0.0000 E/M/A 0.10 1.4 0.0002 E/M/A 0.10 1.4 0.0002 E/M/A 0.10 1.4 0.0002 E/M/A 0.10 1.4 0.0055 0.060 1.4 0.0004 E/M/A 0.10 1.4 0.0055 0.060 1.4 0.0004 E/M/A 0.10 1.4 0.0022 E/M/A 0.10 1.4 0.0024 E/M/A 0.10 1.4 0.0026 E/M/A 0.10 1.4 0.0060 1	E/M/A/D 0.12 1.4 0.080 0.095 0.0038 E/M/A/D 0.12 1.4 0.080 0.095 0.0038 E/M/A/D 0.12 1.4 0.080 0.095 0.0038 E/M/A/D 0.12 1.4 0.0032 0.0038 E/M/A/D 0.12 1.4 0.075 0.090 0.0036 E/M/A/D 0.12 1.4 0.075 0.090 0.0036 E/M/A/D 0.12 1.4 0.0030 0.0036 E/M/A/D 0.12 1.4 0.060 0.070 0.12 1.4 0.060 0.070 0.12 1.4 0.060 0.070 0.12 1.4 0.060 0.070 0.12 1.4 0.060 0.070 0.12 1.4 0.060 0.070 0.12 1.4 0.060 0.070 0.12 1.4 0.060 0.070 0.12 1.4 0.060 0.070 0.12 1.4 0.060 0.070 0.12 1.4 0.0024 0.0028 E/M/A/D 0.12 1.4 0.060 0.075 0.0028 E/M/A/D 0.12 1.4 0.060 0.070 0.080 E/M/A/D 0.12 1.4 0.0024 0.0030 E/M/A/D 0.12 1.4 0.0028 0.0032 E/M/A/D 0.12 1.4 0.0028 0.0030 E/M/A/D 0.12 0.14 0.0028 0.0030 0.0036 E/M/A/D 0.12 1.4 0.0029 0.0020 E/M/A/D 0.12 1.4 0.0020 0.0020 E/M/A/D 0.12 0.0020 0.0020 E/M/A/D 0.0020 0.0020 0.0020 E/M/A/D 0.0020	EMIAID 0,12 1,4 0,080 0,095 0,12 0,004 EMIAID 0,12 1,4 0,0032 0,0038 0,0048 EMIAID 0,12 1,4 0,080 0,095 0,12 0,12 0,12 1,4 0,0032 0,0038 0,0048 EMIAID 0,12 1,4 0,0032 0,0038 0,0048 EMIAID 0,12 1,4 0,075 0,090 0,11 EMIAID 0,12 1,4 0,0030 0,0036 0,0044 EMIAID 0,12 1,4 0,0030 0,0036 0,0044 EMIAID 0,12 1,4 0,0030 0,0036 0,0044 EMIAID 0,12 1,4 0,060 0,070 0,990 EMIAID 0,12 1,4 0,060 0,070 0,090 EMIAID 0,12 1,4 0,060 0,070 0,085 EMIAID 0,12 1,4 0,060 0,075 0,090 EMIAID 0,12 1,4 0,060 0,075 EMIAID 0,12 1,4 0,060 0,075 EMIAID 0,12 1,4 0,0024 0,0039 0,0036 EMIAID 0,12 1,4 0,070 0,080 0,10 EMIAID 0,12 1,4 0,060 0,075 0,090 EMIAID 0,12 1,4 0,060 0,075 0,090 EMIAID 0,12 1,4 0,0019 0,0022 0,0028 EMIAID 0,10 1,4 0,0020 0,0036 0,0036 EMIAID 0,10 1,4 0,0020 0,0036 0,0036 EMIAID 0,10 1,4 0,0020 0,0026 0,0032 EMIAID 0,10 1,4 0,0020 0,0026 0,0032 EMIAID 0,10 1,4 0,0020 0,0026 0,0032 EMIAID 0,10 1,4 0,0020 0,0026 0,0036 EMIAID 0,10 1,4 0,0020 0,0026 0,0032 EMIAID 0,10 1,4 0,0020 0,0026 0,0036 EMIAID 0,10 1	EMIAID 0.12 1.4 0.080 0.095 0.12 0.13 0.005 0.006 0.005 0.006 0.005 0.00	EMIAID 0.12 1.4 0.080 0.095 0.0098 0.0095 0.0060 0

SMG = Seco material group Coolant = A=air D=dry E=emulsion M=mist spray

v_c= m/min (sf/min)

 v_c – Intrilli (Symm) f_z = mm (in/tooth) a_p = mm/DC (in/DC) = factor a_e = mm/DC (in/DC) = factor All cutting data are target values


Cutting data – XSE720 advanced roughing inch

SMG	Ā	a _p /DC	f _z						
			3/8	1/2	5/8	3/4	1		
P1	E/M/A/D	1,4 1.4	0,10 <i>0.0040</i>	0,12 0.0048	0,15 0.0060	0,17 0.0065	0,19 0.0075	285 (220 — 350) 940 (730 — 1100)	
P2	E/M/A/D	1,4 1.4	0,10 0.0040	0,12 0.0048	0,15 0.0060	0,18 <i>0.0070</i>	0,20 0.0080	275 (210 — 340) 900 (690 — 1100)	
P3	E/M/A/D	1,4 1.4	0,10 0.0040	0,12 <i>0.0048</i>	0,14 0.0055	0,17 <i>0.0065</i>	0,19 <i>0.0075</i>	240 (180 — 290) 790 (600 — 950)	
P4	E/M/A/D	1,4 1.4	0,095 0.0038	0,11 <i>0.0044</i>	0,14 0.0055	0,16 <i>0.0065</i>	0,18 <i>0.0070</i>	210 (160 — 260) 690 (530 — 850)	
P5	E/M/A/D	1,4 1.4	0,075 0.0030	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	175 (130 — 210) 570 (430 — 680)	
P6	E/M/A/D	1,4 1.4	0,075 0.0030	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 0.0060	195 (150 — 240) 640 (500 — 780)	
P7	E/M/A/D	1,4 1.4	0,075 0.0030	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	185 (140 — 220) 610 (460 — 720)	
P8	E/M/A/D	1,4 1.4	0,080 0.0032	0,095 0.0038	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	0,15 0.0060	170 (130 — 210) 560 (430 — 680)	
P11	E/M/A/D	1,4 1.4	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	0,17 0.0065	170 (130 — 210) 560 (430 — 680)	
P12	E/M/A/D	1,4 1.4	0,060 <i>0.0024</i>	0,070 0.0028	0,090 0.0036	0,10 <i>0.0040</i>	0,12 0.0048	100 (86 — 110) 330 (290 — 360)	
M1	E/M/A	1,4 1.4	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,15 <i>0.0060</i>	0,17 <i>0.0065</i>	0,19 <i>0.0075</i>	180 (160 — 200) 590 (530 — 650)	
M2	E/M/A	1,4 1.4	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	0,17 0.0065	150 (130 — 170) 490 (430 — 550)	
M3	E/M/A	1,4 1.4	0,075 0.0030	0,085 0.0034	0,11 <i>0.0044</i>	0,12 <i>0.0048</i>	0,14 0.0055	125 (110 — 120) 410 (370 — 390)	
M4	E/M/A	1,4 1.4	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 <i>0.0044</i>	0,12 0.0048	95 (80 — 95) 310 (270 — 310)	
M5	E/M/A	1,4 1.4	0,065 0.0026	0,075 0.0030	0,095 0.0038	0,11 <i>0.0044</i>	0,12 0.0048	80 (67 — 79) 260 (220 — 250)	
S1	Е	1,4 1.4	0,044 0.0017	0,050 0.0020	0,065 0.0026	0,075 0.0030	0,085 0.0034	44 (35 — 53) 145 (120 — 170)	
S2	Е	1,4 1.4	0,040 0.0016	0,048 0.0019	0,060 0.0024	0,070 0.0028	0,075 0.0030	34 (25 — 43) 110 (83 — 140)	
S3	E	1,4 1.4	0,040 0.0016	0,048 0.0019	0,060 0.0024	0,070 0.0028	0,075 0.0030	29 (20 — 39) 95 (66 — 120)	
S11	E	1,4 1.4	0,070 0.0028	0,085 0.0034	0,10 0.0040	0,12 0.0048	0,14 0.0055	110 (82 — 130) 360 (270 — 420)	
S12	Е	1,4 1.4	0,070 0.0028	0,085 0.0034	0,10 0.0040	0,12 0.0048	0,14 0.0055	85 (63 — 100) 280 (210 — 320)	
S13	E	1,4 1.4	0,060 0.0024	0,075 0.0030	0,090 0.0036	0,10 0.0040	0,12 0.0048	65 (50 — 83) 215 (170 — 270)	

SECO I X-HEADS - SOLID²

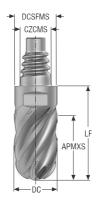
XSB720

High performance – Superalloy – Ball nose – 6 Flutes

D

- Tolerances:
 DC= e7
 RE= ±0,02 mm
 Regrind possible if DC is ≥Ø12 mm

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	PCEDC	SW	Grade
					mm	mm	mm	mm			HXT
XSB720E10100D3BZ6	10138222	3	D	E10	10,0	9,7	15,0	21,8	6	8	
XSB720E12120D3BZ6	10138223	3	D	E12	12,0	11,7	18,0	25,9	6	10	•
XSB720E16160D3BZ6	10138224	3	D	E16	16,0	15,5	24,0	34,1	6	12	
XSB720E20200D3BZ6	10138225	3	D	E20	20,0	19,3	30,0	40,2	6	16	•


Stocked standard.

XSB720

High performance – Superalloy – Ball nose – 6 Flutes – *Inch*

- Tolerances:
 DC= e7
 RE= ±.0008 Inch
 Regrind possible if DC is ≥Ø.500 Inch

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	PCEDC	sw	Grade
					Inch	Inch	Inch	Inch			HXT
XSB720E10.375D3BZ6	10138226	3	D	E10	0.375	0.364	0.563	0.827	6	8	•
XSB720E12.500D3BZ6	10138227	3	D	E12	0.500	0.484	0.750	1.055	6	10	•
XSB720E16.625D3BZ6	10138228	3	D	E16	0.625	0.610	0.938	1.343	6	12	
XSB720E20.750D3BZ6	10138229	3	D	E20	0.750	0.728	1.125	1.524	6	16	•
XSB720E251.00D3BZ6	10138230	3	D	E25	1.000	0.965	1.500	1.980	6	20	

Stocked standard.

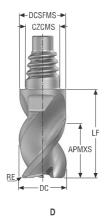
Cutting data - XSB720 Side milling

SMG	Ā	a _e /DC	a _p /DC		f	z Z		v _c
				10	12	16	20	
P1	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,095 0.0038	0,11 <i>0.0044</i>	0,14 <i>0.0055</i>	0,16 <i>0.0065</i>	195 (170 — 220) 640 (560 — 720)
P2	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,10 <i>0.0040</i>	0,12 0.0048	0,15 <i>0.0060</i>	0,17 0.0065	190 (170 — 210) 620 (560 — 680)
P3	E/M/A/D	0,12 0.12	1,2 1.2	0,095 0.0038	0,11 <i>0.0044</i>	0,14 <i>0.0055</i>	0,16 <i>0.0065</i>	165 (150 — 180) 540 (500 — 590)
P4	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	145 (130 — 160) 475 (430 — 520)
P5	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 0.0060	140 (130 — 160) 460 (430 — 520)
P6	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,090 0.0036	0,11 <i>0.0044</i>	0,13 0.0050	0,15 0.0060	155 (140 — 170) 510 (460 — 550)
P7	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 0.0060	150 (130 — 160) 490 (430 — 520)
P8	E/M/A/D	0,12 0.12	1,2 1.2	0,095 0.0038	0,11 <i>0.0044</i>	0,14 0.0055	0,16 <i>0.0065</i>	140 (120 — 150) 460 (400 — 490)
P11	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,070 0.0028	0,080 0.0032	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	150 (130 — 170) 490 (430 — 550)
P12	E/M/A/D	0,12 <i>0.1</i> 2	1,2 1.2	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 <i>0.0032</i>	95 (81 — 100) 310 (270 — 320)
M1	E/M/A	0,12 <i>0.12</i>	1,2 1.2	0,075 0.0030	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	220 (180 — 260) 720 (600 — 850)
M2	E/M/A	0,12 <i>0.12</i>	1,2 1.2	0,070 <i>0.0028</i>	0,085 0.0034	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	180 (140 — 220) 590 (460 — 720)
M3	E/M/A	0,10 <i>0.10</i>	1,2 1.2	0,060 <i>0.0024</i>	0,070 <i>0.0028</i>	0,090 <i>0.00</i> 36	0,10 <i>0.0040</i>	160 (120 — 200) 520 (400 — 650)
M4	E/M/A	0,10 <i>0.10</i>	1,2 1.2	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,090 <i>0.0036</i>	125 (93 — 150) 410 (310 — 490)
M5	E/M/A	0,10 <i>0.10</i>	1,2 1.2	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	0,075 <i>0.0030</i>	0,090 <i>0.00</i> 36	105 (77 — 120) 345 (260 — 390)
S1	Е	0,070 <i>0.0</i> 70	1,2 1.2	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	45 (35 — 54) 150 (120 — 170)
S2	Е	0,070 <i>0.0</i> 70	1,2 1.2	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	37 (27 — 47) 120 (89 — 150)
S 3	Е	0,070 <i>0.0</i> 70	1,2 1.2	0,048 <i>0.001</i> 9	0,055 0.0022	0,070 <i>0.0028</i>	0,080 0.0032	30 (20 — 40) 100 (66 — 130)
S11	Е	0,10 <i>0.10</i>	1,2 1.2	0,060 <i>0.0024</i>	0,070 <i>0.0028</i>	0,090 <i>0.0036</i>	0,10 <i>0.0040</i>	80 (61 — 100) 260 (210 — 320)
S12	Е	0,10 <i>0.10</i>	1,2 1.2	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 <i>0.0040</i>	80 (61 — 100) 260 (210 — 320)
S13	E	0,10 <i>0.10</i>	1,2 1.2	0,060 0.0024	0,070 0.0028	0,090 <i>0.0036</i>	0,10 0.0040	80 (61 — 100) 260 (210 — 320)

Cutting data – XSB720 Side milling advanced roughing a_e/DC =0,07

SMG	Ā	a _p /DC		v _c			
			10	12	16	20	
P1	E/M/A/D	1,2 1.2	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	0,18 <i>0.0070</i>	0,22 0.0085	210 (190 — 240) 690 (630 — 780)
P2	E/M/A/D	1,2 1.2	0,12 <i>0.0048</i>	0,14 0.0055	0,19 0.0075	0,22 0.0085	205 (180 — 230) 670 (600 — 750)
P3	E/M/A/D	1,2 1.2	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	0,18 <i>0.0070</i>	0,20 0.0080	180 (160 — 200) 590 (530 — 650)
P4	E/M/A/D	1,2 1.2	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	0,17 0.0065	0,20 <i>0.0080</i>	155 (140 — 170) 510 (460 — 550)
P5	E/M/A/D	1,2 1.2	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	0,17 0.0065	0,20 <i>0.0080</i>	150 (130 — 170) 490 (430 — 550)
P6	E/M/A/D	1,2 1.2	0,11 <i>0.0044</i>	0,14 <i>0.0055</i>	0,17 0.0065	0,19 <i>0.0075</i>	170 (150 — 190) 560 (500 — 620)
P7	E/M/A/D	1,2 1.2	0,11 <i>0.0044</i>	0,14 <i>0.0055</i>	0,17 0.0065	0,19 <i>0.0075</i>	160 (140 — 180) 520 (460 — 590)
P8	E/M/A/D	1,2 1.2	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	0,18 0.0070	0,20 <i>0.0080</i>	150 (130 — 170) 490 (430 — 550)
P11	E/M/A/D	1,2 1.2	0,090 <i>0.00</i> 36	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 0.0060	160 (140 — 180) 520 (460 — 590)
P12	E/M/A/D	1,2 1.2	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 <i>0.0040</i>	100 (87 — 110) 330 (290 — 360)
M1	E/M/A	1,2 1.2	0,10 <i>0.0040</i>	0,12 0.0048	0,15 0.0060	0,17 0.0065	235 (190 — 280) 770 (630 — 910)
M2	E/M/A	1,2 1.2	0,090 <i>0.0036</i>	0,11 0.0044	0,13 0.0050	0,15 0.0060	195 (160 — 230) 640 (530 — 750)
M3	E/M/A	1,2 1.2	0,070 0.0028	0,085 0.0034	0,10 <i>0.0040</i>	0,12 0.0048	170 (130 — 200) 560 (430 — 650)
M4	E/M/A	1,2 1.2	0,060 0.0024	0,075 0.0030	0,090 <i>0.0036</i>	0,10 <i>0.0040</i>	130 (97 — 160) 425 (320 — 520)
M5	E/M/A	1,2 1.2	0,060 0.0024	0,075 0.0030	0,090 <i>0.0036</i>	0,10 <i>0.0040</i>	105 (81 — 130) 345 (270 — 420)
S1	E	1,2 1.2	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	45 (35 — 54) 150 (120 — 170)
S2	E	1,2 1.2	0,048 <i>0.0019</i>	0,055 0.0022	0,070 0.0028	0,080 0.0032	37 (27 — 47) 120 (89 — 150)
S3	Е	1,2 1.2	0,048 <i>0.0019</i>	0,055 0.0022	0,070 0.0028	0,080 0.0032	30 (20 — 40) 100 (66 — 130)
S11	Е	1,2 1.2	0,070 0.0028	0,085 0.0034	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	85 (63 — 100) 280 (210 — 320)
S12	Е	1,2 1.2	0,070 0.0028	0,085 0.0034	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	85 (63 — 100) 280 (210 — 320)
S13	E	1,2 1.2	0,070 0.0028	0,085 0.0034	0,10 0.0040	0,12 0.0048	85 (63 — 100) 280 (210 — 320)

Cutting data - XSB720 Side milling inch


SMG	Ā	a _e /DC	a _p /DC		f	; z		v _c
				3/8	1/2	5/8	3/4	
P1	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,095 0.0038	0,11 <i>0.0044</i>	0,14 0.0055	0,16 <i>0.0065</i>	195 (170 — 220) 640 (560 — 720)
P2	E/M/A/D	0,12 0.12	1,2 1.2	0,10 0.0040	0,12 0.0048	0,15 0.0060	0,17 <i>0.0065</i>	190 (170 — 210) 620 (560 — 680)
P3	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,095 0.0038	0,11 <i>0.0044</i>	0,14 <i>0.0055</i>	0,16 <i>0.0065</i>	165 (150 — 180) 540 (500 — 590)
P4	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	145 (130 — 160) 475 (430 — 520)
P5	E/M/A/D	0,12 0.12	1,2 1.2	0,090 0.0036	0,11 <i>0.0044</i>	0,13 0.0050	0,15 0.0060	140 (130 — 160) 460 (430 — 520)
P6	E/M/A/D	0,12 0.12	1,2 1.2	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 0.0060	155 (140 — 170) 510 (460 — 550)
P7	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	150 (130 — 160) 490 (430 — 520)
P8	E/M/A/D	0,12 0.12	1,2 1.2	0,095 0.0038	0,11 <i>0.0044</i>	0,14 <i>0.0055</i>	0,16 <i>0.0065</i>	140 (120 — 150) 460 (400 — 490)
P11	E/M/A/D	0,12 <i>0.12</i>	1,2 1.2	0,070 0.0028	0,080 0.0032	0,10 <i>0.0040</i>	0,12 0.0048	150 (130 — 170) 490 (430 — 550)
P12	E/M/A/D	0,12 0.12	1,2 1.2	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	95 (81 — 100) 310 (270 — 320)
M1	E/M/A	0,12 0.12	1,2 1.2	0,075 0.0030	0,090 0.0036	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	220 (180 — 260) 720 (600 — 850)
M2	E/M/A	0,12 0.12	1,2 1.2	0,070 0.0028	0,085 0.0034	0,10 <i>0.0040</i>	0,12 0.0048	180 (140 — 220) 590 (460 — 720)
M3	E/M/A	0,10 <i>0.10</i>	1,2 1.2	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 <i>0.0040</i>	160 (120 — 200) 520 (400 — 650)
M4	E/M/A	0,10 <i>0.10</i>	1,2 1.2	0,050 0.0020	0,060 0.0024	0,075 0.0030	0,090 0.0036	125 (93 — 150) 410 (310 — 490)
M5	E/M/A	0,10 <i>0.10</i>	1,2 1.2	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,090 0.0036	105 (77 — 120) 345 (260 — 390)
S1	Е	0,070 0.070	1,2 1.2	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	45 (35 — 54) 150 (120 — 170)
S2	Е	0,070 0.070	1,2 1.2	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	37 (27 — 47) 120 (89 — 150)
S 3	Е	0,070 0.070	1,2 1.2	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 0.0032	30 (20 — 40) 100 (66 — 130)
S11	Е	0,10 <i>0.10</i>	1,2 1.2	0,060 0.0024	0,070 <i>0.0028</i>	0,090 0.0036	0,10 <i>0.0040</i>	80 (61 — 100) 260 (210 — 320)
S12	Е	0,10 <i>0.10</i>	1,2 1.2	0,060 0.0024	0,070 0.0028	0,090 0.0036	0,10 <i>0.0040</i>	80 (61 — 100) 260 (210 — 320)
S13	Е	0,10 <i>0.10</i>	1,2 1.2	0,060 0.0024	0,070 0.0028	0,090 <i>0.00</i> 36	0,10 <i>0.0040</i>	80 (61 — 100) 260 (210 — 320)

Cutting data – XSB720 Side milling advanced roughing a_{e} /DC=0,07 inch

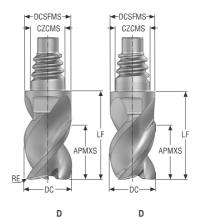
SMG	Ā	a _p /DC		v _c			
			3/8	1/2	5/8	3/4	
P1	E/M/A/D	1,2 1.2	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	0,18 <i>0.0070</i>	0,22 0.0085	210 (190 — 240) 690 (630 — 780)
P2	E/M/A/D	1,2 1.2	0,12 <i>0.0048</i>	0,14 0.0055	0,19 <i>0.0075</i>	0,22 0.0085	205 (180 — 230) 670 (600 — 750)
P3	E/M/A/D	1,2 1.2	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	0,18 <i>0.0070</i>	0,20 0.0080	180 (160 — 200) 590 (530 — 650)
P4	E/M/A/D	1,2 1.2	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	0,17 <i>0.0065</i>	0,20 <i>0.0080</i>	155 (140 — 170) 510 (460 — 550)
P5	E/M/A/D	1,2 1.2	0,12 0.0048	0,14 <i>0.0055</i>	0,17 <i>0.0065</i>	0,20 <i>0.0080</i>	150 (130 — 170) 490 (430 — 550)
P6	E/M/A/D	1,2 1.2	0,11 <i>0.0044</i>	0,14 0.0055	0,17 <i>0.0065</i>	0,19 <i>0.0075</i>	170 (150 — 190) 560 (500 — 620)
P7	E/M/A/D	1,2 1.2	0,11 <i>0.0044</i>	0,14 0.0055	0,17 <i>0.0065</i>	0,19 <i>0.0075</i>	160 (140 — 180) 520 (460 — 590)
P8	E/M/A/D	1,2 1.2	0,12 0.0048	0,14 <i>0.0055</i>	0,18 <i>0.0070</i>	0,20 <i>0.0080</i>	150 (130 — 170) 490 (430 — 550)
P11	E/M/A/D	1,2 1.2	0,090 <i>0.00</i> 36	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	160 (140 — 180) 520 (460 — 590)
P12	E/M/A/D	1,2 1.2	0,060 <i>0.0024</i>	0,070 0.0028	0,090 <i>0.0036</i>	0,10 <i>0.0040</i>	100 (87 — 110) 330 (290 — 360)
M1	E/M/A	1,2 1.2	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,15 <i>0.0060</i>	0,17 <i>0.0065</i>	235 (190 — 280) 770 (630 — 910)
M2	E/M/A	1,2 1.2	0,090 <i>0.0036</i>	0,11 <i>0.0044</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	195 (160 — 230) 640 (530 — 750)
M3	E/M/A	1,2 1.2	0,070 <i>0.0028</i>	0,085 0.0034	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	170 (130 — 200) 560 (430 — 650)
M4	E/M/A	1,2 1.2	0,060 <i>0.0024</i>	0,075 0.0030	0,090 0.0036	0,10 <i>0.0040</i>	130 (97 — 160) 425 (320 — 520)
M5	E/M/A	1,2 1.2	0,060 <i>0.0024</i>	0,075 0.0030	0,090 <i>0.0036</i>	0,10 <i>0.0040</i>	105 (81 — 130) 345 (270 — 420)
S1	Е	1,2 1.2	0,048 <i>0.0019</i>	0,055 0.0022	0,070 0.0028	0,080 <i>0.0032</i>	45 (35 — 54) 150 (120 — 170)
S2	E	1,2 1.2	0,048 <i>0.0019</i>	0,055 0.0022	0,070 0.0028	0,080 <i>0.0032</i>	37 (27 — 47) 120 (89 — 150)
S3	E	1,2 1.2	0,048 0.0019	0,055 0.0022	0,070 0.0028	0,080 <i>0.0032</i>	30 (20 — 40) 100 (66 — 130)
S11	Е	1,2 1.2	0,070 0.0028	0,085 0.0034	0,10 <i>0.0040</i>	0,12 0.0048	85 (63 — 100) 280 (210 — 320)
S12	Е	1,2 1.2	0,070 0.0028	0,085 0.0034	0,10 <i>0.0040</i>	0,12 0.0048	85 (63 — 100) 280 (210 — 320)
S13	E	1,2 1.2	0,070 0.0028	0,085 0.0034	0,10 0.0040	0,12 0.0048	85 (63 — 100) 280 (210 — 320)

XSE450

High performance – Aluminium – Square – 3 Flutes – Corner radius

- Tolerances:
 DC= 0/-0,0508 mm
 RE= ±0,0254 mm
 Regrind possible if DC is ≥Ø12 mm

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
					mm	mm	mm	mm	mm			AXT
XSE450E10100D2R050Z3	10138362	2	D	E10	10,0	9,7	12,0	18,7	0,5	3	8	•
XSE450E12120D2R050Z3	10138363	2	D	E12	12,0	11,7	14,4	22,1	0,5	3	10	
XSE450E12120D2R100Z3	10138364	2	D	E12	12,0	11,7	14,4	22,1	1,0	3	10	
XSE450E16160D2R050Z3	10138365	2	D	E16	16,0	15,5	19,2	29,2	0,5	3	12	
XSE450E16160D2R100Z3	10138366	2	D	E16	16,0	15,5	19,2	29,2	1,0	3	12	
XSE450E20200D2R050Z3	10138367	2	D	E20	20,0	19,3	24,0	34,3	0,5	3	16	
XSE450E20200D2R100Z3	10138369	2	D	E20	20,0	19,3	24,0	34,3	1,0	3	16	


[■] Stocked standard.

SECO I

XSE450

High performance – Aluminium – Square – 3 Flutes – Corner radius – *Inch*

- Tolerances:
 DC= 0/-.002 Inch
 RE= ±.001 Inch
 Regrind possible if DC is ≥Ø.500 Inch

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
		тасх	опаро		Inch	Inch	Inch	Inch	Inch			AXT
XSE450E10.375D2SZ3	10138370	2	D	E10	0.375	0.364	0.450	0.720	-	3	8	
XSE450E12.500D2SZ3	10138371	2	D	E12	0.500	0.484	0.600	0.906	-	3	10	
XSE450E16.625D2SZ3	10138372	2	D	E16	0.625	0.610	0.750	1.150	-	3	12	
XSE450E20.750D2SZ3	10138373	2	D	E20	0.750	0.728	0.900	1.295	-	3	16	
XSE450E251.00D2SZ3	10138374	2	D	E25	1.000	0.965	1.200	1.673	-	3	20	
XSE450E10.375D2R030Z3	10138375	2	D	E10	0.375	0.364	0.450	0.720	0.030	3	8	
XSE450E12.500D2R030Z3	10138376	2	D	E12	0.500	0.484	0.600	0.906	0.030	3	10	
XSE450E12.500D2R060Z3	10138377	2	D	E12	0.500	0.484	0.600	0.906	0.060	3	10	
XSE450E16.625D2R030Z3	10138378	2	D	E16	0.625	0.610	0.750	1.150	0.030	3	12	
XSE450E16.625D2R060Z3	10138379	2	D	E16	0.625	0.610	0.750	1.150	0.060	3	12	
XSE450E16.625D2R120Z3	10138380	2	D	E16	0.625	0.610	0.750	1.150	0.120	3	12	
XSE450E20.750D2R030Z3	10138381	2	D	E20	0.750	0.728	0.900	1.295	0.030	3	16	
XSE450E20.750D2R060Z3	10138382	2	D	E20	0.750	0.728	0.900	1.295	0.060	3	16	
XSE450E20.750D2R120Z3	10138383	2	D	E20	0.750	0.728	0.900	1.295	0.120	3	16	
XSE450E251.00D2R030Z3	10138384	2	D	E25	1.000	0.965	1.200	1.673	0.030	3	20	
XSE450E251.00D2R060Z3	10138385	2	D	E25	1.000	0.965	1.200	1.673	0.060	3	20	
XSE450E251.00D2R120Z3	10138386	2	D	E25	1.000	0.965	1.200	1.673	0.120	3	20	

■ Stocked standard.

Cutting data - XSE450 Side milling

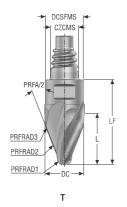
SMG	Ā	a _e /DC	a _p /DC			f _z			v _c
				10	12	16	20		
N1	E/M/A	0,40 <i>0.40</i>	1,1 1.1	0,15 <i>0.0060</i>	0,18 <i>0.0070</i>	0,22 0.0085	0,26 0.010	0,30 0.012	560 (450 — 670) 1825 (1500 — 2100)
N2	E/M/A	0,40 <i>0.40</i>	1,1 1.1	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	0,20 0.0080	0,22 0.0085	0,25 0.010	445 (340 — 550) 1450 (1200 — 1800)
N3	E/M/A	0,40 <i>0.40</i>	1,1 1.1	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	0,20 0.0080	0,22 0.0085	0,25 0.010	295 (230 — 360) 970 (760 — 1100)
N11	E/M/A	0,40 <i>0.40</i>	1,1 1.1	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	0,20 0.0080	0,22 0.0085	0,25 0.010	395 (300 — 490) 1300 (990 — 1600)
TS1	A/D	0,40 <i>0.40</i>	1,1 1.1	0,15 <i>0.0060</i>	0,18 <i>0.0070</i>	0,22 0.0085	0,26 0.010	0,30 0.012	280 (170 — 390) 920 (560 — 1200)
TP1	A/D	0,40 <i>0.40</i>	1,1 1.1	0,15 <i>0.0060</i>	0,18 <i>0.0070</i>	0,22 0.0085	0,26 <i>0.010</i>	0,30 0.012	280 (170 — 390) 920 (560 — 1200)

Cutting data – XSE450 Slot milling

SMG	Ā	a _p /DC			f _z			V _c
			10	12	16	20		
N1	E/M/A	1,1 1.1	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,16 <i>0.0065</i>	0,20 0.0080	0,25 0.010	500 (400 — 590) 1650 (1400 — 1900)
N2	E/M/A	1,1 1.1	0,080 <i>0.0032</i>	0,095 <i>0.0038</i>	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	0,20 <i>0.0080</i>	400 (300 — 490) 1300 (990 — 1600)
N3	E/M/A	1,1 1.1	0,080 0.0032	0,095 0.0038	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	0,20 0.0080	265 (200 — 330) 870 (660 — 1000)
N11	E/M/A	1,1 1.1	0,080 0.0032	0,095 0.0038	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	0,20 <i>0.0080</i>	355 (270 — 440) 1175 (890 — 1400)
TS1	A/D	1,1 1.1	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,16 <i>0.0065</i>	0,20 <i>0.0080</i>	0,25 0.010	250 (150 — 340) 820 (500 — 1100)
TP1	A/D	1,1 1.1	0,10 <i>0.0040</i>	0,12 0.0048	0,16 <i>0.0065</i>	0,20 0.0080	0,25 0.010	250 (150 — 340) 820 (500 — 1100)

Cutting data – XSE450 Side milling inch

SMG	Ā	a _e /DC	a _p /DC			f _z			V _c
				3/8	1/2	5/8	3/4	1	
N1	E/M/A	0,40 <i>0.40</i>	1,1 1.1	0,15 0.0060	0,18 <i>0.0070</i>	0,22 0.0085	0,26 0.010	0,30 0.012	560 (450 — 670) 1825 (1500 — 2100)
N2	E/M/A	0,40 <i>0.40</i>	1,1 1.1	0,13 0.0050	0,16 <i>0.0065</i>	0,20 0.0080	0,22 0.0085	0,25 0.010	445 (340 — 550) 1450 (1200 — 1800)
N3	E/M/A	0,40 <i>0.40</i>	1,1 1.1	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	0,20 0.0080	0,22 0.0085	0,25 0.010	295 (230 — 360) 970 (760 — 1100)
N11	E/M/A	0,40 0.40	1,1 1.1	0,13 0.0050	0,16 <i>0.0065</i>	0,20 0.0080	0,22 0.0085	0,25 0.010	395 (300 — 490) 1300 (990 — 1600)
TS1	A/D	0,40 <i>0.40</i>	1,1 1.1	0,15 0.0060	0,18 <i>0.0070</i>	0,22 0.0085	0,26 0.010	0,30 0.012	280 (170 — 390) 920 (560 — 1200)
TP1	A/D	0,40 <i>0.40</i>	1,1 1.1	0,15 <i>0.0060</i>	0,18 <i>0.0070</i>	0,22 0.0085	0,26 0.010	0,30 0.012	280 (170 — 390) 920 (560 — 1200)


Cutting data – XSE450 Slot milling inch

SMG	Ā	a _p /DC			f _z			V _c
			3/8	1/2	5/8	3/4	1	
N1	E/M/A	1,1 1.1	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,16 <i>0.0065</i>	0,20 <i>0.0080</i>	0,25 0.010	500 (400 — 590) 1650 (1400 — 1900)
N2	E/M/A	1,1 1.1	0,080 0.0032	0,095 0.0038	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	0,20 0.0080	400 (300 — 490) 1300 (990 — 1600)
N3	E/M/A	1,1 1.1	0,080 0.0032	0,095 <i>0.0038</i>	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	0,20 <i>0.0080</i>	265 (200 — 330) 870 (660 — 1000)
N11	E/M/A	1,1 1.1	0,080 0.0032	0,095 <i>0.0038</i>	0,13 <i>0.0050</i>	0,16 <i>0.0065</i>	0,20 <i>0.0080</i>	355 (270 — 440) 1175 (890 — 1400)
TS1	A/D	1,1 1.1	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,16 <i>0.0065</i>	0,20 <i>0.0080</i>	0,25 0.010	250 (150 — 340) 820 (500 — 1100)
TP1	A/D	1,1 1.1	0,10 <i>0.0040</i>	0,12 0.0048	0,16 0.0065	0,20 0.0080	0,25 0.010	250 (150 — 340) 820 (500 — 1100)

SECO I

XHT740

High speed – ISO- M and ISO- S - Taper Shape – 4-6 Flutes

- Tolerances: PRFRAD1= ±0,03 mm Form tolerance PRFRAD2= 0,02 mm
- Regrind possible if DC is ≥Ø12 mm is ≥Ø12 mm and PRFRAD1 is

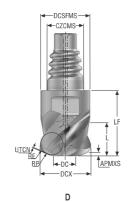
Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	L	LF	PRFRAD1	PRFRAD2	PRFRAD3	PRFA/2°	PCEDC	sw	Grade
					mm	mm	mm	mm	mm	mm	mm				SIRA
XHT740E10100T2R1.5R250Z4	10138388	2	Т	E10	10,0	9,7	5,4	18,7	1,5	250,0	2,0	65,0	4	8	
XHT740E12120T2R3R250Z4	10138389	2	Т	E12	12,0	11,7	10,5	22,1	3,0	250,0	6,0	32,5	4	10	
XHT740E16160T2R4R500Z4	10138390	2	Т	E16	16,0	15,5	14,6	29,2	4,0	500,0	8,0	27,5	4	12	
XHT740E10100T3R2R250Z4	10138391	3	Т	E10	10,0	9,7	12,7	21,8	2,0	250,0	5,0	20,0	4	8	
XHT740E12120T3R3R250Z4	10138392	3	Т	E12	12,0	11,7	13,7	25,9	3,0	250,0	6,0	20,0	4	10	
XHT740E16160T3R4R1000Z4	10138394	3	Т	E16	16,0	15,5	24,0	34,1	4,0	1000,0	5,0	20,0	4	12	
XHT740E16160T3R4R500Z4	10138393	3	Т	E16	16,0	15,5	17,6	34,1	4,0	500,0	8,0	20,0	4	12	
XHT740E10100T3R2R250Z6	10138395	3	T	E10	10,0	9,7	12,7	21,8	2,0	250,0	5,0	20,0	6	8	
XHT740E12120T3R3R250Z6	10138396	3	Т	E12	12,0	11,7	13,7	25,9	3,0	250,0	6,0	20,0	6	10	
XHT740E16160T3R4R500Z6	10138397	3	Т	E16	16,0	15,5	17,6	34,1	4,0	500,0	8,0	20,0	6	12	

[■] Stocked standard.

Cutting data – XHT740 – Copy milling PCEDC 4

SMG	Ā	a _e /DC		f _z		v _c
			10	12	16	
P8	E/M/A/D	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 0.0032	170 (150 - 195) 560 (490 - 640)
P12	E/M/A/D	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 0.0032	120 (95 - 135) 400 (310 - 445)
M1	E/M/A	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 <i>0.0032</i>	150 (125 - 155) 490 (410 - 510)
M2	E/M/A	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 0.0032	145 (120 - 150) 475 (400 - 490)
M3	E/M/A	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 <i>0.0032</i>	130 (90 - 140) 425 (295 - 460)
S2	E	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 0.0032	60 (50 - 70) 195 (165 - 230)
S11	E	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 0.0032	100 (85 - 105) 320 (280 - 345)
S12	E	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 0.0032	95 (80 - 100) 310 (260 - 320)
S13	Е	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 0.0032	90 (75 - 95) 295 (245 - 310)

Cutting data – XHT740 – Copy milling PCEDC 6


SMG	Ā	a _e /DC		f _z		V _c
			10	12	16	
P8	E/M/A/D	0,010 <i>0.010</i>	0,05 0.0022	0,06 0.0024	0,08 0.0032	170 (150 - 195) 560 (490 - 640)
P12	E/M/A/D	0,010 <i>0.010</i>	0,05 0.0022	0,06 0.0024	0,08 0.0032	120 (95 - 135) 400 (310 - 445)
M1	E/M/A	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 0.0032	150 (125 - 155) 490 (410 - 510)
M2	E/M/A	0,010 <i>0.010</i>	0,05 0.0022	0,06 0.0024	0,08 <i>0.00</i> 32	145 (120 - 150) 475 (400 - 490)
M3	E/M/A	0,010 <i>0.010</i>	0,05 0.0022	0,06 0.0024	0,08 <i>0.0032</i>	130 (90 - 140) 425 (295 - 460)
S2	E	0,010 <i>0.010</i>	0,05 0.0022	0,06 0.0024	0,08 <i>0.0032</i>	60 (50 - 70) 195 (165 - 230)
S11	Е	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 <i>0.00</i> 32	100 (85 - 105) 320 (280 - 345)
S12	E	0,010 <i>0.010</i>	0,05 0.0022	0,06 <i>0.0024</i>	0,08 <i>0.0032</i>	95 (80 - 100) 310 (260 - 320)
S13	Е	0,010 <i>0.010</i>	0,05 0.0022	0,06 0.0024	0,08 <i>0.0032</i>	90 (75 - 95) 295 <i>(245 - 310)</i>

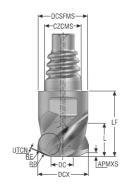
SMG = Seco material group
Coolant = A=air D=dry E=emulsion M=mist spray
v_c= m/min (st/min)
f_z = mm (in/tooth)
a_p = mm/DC (in/DC) = factor
a_e = mm/DC (in/DC) = factor
All cutting data are target values

SECO I

XHF580

High feed – Universal – 4 Flutes – Corner radius – ICC

- Tolerances:
 DCX= h9
 RE= ±0,03 mm
 Regrind possible if DCX is ≥Ø12 mm


Designation	ltem number	Length index		CSP	CZCMS	DCX	DC	DCSFMS	APMXS	L	LF	RE	RP	UTCN	PCEDC	SW	Grades
						mm	mm	mm	mm	mm	mm	mm	mm	mm			SIRA
XHF580E10100D1HZ4A	10137971	1	D		E10	10,0	3,4	9,7	0,7	6,0	12,4	1,5	1,99	0,27	4	8	
XHF580E12120D1HZ4A	10137972	! 1	D		E12	12,0	4,5	11,7	0,8	7,5	14,5	1,5	2,1	0,323	4	10	
XHF580E16160D1HZ4A	10137973	1	D		E16	16,0	6,2	15,5	1,0	10,0	18,7	2,0	2,747	0,426	4	12	

■ Stocked standard.

XHF580

High feed – Universal – 4 Flutes – Corner radius – ICC – Inch

D

- Tolerances:
 DCX= h9
 RE= ±.0012 Inch
 Regrind possible if DCX is ≥Ø.500 Inch

Designation	Item number	Length index	Tool shape	CSP	CZCMS	DCX	DC	DCSFMS	APMXS	ι	LF	RE	RP	UTCN	PCEDC	sw	Grades
						Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch			SIRA
XHF580E10.375D1HZ4A	10137974	1	D		E10	0.375	0.134	0.364	0.024	0.236	0.488	0.060	0.076	0.008	4	8	
XHF580E12.500D1HZ4A	10137975	1	D		E12	0.500	0.197	0.484	0.033	0.315	0.571	0.060	0.086	0.014	4	10	
XHF580E16.625D1HZ4A	10137976	1	D		E16	0.614	0.236	0.610	0.039	0.394	0.736	0.080	0.110	0.016	4	12	

■ Stocked standard.

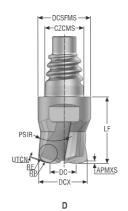
Cutting data - XHF580 Side milling

SMG	A	a _e /DCX	a _p /DCX		f _z		v _c
SIVIG	•			10	12	16	
P1	E/M/A/D	0,30	0,060	0,50	0,60	0,80	485 (440 — 530)
		0.30 0,30	0.060 0,060	0.020 0,50	0.024 0,60	0.032 0,80	1600 (1500 — 1700 475 (430 — 520)
P2	E/M/A/D	0.30	0.060	0.020	0.024	0.032	1550 (1500 — 1700
P3	E/M/A/D	0,30	0,060	0,50	0,60	0,80	405 (370 — 450)
		0.30 0,30	0.060 0,060	0.020 0,50	0.024 0,60	0.032 0,80	1325 (1300 — 1400 360 (320 — 390)
P4	E/M/A/D	0.30	0.060	0.020	0.024	0.032	1175 (1100 — 1200
P5	E/M/A/D	0,34 <i>0.34</i>	0,060 0.060	0,50 0.020	0,60 0.024	0,80 0.032	260 (240 — 290) 850 (790 — 950)
P6	E/M/A/D	0,34	0,060	0,50	0,60	0,80	295 (270 — 320)
F0	E/IVI/A/D	0.34	0.060	0.020	0.024	0.032	970 (890 — 1000)
P7	E/M/A/D	0,34 <i>0.34</i>	0,060 0.060	0,50 0.020	0,60 0.024	0,80 0.032	280 (250 — 300) 920 (830 — 980)
P8	E/M/A/D	0,34	0,060	0,50	0,60	0,80	260 (240 — 290)
10		0.34 0,30	0.060 0,055	0.020 0,40	0.024 0,48	0.032 0,65	850 (790 — 950) 160 (140 — 170)
P11	E/M/A/D	0.30	0.055	0.016	0.019	0.026	520 (460 — 550)
P12	E/M/A/D	0,30	0,055	0,40	0,48	0,65	95 (83 — 100)
		0.30 0,30	0.055 0,055	0.016 0,40	0.019 0,48	0.026 0,65	310 (280 — 320) 185 (170 — 200)
M1	E/M/A	0.30	0.055	0.016	0.019	0.026	610 (560 — 650)
M2	E/M/A	0,30 <i>0.30</i>	0,055 0.055	0,40 0.016	0,48 0.019	0,65 0.026	150 (140 — 160) 490 (460 — 520)
140	E/84/A	0,30	0,055	0,40	0,48	0,65	115 (97 — 130)
M3	E/M/A	0.30	0.055	0.016	0.019	0.026	375 (320 — 420)
M4	E/M/A	0,30 <i>0.30</i>	0,055 0.055	0,40 0.016	0,48 0.019	0,65 0.026	85 (73 — 99) 280 (240 — 320)
M5	E/M/A	0,30	0,055	0,40	0,48	0,65	70 (61 — 82)
IVIJ	LIWIA	0.30	0.055	0.016	0.019	0.026	230 (210 — 260)
K1	E/M/A/D	0,30 <i>0</i> .30	0,060 0.060	0,50 0.020	0,60 0.024	0,80 0.032	475 (430 — 520) 1550 (1500 — 1700
K2	E/M/A/D	0,30	0,060	0,50	0,60	0,80	415 (370 — 450)
		0.30 0,30	0.060 0,060	0.020 0,50	0.024 0,60	0.032 0,80	1350 (1300 — 1400 350 (320 — 380)
K3	E/M/A/D	0.30	0.060	0.020	0.024	0.032	1150 (1100 — 1200
K4	E/M/A/D	0,30 <i>0.30</i>	0,060 0.060	0,50 0.020	0,60 0.024	0,80 0.032	335 (300 — 370) 1100 (990 — 1200
IVE	E INNIA ID	0,30	0,060	0,50	0,60	0,80	200 (180 — 220)
K5	E/M/A/D	0.30	0.060	0.020	0.024	0.032	660 (600 — 720)
K6	E/M/A/D	0,30 <i>0.30</i>	0,060 <i>0.060</i>	0,50 0.020	0,60 0.024	0,80 0.032	295 (270 — 320) 970 (890 — 1000)
K7	E/M/A/D	0,30	0,060	0,50	0,60	0,80	255 (230 — 280)
IXI	LINIAD	0.30 0,30	0.060 0,034	0.020 0,24	0.024 0,28	0.032	840 (760 — 910) 55 (36 — 71)
S1	E	0.30	0.034	0.0095	0.011	0,38 0.015	180 (120 — 230)
S2	E	0,30	0,034	0,24	0,28	0,38	43 (29 — 57)
		0.30 0,30	0.034 0,034	0.0095 0,24	0.011 0,28	0.015 0,38	140 (96 — 180) 37 (25 — 49)
S3	Е	0.30	0.034	0.0095	0.011	0.015	120 (83 — 160)
S11	E	0,30	0,034	0,36	0,42	0,55	170 (150 — 190)
0.10	_	0.30 0,30	0.034 0,034	0.014 0,36	0.017 0,42	0.022 0,55	560 (500 — 620) 130 (120 — 140)
S12	E	0.30	0.034	0.014	0.017	0.022	425 (400 — 450)
S13	E	0,30 <i>0.30</i>	0,034 0.034	0,36 0.014	0,42 0.017	0,55 0.022	100 (89 — 110) 330 (300 — 360)
H5	M/A	0,30	0,060	0,40	0,48	0,65	115 (98 — 130)
ПЭ	IVI/A	0.30	0.060	0.016	0.019	0.026	375 (330 — 420)
H8	M/A	0,30 <i>0.30</i>	0,060 0.060	0,40 0.016	0,48 0.019	0,65 0.026	115 (98 — 130) 375 (330 — 420)
H21	M/A	0,30	0,060	0,40	0,48	0,65	115 (98 — 130)
1121	1711/7	0.30	0.060	0.016	0.019	0.026	375 (330 — 420) 90 (74 — 100)
H31	M/A	0,30 <i>0</i> .30	0,060 0.060	0,40 0.016	0,48 0.019	0,65 0.026	295 (250 — 320)

Cutting data – XHF580 Slot milling

SMG	Ā	a _p /DCX		f _z		V _c
			10	12	16	
P1	E/M/A/D	0,060	0,30	0,36	0,48	440 (400 — 480)
DO		0.060 0,060	0.012 0,30	0.014 0,36	0.019 0,48	1450 (1400 — 1500) 430 (390 — 470)
P2	E/M/A/D	0.060	0.012	0.014	0.019	1400 (1300 — 1500)
P3	E/M/A/D	0,060 0.060	0,30 0.012	0,36 <i>0.014</i>	0,48 <i>0.01</i> 9	370 (330 — 400) 1225 (1100 — 1300)
P4	E/M/A/D	0,060 <i>0.060</i>	0,30	0,36	0,48	325 (290 — 360) 1075 (960 — 1100)
P5	E/M/A/D	0,060	0.012 0,30	0.014 0,36	0.019 0,48	245 (220 — 270)
	L/IVI/A/D	0.060 0,060	0.012 0,30	0.014 0,36	0.019 0,48	800 (730 — 880) 275 (250 — 300)
P6	E/M/A/D	0.060	0.012	0.014	0.019	900 (830 — 980)
P7	E/M/A/D	0,060 <i>0.060</i>	0,30 0.012	0,36 <i>0.014</i>	0,48 0.019	260 (240 — 280) 850 (790 — 910)
P8	E/M/A/D	0,060	0,30	0,36	0,48	245 (220 — 270)
		0.060 0,055	0.012 0,24	0.014 0,28	0.019 0,38	800 (730 — 880) 145 (130 — 160)
P11	E/M/A/D	0.055	0.0095	0.011	0.015	475 (430 — 520)
P12	E/M/A/D	0,055 0.055	0,24 0.0095	0,28 0.011	0,38 <i>0.015</i>	85 (75 — 94) 280 (250 — 300)
M1	E/M/A	0,055	0,24	0,28	0,38	170 (150 — 180)
M2	E/M/A	0.055 0,055	0.0095 0,24	0.011 0,28	0.015 0,38	560 (500 — 590) 135 (120 — 150)
IVIZ	E/W/A	0.055 0,055	0.0095 0,24	0.011 0,28	0.015 0,38	445 (400 — 490) 105 (88 — 110)
M3	E/M/A	0.055	0.0095	0.011	0.015	345 (290 — 360)
M4	E/M/A	0,055 <i>0.055</i>	0,24 0.0095	0,28 <i>0.011</i>	0,38 <i>0.015</i>	80 (66 — 89) 260 (220 — 290)
M5	E/M/A	0,055	0,24	0,28	0,38	65 (55 — 74)
		0.055 0,060	0.0095 0,30	0.011 0,36	0.015 0,48	215 (190 — 240) 430 (390 — 480)
K1	E/M/A/D	0.060	0.012	0.014	0.019	1400 (1300 — 1500)
K2	E/M/A/D	0,060 0.060	0,30 0.012	0,36 <i>0.014</i>	0,48 <i>0.019</i>	375 (340 — 410) 1225 (1200 — 1300)
K3	E/M/A/D	0,060 <i>0.060</i>	0,30 0.012	0,36 0.014	0,48 <i>0.019</i>	315 (290 — 350) 1025 (960 — 1100)
K4	E/M/A/D	0,060	0,30	0,36	0,48	305 (270 — 330)
N4		0.060 0,060	0.012 0,30	0.014 0,36	0.019 0,48	1000 (890 — 1000) 180 (170 — 200)
K5	E/M/A/D	0.060	0.012	0.014	0.019	590 (560 — 650)
K6	E/M/A/D	0,060 0.060	0,30 0.012	0,36 <i>0.014</i>	0,48 0.019	265 (240 — 290) 870 (790 — 950)
K7	E/M/A/D	0,060	0,30	0,36	0,48	230 (210 — 250)
C4		0.060 0,034	0.012 0,18	0.014 0,22	0.019 0,28	750 (690 — 820) 47 (32 — 62)
S1	E	0.034	0.0070	0.0085	0.011	155 (110 — 200)
S2	E	0,034 <i>0.034</i>	0,18 <i>0.0070</i>	0,22 0.0085	0,28 0.011	38 (26 — 50) 125 (86 — 160)
S3	Е	0,034 0.034	0,18 <i>0.0070</i>	0,22 0.0085	0,28 <i>0.011</i>	32 (22 — 43) 105 (73 — 140)
S11	Е	0,034	0,18	0,22	0,28	160 (150 — 180)
		0.034 0,034	0.0070 0,18	0.0085 0,22	0.011 0,28	520 (500 — 590) 125 (110 — 140)
S12	E	0.034	0.0070	0.0085	0.011	410 (370 — 450)
S13	E	0,034 <i>0.034</i>	0,18 <i>0.0070</i>	0,22 0.0085	0,28 0.011	95 (84 — 100) 310 (280 — 320)
H5	M/A	0,060 <i>0.060</i>	0,24 0.0095	0,28 0.011	0,38 <i>0.015</i>	105 (88 — 120) 345 (290 — 390)
H8	M/A	0,060	0,24	0,28	0,38	105 (88 — 120)
		0.060 0,060	0.0095 0,24	0.011 0,28	0.015 0,38	345 (290 — 390) 105 (88 — 120)
H21	M/A	0.060	0.0095	0.011	0.015	345 (290 — 390)
H31	M/A	0,060 <i>0.060</i>	0,24 0.0095	0,28 <i>0.011</i>	0,38 <i>0.015</i>	80 (67 — 91) 260 (220 — 290)
CMC = Co.	co material group	0.500	0.000	V.311	0.010	200 (220 200)

Cutting data - XHF580 Side milling inch


Ā	a _e /DCX	a _p /DCX		f _z		v _c
			3/8	1/2	5/8	
E/M/A/D	0,30	0,060	0,50	0,60	0,80	485 (440 — 53
E/M/A/D	0.30	0.060	0.020	0.024	0.032	1600 (1500 — 1
E/M/A/D						475 (430 — 52
						1550 (1500 — 1 405 (370 — 45
E/M/A/D						1325 (1300 — 1
E/M/A/D	0,30	0,060	0,50	0,60	0,80	360 (320 — 39
E/IVI/A/D	0.30	0.060	0.020	0.024	0.032	1175 (1100 — 1
E/M/A/D						260 (240 — 29
						850 (790 — 98 295 (270 — 32
E/M/A/D	0.34	0.060	0.020	0.024		970 (890 — 10
E/M/A/D	0,34	0,060	0,50	0,60	0,80	280 (250 — 30
ENVIAND		0.060	0.020	0.024	0.032	920 (830 — 98
E/M/A/D						260 (240 — 29
						850 (790 — 93 160 (140 — 17
E/M/A/D		0.055	0.016	0.019	0.026	520 (460 — 58
E/M/A/D	0,30	0,055	0,40	0,48	0,65	95 (83 — 100
LINIAD	0.30		0.016	0.019	0.026	310 (280 — 3
E/M/A						185 (170 — 20 610 (560 — 6
						150 (140 — 16
E/M/A	0.30	0.055	0.016	0.019	0.026	490 (460 — 5
E/M/Δ	0,30	0,055	0,40	0,48	0,65	115 (97 — 13
LINIA						375 (320 — 4)
E/M/A						85 (73 — 99 280 (240 — 32
						70 (61 — 82
E/M/A	0.30	0.055	0.016	0.019	0.026	230 (210 — 26
F/M/A/D	0,30	0,060	0,50	0,60	0,80	475 (430 — 52
LINIII VO						1550 (1500 — 1
E/M/A/D						415 (370 — 45 1350 (1300 — 1
E/AA/A/D						350 (320 — 38
E/M/A/D	0.30	0.060	0.020	0.024	0.032	1150 (1100 — 1
E/M/A/D		0,060	0,50	0,60		335 (300 — 37
						1100 (990 — 12 200 (180 — 22
E/M/A/D						660 (600 — 7)
E/M/A/D	0,30	0,060	0,50	0,60	0,80	295 (270 — 32
E/INI/A/D	0.30	0.060	0.020	0.024	0.032	970 (890 — 10
E/M/A/D						255 (230 — 28
						840 (760 — 9° 55 (36 — 71
Е				0.011		180 (120 — 2
E	0,30	0,034	0,24	0,28	0,38	43 (29 — 57
L		0.034	0.0095	0.011	0.015	140 (96 — 18
Е						37 (25 — 49 120 (83 — 16
						170 (150 — 19
E	0.30	0.034	0.014	0.017	0.022	560 (500 — 62
F	0,30	0,034	0,36	0,42	0,55	130 (120 — 14
				0.017	0.022	425 (400 — 45
E						100 (89 — 11 330 (300 — 36
8.470	0,30	0,060	0,40	0,48	0,65	115 (98 — 13
M/A	0.30	0.060	0.016	0.019	0.026	375 (330 — 42
M/A	0,30	0,060	0,40	0,48	0,65	115 (98 — 13
	0.30	0.060	0.016	0.019	0.026	375 (330 — 42
M/A	0,30 0.30	0,060 0.060	0,40 0.016	0,48 0.019	0,65 0.026	115 (98 — 13 375 (330 — 42
		0,060	0,40	0,48	0,65	90 (74 — 100
M/A	0,30			0.019		295 (250 — 32
	E/M/A/D E/M/A/D E/M/A/D E/M/A/D E/M/A/D E/M/A/D E/M/A/D E/M/A E/M/A E/M/A E/M/A E/M/A E/M/A E/M/A E/M/A/D E/M/A/D	E/M/A/D E/M/A/D 0.30 E/M/A/D 0.30 E/M/A/D 0.30 E/M/A/D 0.30 E/M/A/D 0.34 E/M/A/D 0.30 E/M/A/D 0.30 E/M/A 0.30 E/M/A/D 0.30 E/M/A 0.30 E/M/A 0.30 D/M/A 0.30 D/M/A 0.30 D/M/A 0.30 D/M/A 0.30	E/MIA/D E/M	EMIAID 0.30 0.060 0.020 EMIAID 0.31 0.060 0.020 EMIAID 0.34 0.060 0.020 EMIAID 0.30 0.055 0.40 0.30 0.055 0.40 0.30 0.055 0.40 0.30 0.055 0.40 0.30 0.055 0.40 0.30 0.055 0.40 0.30 0.055 0.40 0.30 0.055 0.40 0.30 0.055 0.40 0.30 0.055 0.016 EMIA 0.30 0.055 0.016 EMIAID 0.30 0.050 0.000 EMIAID 0.30 0.000 0.000 EMIAID 0.30 0.000 0.000 EMIAID 0.30 0.000 0.000 0.000 EMIAID 0.30 0.000 0.000 EMIAID 0.30 0.000 0.000 0.000 EMIAID 0.30 0.000 0.000 0.000 EMIAID 0.30 0.000 0.000 0.000 0.000 EMIAID 0.30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000	E-IMIAD 0.30 0.060 0.020 0.024 E-IMIAD 0.30 0.060 0.060 0.020 0.020 0.024 E-IMIAD 0.30 0.060 0.060 0.020 0.022 0.024 E-IMIAD 0.30 0.060 0.060 0.020 0.022 0.024 E-IMIAD 0.30 0.060 0.060 0.020 0.024 E-IMIAD 0.34 0.060 0	EMIA-D 0.30 0.80 0.80 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000

Cutting data - XHF580 Slot milling inch

MG		a _p /DCX		f _z		V _c
			3/8	1/2	5/8	
21	E/M/A/D	0,060	0,30	0,36	0,48	440 (400 —
'	ENVIRAD	0.060	0.012	0.014	0.019	1450 (1400 –
2	E/M/A/D	0,060	0,30	0,36	0,48	430 (390 –
		0.060 0,060	0.012 0,30	0.014 0,36	0.019 0,48	1400 (1300 – 370 (330 –
23	E/M/A/D	0.060	0.012	0.014	0.019	1225 (1100 -
24	E/M/A/D	0,060	0,30	0,36	0,48	325 (290 —
-4	E/W/A/U	0.060	0.012	0.014	0.019	1075 (960 –
25	E/M/A/D	0,060	0,30	0,36	0,48	245 (220 –
		0.060 0,060	0.012 0,30	0.014 0,36	0.019 0,48	800 (730 – 275 (250 –
P6	E/M/A/D	0.060	0.012	0.014	0.019	900 (830 –
97	E/M/A/D	0,060	0,30	0,36	0,48	260 (240 –
-1	E/WI/A/D	0.060	0.012	0.014	0.019	850 (790 –
28	E/M/A/D	0,060	0,30	0,36	0,48	245 (220 —
		0.060	0.012	0.014	0.019	800 (730 – 145 (130 –
111	E/M/A/D	0,055 <i>0.055</i>	0,24 0.0095	0,28 <i>0.011</i>	0,38 0.015	475 (430 –
112	E/M/A/D	0,055	0,24	0,28	0,38	85 (75 —
12	E/M/A/D	0.055	0.0095	0.011	0.015	280 (250 —
Л1	E/M/A	0,055	0,24	0,28	0,38	170 (150 –
		0.055	0.0095	0.011	0.015	560 (500 –
/12	E/M/A	0,055 0.055	0,24 <i>0.00</i> 95	0,28 <i>0.011</i>	0,38 0.015	135 (120 – 445 (400 –
40	E/14/4	0,055	0,24	0,28	0,38	105 (88 —
//3	E/M/A	0.055	0.0095	0.011	0.015	345 (290 –
Л4	E/M/A	0,055	0,24	0,28	0,38	80 (66 —
""	L/14/// (0.055	0.0095	0.011	0.015	260 (220 –
<i>1</i> 5	E/M/A	0,055 0.055	0,24 0.0095	0,28 <i>0.011</i>	0,38 0.015	65 (55 — 215 (190 —
		0,060	0,30	0,36	0,48	430 (390 –
< 1	E/M/A/D	0.060	0.012	0.014	0.019	1400 (1300 -
< 2	E/M/A/D	0,060	0,30	0,36	0,48	375 (340 —
	2,111,7 (12)	0.060	0.012	0.014	0.019	1225 (1200 -
< 3	E/M/A/D	0,060 <i>0.060</i>	0,30 0.012	0,36 <i>0.014</i>	0,48 0.019	315 (290 – 1025 (960 –
	= 0.444.75	0,060	0,30	0,36	0,48	305 (270 –
< 4	E/M/A/D	0.060	0.012	0.014	0.019	1000 (890 –
< 5	E/M/A/D	0,060	0,30	0,36	0,48	180 (170 —
(0	2/14/// 0.5	0.060	0.012	0.014	0.019	590 (560 –
< 6	E/M/A/D	0,060 <i>0.060</i>	0,30 0.012	0,36 <i>0.014</i>	0,48 0.019	265 (240 – 870 (790 –
		0,060	0.072	0.074	0,48	870 (790 – 230 (210 –
< 7	E/M/A/D	0.060	0.012	0.014	0.019	750 (690 –
31	Е	0,034	0,18	0,22	0,28	47 (32 —
,	_	0.034	0.0070	0.0085	0.011	155 (110 —
52	Е	0,034 0.034	0,18 0.0070	0,22 0.0085	0,28 0.011	38 (26 — 125 (86 —
	_	0,034	0,0070	0,0005	0,28	32 (22 —
53	E	0.034	0.0070	0.0085	0.011	105 (73 —
:11	E	0,034	0,18	0,22	0,28	160 (150 —
	L	0.034	0.0070	0.0085	0.011	520 (500 –
12	Е	0,034	0,18	0,22	0,28	125 (110 –
		0.034 0,034	0.0070 0,18	0.0085 0,22	0.011 0,28	410 (370 – 95 (84 –
13	Е	0.034	0.0070	0.0085	0.011	310 (280 –
15	M/A	0,060	0,24	0,28	0,38	105 (88 —
H5	IVI/A	0.060	0.0095	0.011	0.015	345 (290 –
- 18	M/A	0,060	0,24	0,28	0,38	105 (88 —
		0.060 0,060	0.0095 0,24	0.011 0,28	0.015 0,38	345 (290 – 105 (88 –
121	M/A	0.060	0.0095	0,28 0.011	0,38	345 (290 –
124	NA/A	0,060	0,24	0,28	0,38	80 (67 —
131	M/A	0.060	0.0095	0.011	0.015	260 (220 –

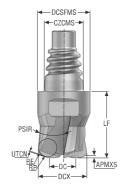
XHF780

High feed - ISO- M and ISO- S - 3 Flutes - Corner radius

- Tolerances:
 DCX=-0,02/-0,04 mm
 RE= ±0,05 mm
 Regrind possible if DCX is ≥Ø12 mm

Designation	Item number	Length index	Tool shape	CZCMS	DCX	DC	DCSFMS		LF	RE	RP	UTCN	PSIR°	PCEDC	sw	Grades
					mm	mm	mm	mm	mm	mm	mm	mm				HXT
XHF780E10100D1HZ3	10137957	1	D	E10	10,0	5,0	9,7	0,45	12,3	0,8	1,175	0,232	-5,0	3	8	
XHF780E12120D1HZ3	10137958	1	D	E12	12,0	6,0	11,7	0,5	14,4	1,0	1,416	0,262	-5,0	3	10	
XHF780E16160D1HZ3	10137959	1	D	E16	16,0	8,0	15,5	0,6	18,6	1,5	1,989	0,32	-5,0	3	12	

■ Stocked standard.


SECO I

XHF780

High feed – ISO- M and ISO- S - 3 Flutes – Corner radius – Inch

D

- Tolerances:
 DCX= -.0008/-0.0016 Inch
 RE= ±.002 Inch
 Regrind possible if DCX is ≥Ø.500 Inch

Designation	Item number	Length index	Tool shape	CZCMS	DCX	DC	DCSFMS	APMXS	LF	RE	RP	UTCN	PSIR°	PCEDC	sw	Grades
					Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch				X
XHF780E10.375D1HZ3	10137960	1	D	E10	0.375	0.188	0.364	0.018	0.484	0.028	0.043	0.009	-5,0	3	8	•
XHF780E12.500D1HZ3	10137961	1	D	E12	0.461	0.250	0.484	0.020	0.567	0.045	0.061	0.010	-5,0	3	10	
XHF780E16.625D1HZ3	10137962	1	D	E16	0.625	0.313	0.610	0.024	0.732	0.061	0.080	0.012	-5,0	3	12	

■ Stocked standard.

Cutting data - XHF780 Side milling

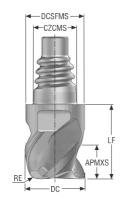
SMG	Ā	a _e /DCX	a _p /DCX		f _z		v _c
O.III O				10	12	16	
P1	E/M/A/D	0,30 <i>0.30</i>	0,040 <i>0.040</i>	0,50 <i>0.020</i>	0,60 0.024	0,80 <i>0.032</i>	370 (330 — 410) 1225 (1100 — 1300)
P2	E/M/A/D	0,30 0.30	0,040 0.040	0,50 0.020	0,60 0.024	0,80 <i>0.032</i>	360 (320 — 390) 1175 (1100 — 1200)
P3	E/M/A/D	0,30 0.30	0,040 0.040	0,50 0.020	0,60 0.024	0,80 0.032	310 (280 — 340) 1025 (920 — 1100)
P4	E/M/A/D	0,30 <i>0.30</i>	0,040 <i>0.040</i>	0,50 <i>0.020</i>	0,60 0.024	0,80 <i>0.0</i> 32	270 (250 — 300) 890 (830 — 980)
P5	E/M/A/D	0,30 0.30	0,040 0.040	0,50 0.020	0,60 0.024	0,80 0.032	270 (250 — 300) 890 (830 — 980)
P6	E/M/A/D	0,30 0.30	0,040 0.040	0,50 0.020	0,60 0.024	0,80 0.032	305 (280 — 330) 1000 (920 — 1000)
P7	E/M/A/D	0,30 0.30	0,040 <i>0.040</i>	0,50 0.020	0,60 0.024	0,80 0.032	290 (260 — 320) 950 (860 — 1000)
P8	E/M/A/D	0,30 0.30	0,040 0.040	0,50 0.020	0,60 0.024	0,80 0.032	270 (250 — 300) 890 (830 — 980)
P11	E/M/A/D	0,30 0.30	0,036 <i>0.0</i> 36	0,40 0.016	0,48 0.019	0,65 0.026	160 (150 — 170) 520 (500 — 550)
P12	E/M/A/D	0,30 0.30	0,036 0.036	0,40 0.016	0,48 0.019	0,65 0.026	95 (83 — 100) 310 (280 — 320)
M1	E/M/A	0,30 0.30	0,036 <i>0.0</i> 36	0,40 0.016	0,48 0.019	0,65 0.026	190 (170 — 210) 620 (560 — 680)
M2	E/M/A	0,30 0.30	0,036 0.036	0,40 0.016	0,48 0.019	0,65 0.026	150 (140 — 160) 490 (460 — 520)
M3	E/M/A	0,30 0.30	0,036 0.036	0,40 0.016	0,48 0.019	0,65 0.026	115 (97 — 130) 375 (320 — 420)
M4	E/M/A	0,30 0.30	0,036 0.036	0,40 0.016	0,48 0.019	0,65 0.026	85 (73 — 100) 280 (240 — 320)
M5	E/M/A	0,30 0.30	0,036 0.036	0,40 0.016	0,48 0.019	0,65 0.026	70 (61 — 83) 230 (210 — 270)
S1	E	0,30 0.30	0,022 0.022	0,24 0.0095	0,28 0.011	0,38 <i>0.015</i>	55 (36 — 71) 180 (120 — 230)
S2	Е	0,30 0.30	0,022 0.022	0,24 0.0095	0,28 0.011	0,38 0.015	43 (29 — 57) 140 (96 — 180)
S3	Е	0,30 0.30	0,022 0.022	0,24 0.0095	0,28 0.011	0,38 0.015	37 (25 — 49) 120 (83 — 160)
S11	E	0,30 0.30	0,022 0.022	0,36 <i>0.014</i>	0,42 0.017	0,55 0.022	175 (160 — 190) 570 (530 — 620)
S12	Е	0,30 0.30	0,022 0.022	0,36 0.014	0,42 0.017	0,55 0.022	135 (120 — 150) 445 (400 — 490)
S13	E	0,30 0.30	0,022 0.022	0,36 <i>0.014</i>	0,42 0.017	0,55 0.022	105 (90 — 110) 345 (300 — 360)
H5	M/A	0,30 0.30	0,040 <i>0.040</i>	0,40 0.016	0,48 0.019	0,65 0.026	115 (99 — 130) 375 (330 — 420)
Н8	M/A	0,30 0.30	0,040 <i>0.040</i>	0,40 0.016	0,48 0.019	0,65 0.026	115 (99 — 130) 375 (330 — 420)
H11	M/A	0,30 0.30	0,040 0.040	0,40 0.016	0,48 0.019	0,65 <i>0.026</i>	150 (130 — 170) 490 (430 — 550)
H21	M/A	0,30 0.30	0,040 0.040	0,40 0.016	0,48 0.019	0,65 0.026	115 (99 — 130) 375 (330 — 420)
H31	M/A	0,30 <i>0.30</i>	0,040 <i>0.040</i>	0,40 0.016	0,48 0.019	0,65 0.026	90 (75 — 100) 295 (250 — 320)

Cutting data – XHF780 Slot milling

325 (290 — 350) 1075 (960 — 1100) 315 (290 — 350) 1025 (960 — 1100) 270 (250 — 300) 890 (830 — 980) 240 (220 — 260) 790 (730 — 850) 240 (220 — 260) 790 (730 — 850) 270 (240 — 290) 890 (790 — 950) 255 (230 — 280)
1075 (960 — 1100) 315 (290 — 350) 1025 (960 — 1100) 270 (250 — 300) 890 (830 — 980) 240 (220 — 260) 790 (730 — 850) 240 (220 — 260) 790 (730 — 850) 270 (240 — 290) 890 (790 — 950) 255 (230 — 280)
1025 (960 — 1100) 270 (250 — 300) 890 (830 — 980) 240 (220 — 260) 790 (730 — 850) 240 (220 — 260) 790 (730 — 850) 270 (240 — 290) 890 (790 — 950) 255 (230 — 280)
270 (250 — 300) 890 (830 — 980) 240 (220 — 260) 790 (730 — 850) 240 (220 — 260) 790 (730 — 850) 270 (240 — 290) 890 (790 — 950) 255 (230 — 280)
240 (220 — 260) 790 (730 — 850) 240 (220 — 260) 790 (730 — 850) 270 (240 — 290) 880 (790 — 950) 255 (230 — 280)
790 (730 — 850) 270 (240 — 290) 890 (790 — 950) 255 (230 — 280)
890 (790 — 950) 255 (230 — 280)
840 (760 — 910)
240 (220 — 260) 790 (730 — 850)
140 (130 — 150) 460 (430 — 490)
80 (73 — 92) 260 (240 — 300)
165 (150 — 180) 540 (500 — 590)
130 (120 — 140) 425 (400 — 450)
100 (85 — 110) 330 (280 — 360)
75 (64 — 87) 245 (210 — 280)
65 (53 — 72) 215 (180 — 230)
45 (31 — 60) 150 (110 — 190)
36 (25 — 48) 120 (83 — 150)
31 (21 — 41) 100 (69 — 130)
155 (140 — 170) 510 (460 — 550)
120 (110 — 130) 395 (370 — 420)
95 (82 — 100) 310 (270 — 320)
100 (86 — 110) 330 (290 — 360)
100 (86 — 110) 330 (290 — 360)
130 (110 — 140) 425 (370 — 450)
100 (86 — 110) 330 (290 — 360)
75 (65 — 88) 245 (220 — 280)

Cutting data - XHF780 Side milling inch

SMG	Ā	a _e /DCX	a _p /DCX		f _z		V _c
33				3/8	1/2	5/8	
P1	E/M/A/D	0,30 0.30	0,040 0.040	0,50 0.020	0,60 0.024	0,80 <i>0.0</i> 32	370 (330 — 410) 1225 (1100 — 1300)
P2	E/M/A/D	0,30 0.30	0,040 <i>0.040</i>	0,50 <i>0.020</i>	0,60 <i>0.024</i>	0,80 <i>0.032</i>	360 (320 — 390) 1175 (1100 — 1200)
P3	E/M/A/D	0,30 0.30	0,040 <i>0.040</i>	0,50 <i>0.020</i>	0,60 0.024	0,80 <i>0.0</i> 32	310 (280 — 340) 1025 (920 — 1100)
P4	E/M/A/D	0,30 0.30	0,040 <i>0.040</i>	0,50 <i>0.020</i>	0,60 0.024	0,80 <i>0.0</i> 32	270 (250 — 300) 890 (830 — 980)
P5	E/M/A/D	0,30 0.30	0,040 0.040	0,50 <i>0.020</i>	0,60 0.024	0,80 0.032	270 (250 — 300) 890 (830 — 980)
P6	E/M/A/D	0,30 0.30	0,040 0.040	0,50 <i>0.020</i>	0,60 0.024	0,80 0.032	305 (280 — 330) 1000 (920 — 1000)
P7	E/M/A/D	0,30 0.30	0,040 <i>0.040</i>	0,50 0.020	0,60 0.024	0,80 0.032	290 (260 — 320) 950 (860 — 1000)
P8	E/M/A/D	0,30 0.30	0,040 0.040	0,50 0.020	0,60 0.024	0,80 0.032	270 (250 — 300) 890 (830 — 980)
P11	E/M/A/D	0,30 0.30	0,036 0.036	0,40 0.016	0,48 0.019	0,65 0.026	160 (150 — 170) 520 (500 — 550)
P12	E/M/A/D	0,30 0.30	0,036 0.036	0,40 <i>0.016</i>	0,48 0.019	0,65 0.026	95 (83 — 100) 310 (280 — 320)
M1	E/M/A	0,30 0.30	0,036 0.036	0,40 0.016	0,48 0.019	0,65 0.026	190 (170 — 210) 620 (560 — 680)
M2	E/M/A	0,30 0.30	0,036 0.036	0,40 <i>0.016</i>	0,48 0.019	0,65 0.026	150 (140 — 160) 490 (460 — 520)
M3	E/M/A	0,30 0.30	0,036 0.036	0,40 <i>0.016</i>	0,48 0.019	0,65 0.026	115 (97 — 130) 375 (320 — 420)
M4	E/M/A	0,30 0.30	0,036 0.036	0,40 0.016	0,48 0.019	0,65 0.026	85 (73 — 100) 280 (240 — 320)
M5	E/M/A	0,30 0.30	0,036 0.036	0,40 0.016	0,48 0.019	0,65 0.026	70 (61 — 83) 230 (210 — 270)
S1	Е	0,30 0.30	0,022 0.022	0,24 0.0095	0,28 0.011	0,38 <i>0.015</i>	55 (36 — 71) 180 (120 — 230)
S2	E	0,30 0.30	0,022 0.022	0,24 0.0095	0,28 0.011	0,38 <i>0.015</i>	43 (29 — 57) 140 (96 — 180)
S3	Е	0,30 0.30	0,022 0.022	0,24 0.0095	0,28 0.011	0,38 <i>0.015</i>	37 (25 — 49) 120 (83 — 160)
S11	E	0,30 0.30	0,022 0.022	0,36 <i>0.014</i>	0,42 0.017	0,55 0.022	175 (160 — 190) 570 (530 — 620)
S12	Е	0,30 0.30	0,022 0.022	0,36 0.014	0,42 0.017	0,55 0.022	135 (120 — 150) 445 (400 — 490)
S13	E	0,30 0.30	0,022 0.022	0,36 0.014	0,42 0.017	0,55 0.022	105 (90 — 110) 345 (300 — 360)
H5	M/A	0,30 0.30	0,040 0.040	0,40 0.016	0,48 0.019	0,65 0.026	115 (99 — 130) 375 (330 — 420)
H8	M/A	0,30 0.30	0,040 0.040	0,40 0.016	0,48 0.019	0,65 0.026	115 (99 — 130) 375 (330 — 420)
H11	M/A	0,30 0.30	0,040 0.040	0,40 0.016	0,48 0.019	0,65 <i>0.026</i>	150 (130 — 170) 490 (430 — 550)
H21	M/A	0,30 0.30	0,040 <i>0.040</i>	0,40 <i>0.016</i>	0,48 0.019	0,65 <i>0.026</i>	115 (99 — 130) 375 (330 — 420)
H31	M/A	0,30 0.30	0,040 0.040	0,40 <i>0.016</i>	0,48 0.019	0,65 0.026	90 (75 — 100) 295 (250 — 320)


Cutting data - XHF780 Slot milling inch

SMG	- A	a _p /DCX		f _z		v _c
			3/8	1/2	5/8	
P1	E/M/A/D	0,040	0,30	0,36	0,48	325 (290 — 350)
		0.040 0,040	0.012 0,30	0.014 0,36	0.019 0,48	1075 (960 — 1100) 315 (290 — 350)
P2	E/M/A/D	0.040	0.012	0.014	0.019	1025 (960 — 1100)
P3	E/M/A/D	0,040	0,30	0,36	0,48	270 (250 — 300)
		0.040 0,040	0.012 0,30	0.014 0,36	0.019 0,48	890 (830 — 980) 240 (220 — 260)
P4	E/M/A/D	0.040	0.012	0.014	0.019	790 (730 — 850)
P5	E/M/A/D	0,040	0,30	0,36	0,48	240 (220 — 260)
	2/11// (2	0.040 0,040	0.012 0,30	0.014 0,36	0.019 0,48	790 (730 — 850) 270 (240 — 290)
P6	E/M/A/D	0.040	0.012	0.014	0.019	890 (790 — 950)
P7	E/M/A/D	0,040	0,30	0,36	0,48	255 (230 — 280)
	2/11/7/10	0.040	0.012 0,30	0.014 0,36	0.019	840 (760 — 910) 240 (220 — 260)
P8	E/M/A/D	0,040 <i>0.040</i>	0,30	0.014	0,48 0.019	240 (220 — 260) 790 (730 — 850)
P11	E/M/A/D	0,036	0,24	0,28	0,38	140 (130 — 150)
1 11	L/W//A/D	0.036	0.0095	0.011	0.015	460 (430 — 490)
P12	E/M/A/D	0,036 0.036	0,24 0.0095	0,28 0.011	0,38 <i>0.015</i>	80 (73 — 92) 260 (240 — 300)
M1	E/M/A	0,036	0,24	0,28	0,38	165 (150 — 180)
IVII	L/IVI/A	0.036	0.0095	0.011	0.015	540 (500 — 590)
M2	E/M/A	0,036 0.036	0,24 0.0095	0,28 <i>0.011</i>	0,38 <i>0.015</i>	130 (120 — 140) 425 (400 — 450)
M3	E/M/A	0,036	0,24	0,28	0,38	100 (85 — 110)
IVIS	E/W/A	0.036	0.0095	0.011	0.015	330 (280 — 360)
M4	E/M/A	0,036 0.036	0,24 0.0095	0,28 <i>0.011</i>	0,38 <i>0.015</i>	75 (64 — 87) 245 (210 — 280)
M5	E/M/A	0,036	0,24	0,28	0,38	65 (53 — 72)
IVIO	L/W/A	0.036	0.0095	0.011	0.015	215 (180 — 230)
S1	Е	0,022 0.022	0,18 0.0070	0,22 0.0085	0,28 0.011	45 (31 — 60) 150 (110 — 190)
S2	Е	0,022	0,18	0,22	0,28	36 (25 — 48)
OZ.	-	0.022	0.0070	0.0085	0.011	120 (83 — 150)
S3	Е	0,022 0.022	0,18 <i>0.0070</i>	0,22 0.0085	0,28 0.011	31 (21 — 41) 100 (69 — 130)
S11	Е	0,022	0,18	0,22	0,28	155 (140 — 170)
311	-	0.022	0.0070	0.0085	0.011	510 (460 — 550)
S12	Е	0,022 0.022	0,18 <i>0.0070</i>	0,22 0.0085	0,28 <i>0.011</i>	120 (110 — 130) 395 (370 — 420)
S13	Е	0,022	0,18	0,22	0,28	95 (82 — 100)
010	-	0.022	0.0070	0.0085	0.011	310 (270 — 320)
H5	M/A	0,040 <i>0.040</i>	0,24 0.0095	0,28 0.011	0,38 <i>0.015</i>	100 (86 — 110) 330 (290 — 360)
Н8	M/A	0,040	0,24	0,28	0,38	100 (86 — 110)
110	IVI/A	0.040	0.0095	0.011	0.015	330 (290 — 360)
H11	M/A	0,040 <i>0.040</i>	0,24 0.0095	0,28 <i>0.011</i>	0,38 <i>0.015</i>	130 (110 — 140) 425 (370 — 450)
H21	M/A	0,040	0,24	0,28	0,38	100 (86 — 110)
ПДТ	IVI/A	0.040	0.0095	0.011	0.015	330 (290 — 360)
H31	M/A	0,040 0.040	0,24 0.0095	0,28 <i>0.011</i>	0,38 <i>0.015</i>	75 (65 — 88) 245 (220 — 280)
0140	oo motorial group	0.040	0.0030	0.011	0.010	270 (220 — 200)

SMG = Seco material group
Coolant = A=air D=dry E=emulsion M=mist spray
v_c= m/min (st/min)
f_z = mm (in/tooth)
a_p = mm/DC (in/DC) = factor
a_e = mm/DC (in/DC) = factor
All cutting data are target values

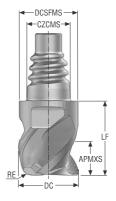
XVE540

General purpose – Universal – Square – 3 Flutes – Corner radius

D

- Tolerances:
 DC= h9
 RE= ±0,015 mm
 Regrind possible if DC is ≥Ø12 mm

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
					mm	mm	mm	mm	mm			SIRA
XVE540E10100D1R050Z3	10137981	1	D	E10	10,0	9,7	5,5	12,4	0,5	3	8	
XVE540E12120D1R050Z3	10137982	1	D	E12	12,0	11,7	6,5	14,5	0,5	3	10	
XVE540E16160D1R050Z3	10137983	1	D	E16	16,0	15,5	8,5	18,7	0,5	3	12	
XVE540E20200D1R050Z3	10137984	1	D	E20	20,0	19,3	11,0	21,3	0,5	3	16	•


Stocked standard.

SECO I

XVE540

General purpose – Universal – Square – 3 Flutes – Corner radius – *Inch*

D

- Tolerances:
 DC= h9
 RE= .015 Inch= ±.0006 Inch
 RE= .031 Inch= ±.0012 Inch
 Regrind possible if DC is ≥Ø.500 Inch

Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
					Inch	Inch	Inch	Inch	Inch			SIRA
XVE540E10.375D1R015Z3	10137985	1	D	E10	0.375	0.364	0.209	0.488	0.015	3	8	
XVE540E12.500D1R015Z3	10137986	1	D	E12	0.500	0.484	0.276	0.575	0.015	3	10	•
XVE540E16.625D1R015Z3	10137987	1	D	E16	0.625	0.610	0.335	0.736	0.015	3	12	
XVE540E20.750D1R031Z3	10137988	1	D	E20	0.750	0.728	0.413	0.839	0.031	3	16	

Stocked standard.

Cutting data – XVE540 – Side milling PCEDC 3

SMG	Ā	a _e /DC	a _p /DC		f	: z		v _c
SINIO				10	12	16	20	
P1	E/M/A/D	0,50	0,50	0,055	0,065	0,080	0,090	185 (150 — 210)
		0.50 0,50	0.50 0,50	0.0022 0,055	0.0026 0,065	0.0032 0,080	0.0036 0,090	610 (500 — 680) 180 (150 — 200)
P2	E/M/A/D	0.50	0.50	0.0022	0.0026	0.0032	0.0036	590 (500 — 650)
P3	E/M/A/D	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 0.0034	155 (130 — 180) 510 (430 — 590)
P4	E/M/A/D	0,50	0,50	0,050	0,060	0,075	0,085	140 (120 — 160)
17	L/W///V/D	0.50 0,50	0.50 0,50	0.0020 0,050	0.0024 0,060	0.0030 0,075	0.0034 0,085	460 (400 — 520) 110 (89 — 130)
P5	E/M/A/D	0.50	0.50	0.0020	0.0024	0.0030	0.0034	360 (300 — 420)
P6	E/M/A/D	0,50 0.50	0,50 <i>0.50</i>	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 <i>0.0034</i>	125 (100 — 140) 410 (330 — 450)
P7	E/M/A/D	0,50	0,50	0,050	0,060	0,075	0,085	115 (94 — 140)
Γ/	ENVIPO	0.50	0.50	0.0020	0.0024	0.0030	0.0034	375 (310 — 450)
P8	E/M/A/D	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,090 0.0036	110 (89 — 130) 360 (300 — 420)
P11	E/M/A/D	0,50	0,50	0,050	0,060	0,075	0,085	95 (70 — 110)
D40	E/AVA/D	0.50 0,50	0.50 0,50	0.0020 0,034	0.0024 0,040	0.0030 0,050	0.0034 0,060	310 (230 — 360) 60 (45 — 73)
P12	E/M/A/D	0.50	0.50	0.0013	0.0016	0.0020	0.0024	195 (150 — 230)
M1	E/M/A	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,055 0.0022	0,065 <i>0.0026</i>	0,080 0.0032	0,095 0.0038	105 (81 — 130) 345 (270 — 420)
M2	E/M/A	0,50	0,50	0,050	0,060	0,075	0,085	90 (67 — 110)
		0.50 0,50	0.50 0,50	0.0020 0,050	0.0024 0,060	0.0030 0,075	0.0034 0,085	295 (220 — 360) 75 (56 — 99)
M3	E/M/A	0.50	0.50	0.0020	0.0024	0.0030	0.0034	245 (190 — 320)
M4	E/M/A	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,044 0.0017	0,050 <i>0.0020</i>	0,065 0.0026	0,075 0.0030	60 (43 — 76) 195 (150 — 240)
M5	E/M/A	0,50	0,50	0,044	0,050	0,065	0,075	50 (36 — 63)
		0.50 0,50	0.50 0,50	0.0017 0,050	0.0020 0,060	0.0026 0,075	0.0030 0,085	165 (120 — 200) 140 (120 — 160)
K1	E/M/A/D	0.50	0.50	0.0020	0.0024	0.0030	0.0034	460 (400 — 520)
K2	E/M/A/D	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,046 0.0018	0,055 0.0022	0,065 0.0026	0,075 0.0030	120 (110 — 140) 395 (370 — 450)
K3	E/M/A/D	0,50	0,50	0,046	0,055	0,065	0,075	105 (87 — 110)
		0.50 0,50	0.50 0,50	0.0018 0,050	0.0022 0,060	0.0026 0,075	0.0030 0,085	345 (290 — 360) 110 (89 — 130)
K4	E/M/A/D	0.50	0.50	0.0020	0.0024	0.0030	0.0034	360 (300 — 420)
K5	E/M/A/D	0,50 0.50	0,50 <i>0.50</i>	0,046 0.0018	0,055 0.0022	0,065 0.0026	0,075 0.0030	65 (54 — 80) 215 (180 — 260)
K6	E/M/A/D	0,50	0,50	0,050	0,060	0,075	0,085	95 (78 — 110)
		0.50 0,50	0.50 0,50	0.0020 0,046	0.0024 0,055	0.0030 0,065	0.0034 0,075	310 (260 — 360) 85 (69 — 100)
K7	E/M/A/D	0.50	0.50	0.0018	0.0022	0.0026	0.0030	280 (230 — 320)
N1	E/M/A	0,40 <i>0.40</i>	0,50 <i>0.50</i>	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	610 (510 — 710) 2000 (1700 — 2300)
N2	E/M/A	0,40	0,50	0,080	0,095	0,12	0,14	395 (330 — 450)
		0.40 0,40	0.50 0,50	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	1300 (1100 — 1400) 260 (220 — 300)
N3	E/M/A	0.40	0.50	0.0032	0.0038	0.0048	0.0055	850 (730 — 980)
N11	E/M/A	0,50 0.50	0,50 <i>0.30</i>	0,070 0.0028	0,080 <i>0.00</i> 32	0,11 <i>0.0044</i>	0,13 <i>0.0055</i>	300 (250 — 340) 1025 (860 — 1100)
S1	Е	0,50	0,50	0,055	0,065	0,080	0,090	39 (32 — 46)
		0.50 0,50	0.50 0,50	0.0022 0,055	0.0026 0,065	0.0032 0,080	0.0036 0,090	130 (110 — 150) 31 (26 — 37)
S2	Е	0.50	0.50	0.0022	0.0026	0.0032	0.0036	100 (86 — 120)
S3	Е	0,50 0.50	0,50 <i>0.50</i>	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 0.0034	28 (23 — 33) 90 (76 — 100)
S11	Е	0,50	0,50	0,050	0,060	0,075	0,085	115 (87 — 140)
		0.50 0,50	0.50 0,50	0.0020 0,050	0.0024 0,060	0.0030 0,075	0.0034 0,085	375 (290 — 450) 90 (67 — 110)
S12	Е	0.50	0.50	0.0020	0.0024	0.0030	0.0034	295 (220 — 360)
S13	E	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,044 0.0017	0,050 <i>0.0020</i>	0,065 0.0026	0,075 0.0030	70 (53 — 87) 230 (180 — 280)
TS1	A/D	0,40	0,50	0,080	0,095	0,12	0,14	255 (160 — 350)
		0.40 0,40	0.50 0,50	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	840 (530 — 1100) 255 (160 — 350)
TP1	A/D	0.40	0.50	0.0032	0.0038	0.0048	0.0055	840 (530 — 1100)
GR1	A/D	0,40 0.40	0,50 <i>0.50</i>	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	610 (510 — 710) 2000 (1700 — 2300)
		0.70	0.00	0.0002	0.0000	0.0070	0.0000	2000 (1700 — 2000)

Cutting data – XVE540 – Slot milling PCEDC 3

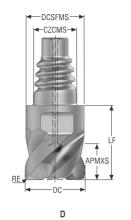
SMG	Ā	a _p /DC			f _z		v _c
SIVIG			10	12	16	20	
P1	E/M/A/D	0,50	0,034	0,042	0,055	0,070	170 (140 — 190)
		0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	560 (460 — 620) 165 (140 — 190)
P2	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	540 (460 — 620)
P3	E/M/A/D	0,50 0.50	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	140 (120 — 160) 460 (400 — 520)
P4	E/M/A/D	0,50	0,034	0,042	0,055	0,070	125 (100 — 140)
		0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	410 (330 — 450) 100 (81 — 120)
P5	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	330 (270 — 390)
P6	E/M/A/D	0,50 0.50	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 <i>0.0028</i>	110 (90 — 130) 360 (300 — 420)
P7	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	105 (85 — 120) 345 (280 — 390)
P8	E/M/A/D	0,50	0,034	0,042	0,055	0,070	100 (81 — 120)
		0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	330 (270 — 390) 85 (64 — 100)
P11	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	280 (210 — 320)
P12	E/M/A/D	0,50 0.50	0,034 0.0013	0,040 0.0016	0,050 0.0020	0,060 <i>0.0024</i>	50 (38 — 62) 165 (130 — 200)
M1	E/M/A	0,50	0,034	0,042	0,055	0,070	100 (75 — 120)
		0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	330 (250 — 390) 80 (61 — 100)
M2	E/M/A	0.50	0.0013	0.0017	0.0022	0.0028	260 (210 — 320)
M3	E/M/A	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	70 (50 — 89) 230 (170 — 290)
M4	E/M/A	0,50 0.50	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	50 (38 — 67) 165 (130 — 210)
M5	E/M/A	0,50	0,034	0,042	0,055	0,070	44 (32 — 56)
		0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	145 (110 — 180) 125 (110 — 140)
K1	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	410 (370 — 450)
K2	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	110 (92 — 120) 360 (310 — 390)
K 3	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	90 (78 — 100) 295 (260 — 320)
K4	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	100 (81 — 120) 330 (270 — 390)
K5	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	60 (48 — 71) 195 (160 — 230)
K6	E/M/A/D	0,50	0,034	0,042	0,055	0,070	90 (71 — 100)
		0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	295 (240 — 320) 75 (61 — 91)
K7	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	245 (210 — 290)
N1	E/M/A	0,30 0.30	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	600 (500 — 700) 1975 (1700 — 2200)
N2	E/M/A	0,30 0.30	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	385 (330 — 450) 1275 (1100 — 1400)
N3	E/M/A	0,30	0,034	0,042	0,055	0,070	255 (220 — 300)
		0.30 0,30	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	840 (730 — 980) 300 (260 — 340)
N11	E/M/A	0.30	0.0013	0.0017	0.0022	0.0028	980 (860 — 1100)
S1	E	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	36 (29 — 43) 120 (96 — 140)
S2	E	0,50 0.50	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	29 (24 — 34) 95 (79 — 110)
S3	E	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	25 (20 — 30) 80 (66 — 98)
S11	Е	0,50 0.50	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	105 (79 — 130) 345 (260 — 420)
S12	E	0,50 0,50 0.50	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	80 (61 — 100) 260 (210 — 320)
S13	E	0,50	0,034	0,042	0,055	0,070	60 (47 — 77)
		0.50 0,30	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	195 (160 — 250) 250 (150 — 350)
TS1	A/D	0.30	0.0013 0,034	0.0017 0,042	0.0022	0.0028	820 (500 — 1100) 250 (150 — 350)
TP1	A/D	0,30 0.30	0.0013	0.0017	0,055 0.0022	0,070 0.0028	820 (500 — 1100)
GR1	A/D	0,30 0.30	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	600 (500 — 700) 1975 (1700 — 2200)

SECO !

Cutting data – XVE540 – Side milling PCEDC 3 inch

SMG	Ā	a _e /DC	a _p /DC		f	; z		v _c
O.III O				3/8	1/2	5/8	3/4	
P1	E/M/A/D	0,50	0,50	0,055	0,065	0,080	0,090	185 (150 — 210)
		0.50 0,50	0.50 0,50	0.0022 0,055	0.0026 0,065	0.0032 0,080	0.0036 0,090	610 (500 — 680) 180 (150 — 200)
P2	E/M/A/D	0.50	0.50	0.0022	0.0026	0.0032	0.0036	590 (500 — 650)
P3	E/M/A/D	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 0.0024	0,075 0.0030	0,085 <i>0.0034</i>	155 (130 — 180) 510 (430 — 590)
P4	E/M/A/D	0,50	0,50	0,050	0,060	0,075	0,085	140 (120 — 160)
		0.50 0,50	<i>0.50</i> 0,50	0.0020 0,050	0.0024 0,060	0.0030 0,075	0.0034 0,085	460 (400 — 520) 110 (89 — 130)
P5	E/M/A/D	0.50	0.50	0.0020	0.0024	0.0030	0.0034	360 (300 — 420)
P6	E/M/A/D	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 0.0024	0,075 0.0030	0,085 <i>0.0034</i>	125 (100 — 140) 410 (330 — 450)
P7	E/M/A/D	0,50	0,50	0,050	0,060	0,075	0,085	115 (94 — 140)
		0.50 0,50	0.50 0,50	0.0020 0,050	0.0024 0,060	0.0030 0,075	0.0034 0,090	375 (310 — 450) 110 (89 — 130)
P8	E/M/A/D	0.50	0.50	0.0020	0.0024	0.0030	0.0036	360 (300 — 420)
P11	E/M/A/D	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 0.0024	0,075 0.0030	0,085 <i>0.0034</i>	95 (70 — 110) 310 (230 — 360)
P12	E/M/A/D	0,50	0,50	0,034	0,040	0,050	0,060	60 (45 — 73)
		0.50 0,50	<i>0.50</i> 0,50	0.0013 0,055	0.0016 0,065	0.0020 0,080	0.0024 0,095	195 (150 — 230) 105 (81 — 130)
M1	E/M/A	0.50	0.50	0.0022	0.0026	0.0032	0.0038	345 (270 — 420)
M2	E/M/A	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 0.0024	0,075 0.0030	0,085 <i>0.0034</i>	90 (67 — 110) 295 (220 — 360)
M3	E/M/A	0,50	0,50	0,050	0,060	0,075	0,085	75 (56 — 99)
		0.50 0,50	0.50 0,50	0.0020 0,044	0.0024 0,050	0.0030 0,065	0.0034 0,075	245 (190 — 320) 60 (43 — 76)
M4	E/M/A	0.50	0.50	0.0017	0.0020	0.0026	0.0030	195 (150 — 240)
M5	E/M/A	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,044 0.0017	0,050 0.0020	0,065 0.0026	0,075 0.0030	50 (36 — 63) 165 (120 — 200)
K1	E/M/A/D	0,50	0,50	0,050	0,060	0,075	0,085	140 (120 — 160)
		0.50 0,50	<i>0.50</i> 0,50	0.0020 0,046	0.0024 0,055	0.0030 0,065	0.0034 0,075	460 (400 — 520) 120 (110 — 140)
K2	E/M/A/D	0.50	0.50	0.0018	0.0022	0.0026	0.0030	395 (370 — 450)
K3	E/M/A/D	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,046 0.0018	0,055 0.0022	0,065 0.0026	0,075 0.0030	105 (87 — 110) 345 (290 — 360)
K4	E/M/A/D	0,50	0,50	0,050	0,060	0,075	0,085	110 (89 — 130)
		0.50 0,50	0.50 0,50	0.0020 0,046	0.0024 0,055	0.0030 0,065	0.0034 0,075	360 (300 — 420) 65 (54 — 80)
K5	E/M/A/D	0.50	0.50	0.0018	0.0022	0.0026	0.0030	215 (180 — 260)
K6	E/M/A/D	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 <i>0.0034</i>	95 (78 — 110) 310 (260 — 360)
K7	E/M/A/D	0,50	0,50	0,046	0,055	0,065	0,075	85 (69 — 100)
		0.50 0,40	<i>0.50</i> 0,50	0.0018 0,080	0.0022 0,095	0.0026 0,12	0.0030 0,14	280 (230 — 320) 610 (510 — 710)
N1	E/M/A	0.40	0.50	0.0032	0.0038	0.0048	0.0055	2000 (1700 — 2300)
N2	E/M/A	0,40 <i>0.40</i>	0,50 <i>0.50</i>	0,080 0.0032	0,095 0.0038	0,12 0.0048	0,14 0.0055	395 (330 — 450) 1300 (1100 — 1400)
N3	E/M/A	0,40	0,50	0,080	0,095	0,12	0,14	260 (220 — 300)
		0.40 0,50	0.50 0,50	0.0032 0,070	0.0038 0,080	0.0048 0,11	0.0055 0,13	850 (730 — 980) 300 (250 — 340)
N11	E/M/A	0.50	0.30	0.0028	0.0032	0.0044	0.0055	1025 (860 — 1100)
S1	E	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,055 0.0022	0,065 0.0026	0,080 0.0032	0,090 <i>0.00</i> 36	39 (32 — 46) 130 (110 — 150)
S2	Е	0,50	0,50	0,055	0,065	0,080	0,090	31 (26 — 37)
		0.50 0,50	0.50 0,50	0.0022 0,050	0.0026 0,060	0.0032 0,075	0.0036 0,085	100 (86 — 120) 28 (23 — 33)
S3	Е	0.50	0.50	0.0020	0.0024	0.0030	0.0034	90 (76 — 100)
S11	E	0,50 <i>0.50</i>	0,50 <i>0.50</i>	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 <i>0.0034</i>	115 (87 — 140) 375 (290 — 450)
S12	E	0,50	0,50	0,050	0,060	0,075	0,085	90 (67 — 110)
		0.50 0,50	0.50 0,50	0.0020 0,044	0.0024 0,050	0.0030 0,065	0.0034 0,075	295 (220 — 360) 70 (53 — 87)
S13	Е	0.50	0.50	0.0017	0.0020	0.0026	0.0030	230 (180 — 280)
TS1	A/D	0,40 <i>0.40</i>	0,50 <i>0.50</i>	0,080 0.0032	0,095 0.0038	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	255 (160 — 350) 840 (530 — 1100)
TP1	A/D	0,40	0,50	0,080	0,095	0,12	0,14	255 (160 — 350)
		0.40 0,40	0.50 0,50	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	840 (530 — 1100) 610 (510 — 710)
GR1	A/D	0.40	0.50	0.0032	0.0038	0.0048	0.0055	2000 (1700 — 2300)
		0.70	0.00	0.0002	0.0000	0.0070	0.0000	2000 (1700 — 2000)

Cutting data – XVE540 – Slot milling PCEDC 3 inch


SMG	Ā	a _p /DC		v _c			
SIVIG			3/8	1/2	5/8	3/4	
P1	E/M/A/D	0,50	0,034	0,042	0,055	0,070	170 (140 — 190)
		0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	560 (460 — 620) 165 (140 — 190)
P2	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	540 (460 — 620)
P3	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,042 <i>0.0017</i>	0,055 0.0022	0,070 <i>0.0028</i>	140 (120 — 160) 460 (400 — 520)
D4	E/MA/D	0,50	0,034	0,042	0,055	0,070	125 (100 — 140)
P4	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	410 (330 — 450)
P5	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	100 (81 — 120) 330 (270 — 390)
P6	E/M/A/D	0,50	0,034	0,042	0,055	0,070	110 (90 — 130)
	2,111,7 10	0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	360 (300 — 420) 105 (85 — 120)
P7	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	345 (280 — 390)
P8	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,042 <i>0.0017</i>	0,055 0.0022	0,070 0.0028	100 (81 — 120) 330 (270 — 390)
D44	E/MAA/D	0,50	0,034	0,042	0,055	0,0028	85 (64 — 100)
P11	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	280 (210 — 320)
P12	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,040 0.0016	0,050 0.0020	0,060 <i>0.0024</i>	50 (38 — 62) 165 (130 — 200)
M1	E/M/A	0,50	0,034	0,042	0,055	0,070	100 (75 — 120)
1011	LIWIA	0.50	0.0013	0.0017	0.0022	0.0028	330 (250 — 390) 80 (61 — 100)
M2	E/M/A	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	260 (210 — 320)
M3	E/M/A	0,50	0,034	0,042	0,055	0,070	70 (50 — 89)
		0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	230 (170 — 290) 50 (38 — 67)
M4	E/M/A	0.50	0.0013	0.0017	0.0022	0.0028	165 (130 — 210)
M5	E/M/A	0,50 <i>0.50</i>	0,034 0.0013	0,042 <i>0.0017</i>	0,055 0.0022	0,070 0.0028	44 (32 — 56) 145 (110 — 180)
K1	E/M/A/D	0,50	0,034	0,042	0,055	0,070	125 (110 — 140)
K1	E/W/A/D	0.50	0.0013	0.0017	0.0022	0.0028	410 (370 — 450)
K2	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	110 (92 — 120) 360 (310 — 390)
K3	E/M/A/D	0,50	0,034	0,042	0,055	0,070	90 (78 — 100)
164	E IMMA ID	0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	295 (260 — 320) 100 (81 — 120)
K4	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	330 (270 — 390)
K5	E/M/A/D	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 <i>0.0028</i>	60 (48 — 71) 195 (160 — 230)
K6	E/M/A/D	0,50	0,034	0,042	0,055	0,070	90 (71 — 100)
		0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	295 (240 — 320) 75 (61 — 91)
K7	E/M/A/D	0.50	0.0013	0.0017	0.0022	0.0028	245 (210 — 290)
N1	E/M/A	0,30 0.30	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	600 (500 — 700) 1975 (1700 — 2200)
N2	E/M/A	0,30	0,034	0,042	0,055	0,070	385 (330 — 450)
INZ	L/W/A	0.30	0.0013 0,034	0.0017 0,042	0.0022	0.0028 0,070	1275 (1100 — 1400) 255 (220 — 300)
N3	E/M/A	0,30 0.30	0.0013	0.0017	0,055 0.0022	0.0028	840 (730 — 980)
N11	E/M/A	0,30	0,034	0,042	0,055	0,070	300 (260 — 340)
0.4	_	0.30 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	980 (860 — 1100) 36 (29 — 43)
S1	E	0.50	0.0013	0.0017	0.0022	0.0028	120 (96 — 140)
S2	E	0,50 <i>0.50</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 <i>0.0028</i>	29 (24 — 34) 95 (79 — 110)
S3	E	0,50	0,034	0,042	0,055	0,070	25 (20 — 30)
		0.50 0,50	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	80 (66 — 98) 105 (79 — 130)
S11	Е	0.50	0.0013	0.0017	0.0022	0.0028	345 (260 — 420)
S12	E	0,50 <i>0.50</i>	0,034 0.0013	0,042 <i>0.0017</i>	0,055 0.0022	0,070 0.0028	80 (61 — 100) 260 (210 — 320)
S13	E	0,50	0,034	0,042	0,055	0,070	60 (47 — 77)
313	L	0.50	0.0013	0.0017	0.0022	0.0028	195 (160 — 250)
TS1	A/D	0,30 0.30	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 <i>0.0028</i>	250 (150 — 350) 820 (500 — 1100)
TP1	A/D	0,30	0,034	0,042	0,055	0,070	250 (150 — 350)
		0.30 0,30	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	820 (500 — 1100) 600 (500 — 700)
GR1	A/D	0.30	0.0013	0.0017	0.0022	0.0028	1975 (1700 — 2200)

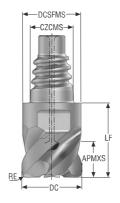
70

SECO I

XVE540

General purpose – Universal – Square – 4 Flutes – Corner radius – ICC

- Tolerances:
 DC= h9
 RE= ±0,015 mm
 Regrind possible if DC is ≥Ø12 mm


Designation	ltem number	Length index	Tool shape	CSP	сzсмѕ	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
						mm	mm	mm	mm	mm			SIRA
XVE540E10100D1R050Z4A	10137989	1	D		E10	10,0	9,7	6,0	12,4	0,5	4	8	
XVE540E12120D1R050Z4A	10137990	1	D		E12	12,0	11,7	7,5	14,5	0,5	4	10	
XVE540E16160D1R050Z4A	10137991	1	D		E16	16,0	15,5	10,0	18,7	0,5	4	12	
XVE540E20200D1R050Z4A	10137992	1	D		E20	20,0	19,3	12,0	21,3	0,5	4	16	

Stocked standard.

XVE540

General purpose – Universal – Square – 4 Flutes – Corner radius – ICC – Inch

D

- Tolerances:
 DC= h9
 RE= .015 Inch= ±.0006 Inch
 RE= .031 Inch= ±.0012 Inch
 Regrind possible if DC is ≥Ø.500 Inch

Designation	ltem number	Length index	Tool shape	CSP	czcms	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
						Inch	Inch	Inch	Inch	Inch			SIRA
XVE540E10.375D1R015Z4A	10137993	1	D		E10	0.375	0.364	0.236	0.488	0.015	4	8	
XVE540E12.500D1R031Z4A	10137994	1	D		E12	0.500	0.484	0.315	0.571	0.031	4	12	
XVE540E16.625D1R031Z4A	10137995	1	D		E16	0.625	0.610	0.394	0.736	0.031	4	16	
XVE540E20.750D1R031Z4A	10137996	1	D		E20	0.750	0.728	0.453	0.839	0.031	4	18	

Stocked standard.

Cutting data – XVE540 – Side milling PCEDC 4

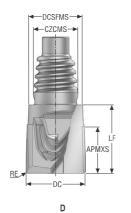
	Ą	a _e /DC	a _p /DC			Ę		v _c
SMG				10	12	16	20	
		0,50	0,55	0,055	0,065	0,080	0,090	180 (150 — 210)
P1	E/M/A/D	0.50	0.55	0.0022	0.0026	0.0032	0.0036	590 (500 — 680)
P2	E/M/A/D	0,50	0,55	0,055	0,065	0,080	0,090	175 (150 — 200)
		0.50 0,50	0.55 0,55	0.0022 0,050	0.0026 0,060	0.0032 0,075	0.0036 0,085	570 (500 — 650) 155 (130 — 180)
P3	E/M/A/D	0.50	0.55	0.0020	0.0024	0.0030	0.0034	510 (430 — 590)
P4	E/M/A/D	0,50 <i>0.50</i>	0,55	0,050	0,060	0,075	0,085	135 (110 — 150) 445 (370 — 490)
D.F.	E/14/4/D	0,50	0.55 0,55	0.0020 0,050	0.0024 0,060	0.0030 0,075	0.0034 0,085	110 (88 — 130)
P5	E/M/A/D	0.50	0.55	0.0020	0.0024	0.0030	0.0034	360 (290 — 420)
P6	E/M/A/D	0,50 <i>0.50</i>	0,55 0.55	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 <i>0.0034</i>	125 (99 — 140) 410 (330 — 450)
D7	E/AA/A/D	0,50	0,55	0,050	0,060	0,075	0,085	115 (93 — 130)
P7	E/M/A/D	0.50	0.55	0.0020	0.0024	0.0030	0.0034	375 (310 — 420)
P8	E/M/A/D	0,50 <i>0.50</i>	0,55 0.55	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,090 <i>0.0036</i>	110 (88 — 130) 360 (290 — 420)
P11	E/M/A/D	0,50	0,55	0,050	0,060	0,075	0,085	90 (70 — 110)
FII	E/IVI/A/D	0.50	0.55	0.0020	0.0024	0.0030	0.0034	295 (230 — 360)
P12	E/M/A/D	0,50 <i>0.50</i>	0,55 0.55	0,034 0.0013	0,040 <i>0.0016</i>	0,050 0.0020	0,060 <i>0.0024</i>	60 (44 — 73) 195 (150 — 230)
M1	E/M/A	0,50	0,55	0,055	0,065	0,080	0,095	105 (80 — 130)
1011	L/W//A	0.50	0.55	0.0022	0.0026	0.0032	0.0038	345 (270 — 420)
M2	E/M/A	0,50 <i>0.50</i>	0,55 0.55	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 <i>0.0034</i>	90 (66 — 100) 295 (220 — 320)
M3	E/M/A	0,50	0,55	0,050	0,060	0,075	0,085	75 (55 — 98)
		0.50 0,50	0.55 0,55	0.0020 0,044	0.0024 0,050	0.0030 0,065	0.0034 0,075	245 (190 — 320) 60 (43 — 75)
M4	E/M/A	0.50	0.55	0.0017	0.0020	0.0026	0.0030	195 (150 — 240)
M5	E/M/A	0,50	0,55	0,044	0,050	0,065	0,075	49 (36 — 63)
		0.50 0,50	0.55 0,55	0.0017 0,050	0.0020 0,060	0.0026 0,075	0.0030 0,085	160 (120 — 200) 135 (120 — 150)
K1	E/M/A/D	0.50	0.55	0.0020	0.0024	0.0030	0.0034	445 (400 — 490)
K2	E/M/A/D	0,50	0,55	0,046	0,055	0,065	0,075	120 (110 — 130)
		0.50 0,50	0.55 0,55	0.0018 0,046	0.0022 0,055	0.0026 0,065	0.0030 0,075	395 (370 — 420) 100 (86 — 110)
K3	E/M/A/D	0.50	0.55	0.0018	0.0022	0.0026	0.0030	330 (290 — 360)
K4	E/M/A/D	0,50 <i>0.50</i>	0,55 0.55	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 <i>0.0034</i>	110 (88 — 130) 360 (290 — 420)
IVE.	E/M/A/D	0,50	0,55	0,046	0,055	0,065	0,075	65 (54 — 79)
K5	E/M/A/D	0.50	0.55	0.0018	0.0022	0.0026	0.0030	215 (180 — 250)
K6	E/M/A/D	0,50 <i>0.50</i>	0,55 0.55	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	0,075 0.0030	0,085 <i>0.0034</i>	95 (78 — 110) 310 (260 — 360)
K7	E/M/A/D	0,50	0,55	0,046	0,055	0,065	0,075	85 (68 — 100)
IXI	L/W/A/D	0.50	0.55	0.0018	0.0022	0.0026	0.0030	280 (230 — 320) 610 (510 — 700)
N1	E/M/A	0,40 <i>0.40</i>	0,55 0.55	0,080 0.0032	0,095 <i>0.0038</i>	0,12 0.0048	0,14 <i>0.0055</i>	2000 (1700 — 2200)
N2	E/M/A	0,40	0,55	0,080	0,095	0,12	0,14	390 (330 — 450)
	2,111,71	0.40 0,40	0.55 0,55	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	1275 (1100 — 1400) 260 (220 — 300)
N3	E/M/A	0.40	0.55	0.0032	0.0038	0.0048	0.0055	850 (730 — 980)
N11	E/M/A	0,50	0,55	0,070	0,080	0,11	0,13	295 (250 — 340)
		0.50 0,50	0.30 0,55	0.0028 0,055	0.0032 0,065	0.0044 0,080	0.0055 0,090	1000 (860 — 1100) 39 (31 — 46)
S1	E	0.50	0.55	0.0022	0.0026	0.0032	0.0036	130 (110 — 150)
S2	E	0,50 0.50	0,55 0.55	0,055 0.0022	0,065 0.0026	0,080 0.0032	0,090 <i>0.00</i> 36	31 (25 — 37) 100 (83 — 120)
00	-	0,50	0,55	0,050	0,060	0,075	0,085	100 (83 — 120) 27 (22 — 32)
S 3	E	0.50	0.55	0.0020	0.0024	0.0030	0.0034	90 (73 — 100)
S11	E	0,50 0.50	0,55 0.55	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 <i>0.0034</i>	115 (86 — 140) 375 (290 — 450)
S12	E	0,50	0,55	0,050	0,060	0,075	0,085	90 (66 — 100)
312	Е	0.50	0.55	0.0020	0.0024	0.0030	0.0034	295 (220 — 320)
S13	E	0,50 0.50	0,55 0.55	0,044 0.0017	0,050 0.0020	0,065 0.0026	0,075 <i>0.0030</i>	70 (53 — 87) 230 (180 — 280)
TS1	A/D	0,40	0,55	0,080	0,095	0,12	0,14	250 (160 — 350)
101	770	0.40	0.55	0.0032 0,080	0.0038	0.0048	0.0055	820 (530 — 1100) 250 (160 — 350)
TP1	A/D	0,40 <i>0.40</i>	0,55 0.55	0.0032	0,095 0.0038	0,12 0.0048	0,14 <i>0.0055</i>	820 (530 — 1100)
GR1	A/D	0,40	0,55	0,080	0,095	0,12	0,14	610 (510 — 700)
		0.40	0.55	0.0032	0.0038	0.0048	0.0055	2000 (1700 — 2200)

Cutting data – XVE540 – Slot milling PCEDC 4

	ata – XVE540 – Slot mi						
SMG	•	a _p /DC		1	f _z		V _c
			10	12	16	20	
P1	E/M/A/D	0,55 <i>0.55</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	170 (140 — 190) 560 (460 — 620)
P2	E/M/A/D	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	165 (140 — 180) 540 (460 — 590)
P3	E/M/A/D	0,55	0,034	0,042	0,055	0,070	140 (120 — 160)
		0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	460 (400 — 520) 125 (100 — 140)
P4	E/M/A/D	0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	410 (330 — 450) 100 (80 — 110)
P5	E/M/A/D	0.55	0.0013	0.0017	0.0022	0.0028	330 (270 — 360)
P6	E/M/A/D	0,55 <i>0.55</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	110 (89 — 130) 360 (300 — 420)
P7	E/M/A/D	0,55 <i>0.55</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 <i>0.0028</i>	105 (84 — 120) 345 (280 — 390)
P8	E/M/A/D	0,55	0,034	0,042	0,055	0,070	100 (80 — 110)
P11	E/M/A/D	0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	330 (270 — 360) 85 (63 — 100)
		0.55 0,55	0.0013 0,034	0.0017 0,040	0.0022 0,050	0.0028 0,060	280 (210 — 320) 49 (37 — 61)
P12	E/M/A/D	0.55	0.0013	0.0016	0.0020	0.0024	160 (130 — 200)
M1	E/M/A	0,55 <i>0.55</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	100 (74 — 120) 330 (250 — 390)
M2	E/M/A	0,55 <i>0.55</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 <i>0.0028</i>	80 (60 — 99) 260 (200 — 320)
M3	E/M/A	0,55	0,034	0,042	0,055	0,070	70 (50 — 89)
M4	E/M/A	0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	230 (170 — 290) 50 (38 — 66)
		0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	165 (130 — 210) 43 (31 — 55)
M5	E/M/A	0.55	0.0013	0.0017	0.0022	0.0028	140 (110 — 180)
K1	E/M/A/D	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	125 (110 — 140) 410 (370 — 450)
K2	E/M/A/D	0,55 <i>0.55</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	105 (91 — 120) 345 (300 — 390)
K3	E/M/A/D	0,55 <i>0.55</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	90 (77 — 100) 295 (260 — 320)
K4	E/M/A/D	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	100 (80 — 110) 330 (270 — 360)
K5	E/M/A/D	0,55	0,034	0,042	0,055	0,070	60 (48 — 70)
		0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	195 (160 — 220) 85 (70 — 100)
K6	E/M/A/D	0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	280 (230 — 320) 75 (61 — 90)
K7	E/M/A/D	0.55	0.0013	0.0017	0.0022	0.0028	245 (210 — 290)
N1	E/M/A	0,30 0.30	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	590 (500 — 690) 1925 (1700 — 2200)
N2	E/M/A	0,30 0.30	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	380 (320 — 440) 1250 (1100 — 1400)
N3	E/M/A	0,30	0,034	0,042	0,055	0,070	255 (220 — 290)
N11	E/M/A	0.30 0,30	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	295 (250 — 340)
		0.30 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	970 (830 — 1100) 36 (29 — 42)
S1	Е	0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	120 (96 — 130) 29 (23 — 34)
S2	Е	0.55	0.0013	0.0017	0.0022	0.0028	95 (76 — 110)
S3	E	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	25 (20 — 29) 80 (66 — 95)
S11	E	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	105 (78 — 120) 345 (260 — 390)
S12	E	0,55	0,034	0,042	0,055	0,070	80 (60 — 99)
	E	0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	260 (200 — 320) 60 (47 — 76)
S13		0.55 0,30	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	195 (160 — 240) 250 (150 — 340)
TS1	A/D	0.30	0.0013	0.0017	0.0022	0.0028	820 (500 — 1100)
TP1	A/D	0,30 0.30	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	250 (150 — 340) 820 (500 — 1100)
GR1	A/D	0,30 <i>0.30</i>	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	590 (500 — 690) 1925 (1700 — 2200)

Cutting data – XVE540 – Side milling PCEDC 4 inch

SMG	Ā	a _e /DC	a _p /DC		f	: z		v _c
S.III S				3/8	1/2	5/8	3/4	
P1	E/M/A/D	0,50	0,55	0,055	0,065	0,080	0,090	180 (150 — 210)
	L/W//-V/D	0.50 0,50	0.55 0,55	0.0022 0,055	0.0026 0,065	0.0032 0,080	0.0036 0,090	590 (500 — 680) 175 (150 — 200)
P2	E/M/A/D	0.50	0.55	0.0022	0.0026	0.0032	0.0036	570 (500 — 650)
P3	E/M/A/D	0,50	0,55	0,050	0,060	0,075	0,085	155 (130 — 180)
		0.50 0,50	0.55 0,55	0.0020 0,050	0.0024 0,060	0.0030 0,075	0.0034 0,085	510 (430 — 590) 135 (110 — 150)
P4	E/M/A/D	0.50	0.55	0.0020	0.0024	0.0030	0.0034	445 (370 — 490)
P5	E/M/A/D	0,50 <i>0.50</i>	0,55 0.55	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 <i>0.0034</i>	110 (88 — 130) 360 (290 — 420)
P6	E/M/A/D	0,50	0,55	0,050	0,060	0,075	0,085	125 (99 — 140)
FU	LINIAD	0.50	0.55	0.0020	0.0024	0.0030	0.0034	410 (330 — 450)
P7	E/M/A/D	0,50 0.50	0,55 0.55	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 <i>0.0034</i>	115 (93 — 130) 375 (310 — 420)
P8	E/M/A/D	0,50	0,55	0,050	0,060	0,075	0,090	110 (88 — 130)
		0.50 0,50	0.55 0,55	0.0020 0,050	0.0024 0,060	0.0030 0,075	0.0036 0,085	360 (290 — 420) 90 (70 — 110)
P11	E/M/A/D	0.50	0.55	0.0020	0.0024	0.0030	0.0034	295 (230 — 360)
P12	E/M/A/D	0,50 0.50	0,55 <i>0.5</i> 5	0,034 0.0013	0,040 <i>0.0016</i>	0,050 0.0020	0,060 <i>0.0024</i>	60 (44 — 73) 195 (150 — 230)
N44	E/h4/A	0,50	0,55	0,055	0,065	0,080	0,095	105 (80 — 130)
M1	E/M/A	0.50	0.55	0.0022	0.0026	0.0032	0.0038	345 (270 — 420)
M2	E/M/A	0,50 <i>0.50</i>	0,55 <i>0.55</i>	0,050 0.0020	0,060 <i>0.0024</i>	0,075 0.0030	0,085 0.0034	90 (66 — 100) 295 (220 — 320)
M3	E/M/A	0,50	0,55	0,050	0,060	0,075	0,085	75 (55 — 98)
1110	2,11,7,1	0.50 0,50	0.55 0,55	0.0020 0,044	0.0024 0,050	0.0030 0,065	0.0034 0,075	245 (190 — 320) 60 (43 — 75)
M4	E/M/A	0.50	0.55	0.0017	0.0020	0.0026	0.0030	195 (150 — 240)
M5	E/M/A	0,50	0,55	0,044	0,050	0,065	0,075	49 (36 — 63)
		0.50 0,50	0.55 0,55	0.0017 0,050	0.0020 0,060	0.0026 0,075	0.0030 0,085	160 (120 — 200) 135 (120 — 150)
K1	E/M/A/D	0.50	0.55	0.0020	0.0024	0.0030	0.0034	445 (400 — 490)
K2	E/M/A/D	0,50 0.50	0,55 0.55	0,046 0.0018	0,055 0.0022	0,065 0.0026	0,075 0.0030	120 (110 — 130) 395 (370 — 420)
K3	E/M/A/D	0,50	0,55	0,046	0,055	0,065	0,075	100 (86 — 110)
Ro	L/W/A/D	0.50	0.55	0.0018	0.0022	0.0026 0,075	0.0030 0,085	330 (290 — 360)
K4	E/M/A/D	0,50 <i>0.50</i>	0,55 0.55	0,050 0.0020	0,060 <i>0.0024</i>	0.0030	0.0034	110 (88 — 130) 360 (290 — 420)
K5	E/M/A/D	0,50	0,55	0,046	0,055	0,065	0,075	65 (54 — 79)
140	E4444 (D	0.50 0,50	0.55 0,55	0.0018 0,050	0.0022 0,060	0.0026 0,075	0.0030 0,085	215 (180 — 250) 95 (78 — 110)
K6	E/M/A/D	0.50	0.55	0.0020	0.0024	0.0030	0.0034	310 (260 — 360)
K7	E/M/A/D	0,50 0.50	0,55 0.55	0,046 0.0018	0,055 0.0022	0,065 0.0026	0,075 0.0030	85 (68 — 100) 280 (230 — 320)
N1	E/M/A	0,40	0,55	0,080	0,095	0,12	0,14	610 (510 — 700)
141	L/W//A	0.40 0,40	0.55 0,55	0.0032 0,080	0.0038 0,095	0.0048 0,12	0.0055 0,14	2000 (1700 — 2200) 390 (330 — 450)
N2	E/M/A	0.40	0.55	0.0032	0.0038	0.0048	0.0055	1275 (1100 — 1400)
N3	E/M/A	0,40	0,55	0,080	0,095	0,12	0,14	260 (220 — 300)
		0.40 0,50	0.55 0,55	0.0032 0,070	0.0038 0,080	0.0048 0,11	0.0055 0,13	850 (730 — 980) 295 (250 — 340)
N11	E/M/A	0.50	0.30	0.0028	0.0032	0.0044	0.0055	1000 (860 — 1100)
S1	E	0,50 0.50	0,55 0.55	0,055 0.0022	0,065 <i>0.0026</i>	0,080 0.0032	0,090 <i>0.00</i> 36	39 (31 — 46) 130 (110 — 150)
S2	E	0,50	0,55	0,055	0,065	0,080	0,090	31 (25 — 37)
02		0.50	0.55	0.0022 0,050	0.0026 0,060	0.0032 0,075	0.0036 0,085	100 (83 — 120) 27 (22 — 32)
S3	E	0,50 0.50	0,55 0.55	0.0020	0.0024	0.0030	0.0034	90 (73 — 100)
S11	Е	0,50	0,55	0,050	0,060	0,075	0,085	115 (86 — 140)
		0.50 0,50	0.55 0,55	0.0020 0,050	0.0024 0,060	0.0030 0,075	0.0034 0,085	375 (290 — 450) 90 (66 — 100)
S12	E	0.50	0.55	0.0020	0.0024	0.0030	0.0034	295 (220 — 320)
S13	E	0,50 0.50	0,55 0.55	0,044 0.0017	0,050 <i>0.0020</i>	0,065 0.0026	0,075 0.0030	70 (53 — 87) 230 (180 — 280)
TS1	A/D	0,40	0,55	0,080	0,095	0,12	0,14	250 (160 — 260) 250 (160 — 350)
131	A/D	0.40	0.55	0.0032	0.0038	0.0048	0.0055	820 (530 — 1100)
TP1	A/D	0,40 0.40	0,55 0.55	0,080 0.0032	0,095 <i>0.0038</i>	0,12 0.0048	0,14 <i>0.0055</i>	250 (160 — 350) 820 (530 — 1100)
GR1	A/D	0,40	0,55	0,080	0,095	0,12	0,14	610 (510 — 700)
		0.40	0.55	0.0032	0.0038	0.0048	0.0055	2000 (1700 — 2200)



Cutting data – XVE540 – Slot milling PCEDC 4 inch

SMG	Ā	a _p /DC			f _z		v _c
SIVIG	·		3/8	1/2	5/8	3/4	
P1	E/M/A/D	0,55	0,034	0,042	0,055	0,070	170 (140 — 190)
		0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	560 (460 — 620) 165 (140 — 180)
P2	E/M/A/D	0.55	0.0013	0.0017	0.0022	0.0028	540 (460 — 590)
P3	E/M/A/D	0,55 <i>0.55</i>	0,034 0.0013	0,042 <i>0.0017</i>	0,055 0.0022	0,070 <i>0.0028</i>	140 (120 — 160) 460 (400 — 520)
D4	E/M/A/D	0,55	0,034	0,042	0,055	0,070	125 (100 — 140)
P4	E/M/A/D	0.55	0.0013	0.0017	0.0022	0.0028	410 (330 — 450)
P5	E/M/A/D	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	100 (80 — 110) 330 (270 — 360)
P6	E/M/A/D	0,55	0,034	0,042	0,055	0,070	110 (89 — 130)
		0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	360 (300 — 420) 105 (84 — 120)
P7	E/M/A/D	0.55	0.0013	0.0017	0.0022	0.0028	345 (280 — 390)
P8	E/M/A/D	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	100 (80 — 110) 330 (270 — 360)
P11	E/M/A/D	0,55	0,034	0,042	0,055	0,070	85 (63 — 100)
		0.55 0,55	0.0013 0,034	0.0017 0,040	0.0022 0,050	0.0028 0,060	280 (210 — 320) 49 (37 — 61)
P12	E/M/A/D	0.55	0.0013	0.0016	0.0020	0.0024	160 (130 — 200)
M1	E/M/A	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	100 (74 — 120) 330 (250 — 390)
M2	E/M/A	0,55	0,034	0,042	0,055	0,070	80 (60 — 99)
IVIZ	LIWIA	0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	260 (200 — 320) 70 (50 — 89)
M3	E/M/A	0.55	0.0013	0.0017	0.0022	0.0028	230 (170 — 290)
M4	E/M/A	0,55 <i>0.55</i>	0,034 0.0013	0,042 <i>0.0017</i>	0,055 0.0022	0,070 0.0028	50 (38 — 66) 165 (130 — 210)
ME	Γ/λ4/Δ	0,55	0,034	0,042	0,055	0,070	43 (31 — 55)
M5	E/M/A	0.55	0.0013	0.0017	0.0022	0.0028	140 (110 — 180)
K1	E/M/A/D	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	125 (110 — 140) 410 (370 — 450)
K2	E/M/A/D	0,55	0,034	0,042	0,055	0,070	105 (91 — 120)
1/0	E 11.4.4.1D	0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	345 (300 — 390) 90 (77 — 100)
K3	E/M/A/D	0.55	0.0013	0.0017	0.0022	0.0028	295 (260 — 320)
K4	E/M/A/D	0,55 0.55	0,034 0.0013	0,042 <i>0.0017</i>	0,055 0.0022	0,070 0.0028	100 (80 — 110) 330 (270 — 360)
K5	E/M/A/D	0,55	0,034	0,042	0,055	0,070	60 (48 — 70)
		0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	195 (160 — 220) 85 (70 — 100)
K6	E/M/A/D	0.55	0.0013	0.0017	0.0022	0.0028	280 (230 — 320)
K7	E/M/A/D	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	75 (61 — 90) 245 (210 — 290)
N1	E/M/A	0,30	0,034	0,042	0,055	0,070	590 (500 — 690)
		0.30 0,30	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	1925 (1700 — 2200) 380 (320 — 440)
N2	E/M/A	0.30	0.0013	0.0017	0.0022	0.0028	1250 (1100 — 1400)
N3	E/M/A	0,30 0.30	0,034 0.0013	0,042 <i>0.0017</i>	0,055 0.0022	0,070 0.0028	255 (220 — 290) 840 (730 — 950)
N11	E/M/A	0,30	0,034	0,042	0,055	0,070	295 (250 — 340)
		0.30 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	970 (830 — 1100) 36 (29 — 42)
S1	E	0.55	0.0013	0.0017	0.0022	0.0028	120 (96 — 130)
S2	E	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	29 (23 — 34) 95 (76 — 110)
S 3	E	0,55	0,034	0,042	0,055	0,070	25 (20 — 29)
		0.55 0,55	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	80 (66 — 95) 105 (78 — 120)
S11	Е	0.55	0.0013	0.0017	0.0022	0.0028	345 (260 — 390)
S12	Е	0,55 0.55	0,034 0.0013	0,042 0.0017	0,055 0.0022	0,070 0.0028	80 (60 — 99) 260 (200 — 320)
042	E	0,55	0,034	0,042	0,055	0,070	60 (47 — 76)
S13	E-	0.55	0.0013	0.0017	0.0022	0.0028	195 (160 — 240) 250 (150 — 340)
TS1	A/D	0,30 <i>0.30</i>	0,034 0.0013	0,042 <i>0.0017</i>	0,055 0.0022	0,070 0.0028	250 (150 — 340) 820 (500 — 1100)
TP1	A/D	0,30	0,034	0,042	0,055	0,070	250 (150 — 340) 820 (500 — 1100)
CD4		0.30 0,30	0.0013 0,034	0.0017 0,042	0.0022 0,055	0.0028 0,070	590 (500 — 1100) 590 (500 — 690)
GR1	A/D	0.30	0.0013	0.0017	0.0022	0.0028	1925 (1700 — 2200)

XVE510

General purpose – Universal – Square – 2 Flutes – Corner radius

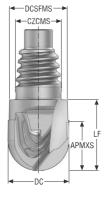
- Tolerances:DC= h10RE= ±0,015 mm
- Length index Tool Grade CZCMS PCEDC Designation Item number DC **DCSFMS APMXS** LF RE SW shape SIRA mm mm mm mm mm XVE510E10100D1R050Z2 D 10138003 1 E10 10,0 8,0 11,8 0,5 2 6 9,7 XVE510E12120D1R050Z2 10138004 1 D E12 12,0 11,7 10,0 14,0 0,5 2 8

■ Stocked standard.

SECO I

Cutting data – XVE510 Side milling

SMG	ata – XVE 510 Side Hilling	a _e /DC	a _p /DC	1	f _z	v _c
SIVIG				10	12	
P1	E/M/A/D	0,10	0,65	0,080	0,095	255 (220 — 290)
- 1 1	LINIAD	0.10	0.65	0.0032 0,080	0.0038 0,095	840 (730 — 950) 245 (210 — 280)
P2	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0.0032	0.0038	800 (690 — 910)
P3	E/M/A/D	0,10	0,65	0,080	0,095	210 (180 — 240)
	= 0.444.75	0.10 0,10	0.65 0,65	0.0032 0,080	0.0038 0,095	690 (600 — 780) 185 (160 — 210)
P4	E/M/A/D	0.10	0.65	0.0032	0.0038	610 (530 — 680)
P5	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,080 0.0032	0,095 0.0038	155 (130 — 180) 510 (430 — 590)
P6	E/M/A/D	0,10	0,65	0,080	0,095	175 (140 — 200)
		0.10 0,10	0.65 0,65	0.0032 0,080	0.0038 0,095	570 (460 — 650) 165 (140 — 190)
P7	E/M/A/D	0.10	0.65	0.0032	0.0038	540 (460 — 620)
P8	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,080 0.0032	0,095 0.0038	155 (130 — 180) 510 (430 — 590)
P11	E/M/A/D	0,10	0,65	0,080	0,095	130 (99 — 160)
		0.10 0,10	0.65 0,65	0.0032 0,070	0.0038 0,080	425 (330 — 520) 80 (60 — 98)
P12	E/M/A/D	0.10	0.65	0.0028	0.0032	260 (200 — 320)
M1	E/M/A	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,080 0.0032	0,095 0.0038	155 (120 — 190) 510 (400 — 620)
M2	E/M/A	0,10	0,65	0,080	0,095	125 (94 — 150)
IVIZ		0.10 0,10	0.65 0,65	0.0032 0,080	0.0038 0,095	410 (310 — 490) 110 (78 — 130)
M3	E/M/A	0.10	0.65	0.0032	0.0038	360 (260 — 420)
M4	E/M/A	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,080 0.0032	0,095 0.0038	80 (59 — 100) 260 (200 — 320)
M5	E/M/A	0,10	0,65	0,080	0,095	70 (49 — 87)
IVIO	L/W/A	0.10 0,10	0.65 0,65	0.0032 0,080	0.0038 0,095	230 (170 — 280) 185 (160 — 210)
K1	E/M/A/D	0.10	0.65	0.0032	0.0038	610 (530 — 680)
K2	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,080 0.0032	0,095 0.0038	160 (140 — 180) 520 (460 — 590)
K3	E/M/A/D	0,10	0,65	0,080	0,095	135 (120 — 150)
No		0.10 0,10	0.65 0,65	0.0032 0,080	0.0038 0,095	445 (400 — 490) 130 (110 — 150)
K4	E/M/A/D	0.10	0.65	0.0032	0.0038	425 (370 — 490)
K5	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,080 0.0032	0,095 0.0038	155 (130 — 180) 510 (430 — 590)
K6	E/M/A/D	0,10	0,65	0,080	0,095	230 (190 — 270)
No	LIMIA	0.10 0,10	0.65 0,65	0.0032 0,080	0.0038 0,095	750 (630 — 880) 100 (83 — 110)
K7	E/M/A/D	0.10	0.65	0.0032	0.0038	330 (280 — 360)
N1	E/M/A	0,20 0.20	0,65 <i>0.65</i>	0,075 0.0030	0,090 0.0036	810 (680 — 940) 2650 (2300 — 3000)
N2	E/M/A	0,20	0,65	0,075	0,090	520 (440 — 600)
INZ	L/IVI/A	0.20 0,20	0.65 0,65	0.0030 0,075	0.0036 0,090	1700 (1500 — 1900) 345 (290 — 400)
N3	E/M/A	0.20	0.65	0.0030	0.0036	1125 (960 — 1300)
N11	E/M/A	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,10 <i>0.0040</i>	0,12 0.0048	445 (380 — 520) 1450 (1300 — 1700)
S1	Е	0,10	0,65	0,080	0,095	60 (39 — 85)
		0.10 0,10	0.65 0,65	0.0032 0,080	0.0038 0,095	195 (130 — 270) 55 (32 — 77)
S2	Е	0.10	0.65	0.0032	0.0038	180 (110 — 250)
S 3	E	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,080 0.0032	0,095 0.0038	39 (24 — 54) 130 (79 — 170)
S11	Е	0,10	0,65	0,080	0,095	160 (130 — 200)
		0.10 0,10	0.65 0,65	0.0032 0,080	0.0038 0,095	520 (430 — 650) 125 (94 — 150)
S12	Е	0.10	0.65	0.0032	0.0038	410 (310 — 490)
S13	E	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,080 0.0032	0,095 0.0038	95 (73 — 120) 310 (240 — 390)
TS1	A/D	0,10	0,65	0,080	0,095	390 (240 — 540)
		0.10 0,10	0.65 0,65	0.0032 0,080	0.0038 0,095	1275 (790 — 1700) 390 (240 — 540)
TP1	A/D	0.10	0.65	0.0032	0.0038	1275 (790 — 1700)
GR1	A/D	0,20 <i>0.20</i>	0,65 <i>0.65</i>	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	760 (640 — 880) 2500 (2100 — 2800)
		0.20	0.00	0.0040	0.0040	2000 (2100 — 2000)


Cutting data – XVE510 Slot milling

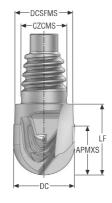
SMG	₽	a _p /DC		f _z	v _c
SIVIG			10	12	
P1	E/M/A/D	0,50	0,050	0,060	165 (140 — 180)
P2	E/M/A/D	0.50 0,50	0.0020 0,050	0.0024 0,060	540 (460 — 590) 160 (140 — 180)
		0.50 0,50	0.0020 0,050	0.0024 0,060	520 (460 — 590) 135 (120 — 150)
P3	E/M/A/D	0.50	0.0020	0.0024	445 (400 — 490)
P4	E/M/A/D	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	120 (100 — 130) 395 (330 — 420)
P5	E/M/A/D	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	100 (81 — 120) 330 (270 — 390)
P6	E/M/A/D	0,50	0,050	0,060	110 (90 — 130)
P7	E/M/A/D	0.50 0,50	0.0020 0,050	0.0024 0,060	360 (300 — 420) 105 (85 — 120)
		0.50 0,50	0.0020 0,050	0.0024 0,060	345 (280 — 390) 100 (81 — 120)
P8	E/M/A/D	0.50	0.0020	0.0024	330 (270 — 390)
P11	E/M/A/D	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	85 (64 — 100) 280 (210 — 320)
P12	E/M/A/D	0,50 <i>0.50</i>	0,040 <i>0.0016</i>	0,048 <i>0.0019</i>	50 (39 — 64) 165 (130 — 200)
M1	E/M/A	0,50 0.50	0,050 <i>0.0020</i>	0,060 0.0024	100 (75 — 120) 330 (250 — 390)
M2	E/M/A	0,50	0,050	0,060	80 (60 — 99)
		0.50 0,50	0.0020 0,050	0.0024 0,060	260 (200 — 320) 70 (50 — 89)
M3	E/M/A	0.50 0,50	0.0020 0,050	0.0024 0,060	230 (170 — 290) 50 (38 — 67)
M4	E/M/A	0.50	0.0020	0.0024	165 (130 — 210)
M5	E/M/A	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 0.0024	44 (32 — 56) 145 (110 — 180)
K1	E/M/A/D	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	120 (100 — 130) 395 (330 — 420)
K2	E/M/A/D	0,50	0,050	0,060	105 (87 — 120)
K 3	E/M/A/D	0.50 0,50	0.0020 0,050	0.0024 0,060	345 (290 — 390) 90 (74 — 100)
		0.50 0,50	0.0020 0,050	0.0024 0,060	295 (250 — 320) 85 (70 — 97)
K4	E/M/A/D	0.50	0.0020	0.0024	280 (230 — 310)
K5	E/M/A/D	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	100 (80 — 120) 330 (270 — 390)
K6	E/M/A/D	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 0.0024	150 (120 — 170) 490 (400 — 550)
K7	E/M/A/D	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	65 (54 — 74) 215 (180 — 240)
N1	E/M/A	0,50	0,050	0,060	600 (500 — 690)
		0.50 0,50	0.0020 0,050	0.0024 0,060	1975 (1700 — 2200) 385 (330 — 440)
N2	E/M/A	0.50 0,50	0.0020 0,050	0.0024 0,060	1275 (1100 — 1400) 255 (220 — 290)
N3	E/M/A	0.50	0.0020	0.0024	840 (730 — 950)
N11	E/M/A	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	300 (250 — 340) 980 (830 — 1100)
S1	Е	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 <i>0.0024</i>	40 (25 — 54) 130 (83 — 170)
S2	Е	0,50	0,050	0,060	35 (20 — 49)
S3	E	0.50 0,50	<i>0.0020</i> 0,050	0.0024 0,060	115 (66 — 160) 25 (15 — 34)
		0.50 0,50	0.0020 0,050	0.0024 0,060	80 (50 — 110) 105 (78 — 120)
S11	Е	0.50	0.0020	0.0024	345 (260 — 390) 80 (60 — 99)
S12	Е	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 0.0024	260 (200 — 320)
S13	Е	0,50 <i>0.50</i>	0,050 <i>0.0020</i>	0,060 0.0024	60 (47 — 77) 195 (160 — 250)
TS1	A/D	0,50 0.50	0,050 0.0020	0,060 0.0024	250 (150 — 340) 820 (500 — 1100)
TP1	A/D	0,50	0,050	0,060	250 (150 — 340)
		0.50 0,50	0.0020 0,050	0.0024 0,060	820 (500 — 1100) 600 (500 — 690)
GR1	A/D	0.50	0.0020	0.0024	1975 (1700 — 2200)

XVB510

General purpose – Universal – Ball nose – 2 Flutes

n

- rances: : h9
- Tolerances:DC= h9RE= ±0,01 mm


Designation	Item number	Length index	Tool shape	CZCMS	DC	DCSFMS	APMXS	LF	PCEDC	sw	Grade
					mm	mm	mm	mm			SIRA
XVB510E10100D1BZ2	10138005	1	D	E10	10,0	9,7	8,0	11,8	2	6	•
XVB510E12120D1BZ2	10138006	1	D	E12	12,0	11,7	10,0	14,0	2	8	•
XVB510E16160D1BZ2	10138007	1	D	E16	16,0	15,5	13,0	18,1	2	10	

■ Stocked standard.

SECO I

XVB510

General purpose – Universal – Ball nose – 2 Flutes – *Inch*

D

- Tolerances:DC= h9RE= ±.0004 Inch
- Tool shape Length index Grade CZCMS DCSFMS **PCEDC** Designation Item number DC **APMXS** LF SW SIRA Inch Inch Inch Inch E10 XVB510E10.375D1BZ2 10138008 D 0.375 0.364 0.315 0.465 2 6 1 XVB510E12.500D1BZ2 10138009 D E12 0.500 0.484 0.413 0.551 2 8 XVB510E16.625D1BZ2 10138010 D 0.624 E16 0.610 0.512 0.713 2 10

■ Stocked standard.

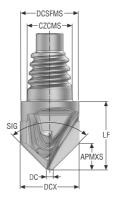
Cutting data – XVB510 Copy milling roughing

No.	v _c
P1 EMAID 0,10 0,65 0,070 0,085 0,11 P2 EMAID 0,10 0,65 0,0028 0,0034 0,0044 P3 EIMAID 0,10 0,65 0,0028 0,0034 0,0044 P4 EIMAID 0,10 0,65 0,0028 0,0034 0,0044 P5 EIMAID 0,10 0,65 0,0028 0,0034 0,0044 P6 EIMAID 0,10 0,65 0,0028 0,0034 0,0044 P7 EIMAID 0,10 0,65 0,0028 0,0034 0,0044 P6 EIMAID 0,10 0,65 0,0070 0,085 0,11 P7 EIMAID 0,10 0,65 0,0070 0,085 0,11 P7 EIMAID 0,10 0,65 0,0070 0,085 0,11 P7 EIMAID 0,10 0,65 0,0070 0,085 0,11 P8 EIMAID 0,10 0,65 0,0070 0,085 0,11 P9 EIMAID 0,10 0,65 0,0070 0,085 0,11 P9 EIMAID 0,10 0,65 0,0070 0,085 0,11 P1 EIMAID 0,10 0,	*c
P2 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P3 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P4 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P4 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P5 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P6 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P7 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P6 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P7 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P6 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P7 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P7 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P8 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P1 EMIAID 0.10 0.65 0.0008 0.0034 0.0	
P2 EMMAD 0.10 0.65 0.0028 0.0034 0.0044 P3 EAMAD 0.10 0.65 0.0028 0.0034 0.0044 P4 EAMAD 0.10 0.65 0.0028 0.0034 0.0044 P5 EAMAD 0.10 0.65 0.0028 0.0034 0.0044 P6 EAMAD 0.10 0.65 0.0028 0.0034 0.0044 P7 EAMAD 0.10 0.65 0.0028 0.0034 0.0044 P6 EAMAD 0.10 0.65 0.0028 0.0034 0.0044 P6 EAMAD 0.10 0.65 0.0028 0.0034 0.0044 P6 EAMAD 0.10 0.65 0.0028 0.0034 0.0044 P7 EAMAD 0.10 0.65 0.0028 0.0034 0.0044 P8 EAMAD 0.10 0.65 0.0028 0.0038 0.0034 0.0044 P8 EAMAD 0.10 0.65 0.0028 0.0038 0.0034 0.0044 P1 EAMAD 0.10 0.65 0.0028 0.0034	365 (320 — 420)
P3 EMAPD 0.10 0.65 0.070 0.085 0.11 P4 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P5 EMAPD 0.10 0.65 0.070 0.085 0.11 P6 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P7 EMAPD 0.10 0.65 0.070 0.085 0.11 P6 EMAPD 0.10 0.65 0.070 0.085 0.11 P7 EMAPD 0.10 0.65 0.070 0.085 0.11 P7 EMAPD 0.10 0.65 0.070 0.085 0.11 P8 EMAPD 0.10 0.65 0.070 0.085 0.11 P1 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P12 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P12 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P13 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P14 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P15 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P16 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P17 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P18 EMAPD 0.10 0.65 0.0028 0.0034 0.0044 P19 EMAPD 0.10 0.65 0.0008 0.0034 0.0044 P19 0.0008	1200 (1100 — 1300) 355 (310 — 400)
P4 EIMAID 0.10 0.65 0.0028 0.0034 0.0044 P5 EIMAID 0.10 0.65 0.0028 0.0034 0.0044 P6 EIMAID 0.10 0.65 0.0028 0.0034 0.0044 P6 EIMAID 0.10 0.65 0.0028 0.0034 0.0044 P7 EIMAID 0.10 0.65 0.070 0.085 0.11 P7 EIMAID 0.10 0.65 0.070 0.085 0.11 P8 EIMAID 0.10 0.65 0.070 0.085 0.11 P8 EIMAID 0.10 0.65 0.070 0.085 0.11 P8 EIMAID 0.10 0.65 0.070 0.085 0.11 P1 EIMAID 0.10 0.65 0.0028 0.0034 0.0044 P1 EIMAID 0.10 0.65 0.0024 0.0030 0.0036 P1 EIMAID 0.10 0.65 0.0024 0.0030 0.0036 P1 EIMAID 0.10 0.65 0.0024 0.0034 0.0044 P1 EIMAID 0.10 0.65 0.0024 0.0034 0.0044 P1 EIMAID 0.10 0.65 0.0028 0.0034 0.0044 P1 EIMAID 0.10 0.65 0.0008 0.0004 0.0044 P1 EIMAID 0.10 0.65 0.00	1175 (1100 — 1300) 305 (270 — 350)
P5 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P6 EMIAID 0.10 0.65 0.070 0.085 0.11 P7 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P8 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P1 EMIAID 0.10 0.65 0.0028 0.0034 0.0044	1000 (890 — 1100)
P5 EMIAID 0,10 0,65 0,0028 0,0024 0,0044 P6 EMIAID 0,10 0,65 0,0028 0,0024 0,0044 P7 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P7 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P8 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P8 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P11 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P12 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P13 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P14 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P15 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P16 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P17 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P18 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P19 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P19 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P10 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P11 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P11 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P12 EMIAID 0,10 0,65 0,0028 0,0034 0,0044 P13 EMIAID 0,10 0,65 0,0008 0,0008 0,11 P14 EMIAID 0,10 0,65 0,0008 0,0008 0,11 P15 EMIAID 0,10 0,65 0,0008 0,0008 0,0008 0,11 P16 EMIAID 0,10 0,65 0,0008 0,0008 0,0008 0,11 P17 EMIAID 0,10 0,65 0,0008 0,0008 0,0008 0,11 P18 EMIAID 0,10 0,65 0,0008 0,0008 0,11 P18 EMIAID 0,10 0,65 0,0008 0,0008 0,0004 0,00044 P18 EMIAID 0,10 0,65 0,0008 0,0008 0,0008 0,0004 0,00044 P18 EMIAID 0,10 0,65 0,0008 0,0008 0,0008 0,0004 0,00044 P18 EMIAID 0,10 0,65 0,0008 0,0008 0,0008 0,0004 0,00044 P18 EMIAID 0,10 0,65 0,0008 0,0008 0,0008 0,0008 0,0008 0,0004 0,00044 P18 EMIAID 0,10 0,65 0,0008 0,0008 0,0008 0,0004 0,00044 P18 EMIAID 0,10 0,65 0,0008 0,0008 0,0008 0,0004 0,00044 P18 EMIAID 0,10 0,65 0,0008 0,0008 0,0008 0,0004 0,00044 P18 EMIAID 0,10 0,65 0,0008 0,0008 0,00094 0,00044	270 (230 — 310) 890 (760 — 1000)
P6 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P7 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P8 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P8 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P11 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P12 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P12 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P14 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P15 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P16 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P17 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P18 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P19 EMIAID 0.10 0.65 0.0028 0.0034	175 (140 — 210)
P7 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P8 EMIAID 0.10 0.65 0.070 0.085 0.11 P8 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P11 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P12 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P12 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P13 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P14 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P15 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P16 EMIAID 0.10 0.65 0.0028 0.0034 0.0034 0.0044 P17 EMIAID 0.10 0.65 0.0028 0.0034 0.0036 0.0036 P1 EMIA 0.10 0.65 0.0028 0.0034 0.0034 0.0044 P1 EMIA 0.10 0.65 0.0028 0.0034 0.0044 P1 EMIAID 0.10 0.65 0.0028 0.0034 0.0044 P1 EM	570 (460 — 680) 195 (160 — 240)
P8	640 (530 — 780)
P1	185 (150 — 220) 610 (500 — 720)
P11 E/MA/D 0.10 0.65 0.070 0.085 0.11 P12 E/MA/D 0.10 0.65 0.065 0.0028 0.0034 0.0044 P13 E/MA/D 0.10 0.65 0.060 0.075 0.090 0.10 0.65 0.0024 0.0030 0.0036 M1 E/MA 0.10 0.65 0.070 0.085 0.11 E/MA 0.10 0.65 0.070 0.085 0.11 M2 E/MA 0.10 0.65 0.070 0.085 0.11 M3 E/MA 0.10 0.65 0.0028 0.0034 0.0044 M4 E/MA 0.10 0.65 0.070 0.085 0.11 M4 E/MA 0.10 0.65 0.0028 0.0034 0.0044 M5 E/MA 0.10 0.65 0.070 0.085 0.11 M6 E/MA 0.10 0.65 0.0028 0.0034 0.0044 M7 E/MA 0.10 0.65 0.0028 0.0034 0.0044 M8 E/MA 0.10 0.65 0.070 0.085 0.11 M8 E/MA 0.10 0.65 0.0028 0.0034 0.0044 M8 E/MA/D 0.10 0.65 0.0028 0.0034 0.0044	175 (140 — 210) 570 (460 — 680)
P12 E/MA/D 0,10 0,65 0,060 0,075 0,090 0,0036 M1 E/M/A 0,10 0,65 0,0024 0,0030 0,0036 0,0036 M1 E/M/A 0,10 0,65 0,070 0,085 0,11 0,0044 0,0030 0,0036 0,0034 0,0044 0,0030 0,0036 0,0034 0,0044 0,0030 0,0036 0,0034 0,0044 0,0030 0,0036 0,0034 0,0044 0,0044 0,0030 0,0034 0,0044 0,0044 0,0030 0,0034 0,0044 0,0044 0,0030 0,0034 0,0044	155 (130 — 180)
M1 E/M/A 0,10 0,65 0,0024 0,0030 0,0036 M1 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M2 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M3 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M4 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M4 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M5 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M6 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M6 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M7 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M8 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 M8 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 M8 E/M/A/D 0,10 0,65 0,0008 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,0008 0,0008 0,0004	510 (430 — 590) 95 (78 — 110)
M1 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M2 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M3 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M4 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M5 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M6 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M6 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M6 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M7 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M8 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M9 E/M/A 0.10 0.65 0.0028 0.0034 0.0044	310 (260 — 360)
M3 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M3 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M4 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M5 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M5 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 K1 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K2 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K3 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K4 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K4 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K4 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K5 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K6 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K6 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K6 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K7 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K8 E/M/A/D 0.10 0.665 0.0028 0.0034 0.0044 K9 E/M/A/D 0.10 0.665 0.0028 0.0034 0.0044	185 (160 — 210) 610 (530 — 680)
M3 E/M/A 0,10 0,65 0,070 0,085 0,11 M4 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M4 E/M/A 0,10 0,65 0,070 0,085 0,11 M5 E/M/A 0,10 0,65 0,0028 0,0034 0,0044 M5 E/M/A 0,10 0,65 0,070 0,085 0,11 M6 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K1 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K2 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K3 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K4 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K4 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K5 E/M/A/D 0,10 0,65	150 (130 — 170) 490 (430 — 550)
M4 E/M/A 0,10 0,65 0,070 0,085 0,111 0,0044 M5 E/M/A 0,10 0,65 0,070 0,085 0,111 0,0044 M6 E/M/A 0,10 0,65 0,070 0,085 0,111 0,0044 M7 E/M/A 0,10 0,65 0,070 0,085 0,111 0,0044 M8 E/M/A 0,10 0,65 0,070 0,085 0,111 0,10 M8 E/M/A/D 0,10 0,65 0,070 0,085 0,111 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,111 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,111 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,111 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,11 0,11 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,11 0,11 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,11 0,11 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,11 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,11 0,11 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,11 0,11 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,11 0,11 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,11 0,11 0,10 0,65 0,0028 0,0034 0,0044 M9 E/M/A/D 0,10 0,65 0,070 0,085 0,11 0,11 0,11 0,11 0,11 0,11 0,11 0,1	120 (95 — 140)
M4 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 M5 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 K1 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K1 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K2 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K3 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K3 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K4 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K4 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K5 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K6 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K6 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K6 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K7 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044	395 (320 — 450) 90 (71 — 110)
NS	295 (240 — 360)
K1 E/M/A/D 0.10 0.65 0.0028 0.0034 0.0044 K2 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K3 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K4 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K4 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K5 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K6 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K6 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K7 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K7 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K7 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K7 E/M/A/D 0,10	75 (59 — 92) 245 (200 — 300)
K2 E/MIA/D 0,10 0 0,65 0,65 0,070 0,085 0,0034 0,00044 0,11 0,00044 0,00044 K3 E/MIA/D 0,10 0,10 0,65 0,0028 0,0034 0,00044 0,0044 0,00044 0,00044 K4 E/MIA/D 0,10 0,65 0,0028 0,0034 0,00044 0,00044 K5 E/MIA/D 0,10 0,65 0,0028 0,0034 0,00044 0,00044 K6 E/MIA/D 0,10 0,65 0,0028 0,0034 0,00044	360 (310 — 410) 1175 (1100 — 1300)
K3 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K4 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K5 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K6 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K6 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K6 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K7 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K8 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044 K9 E/M/A/D 0,10 0,65 0,0028 0,0034 0,0044	310 (270 — 350)
K4 E/MIA/D 0.10 0.65 0.0028 0.0034 0.0044 K4 E/MIA/D 0,10 0,65 0,070 0,085 0,111 K5 E/MIA/D 0,10 0,65 0,070 0,085 0,11 K6 E/MIA/D 0,10 0,65 0,070 0,085 0,11 K7 E/MIA/D 0,10 0,65 0,070 0,085 0,111 C0.10 0.65 0,0028 0.0034 0.0044 N1 E/MIA 0,10 0,65 0,0028 0.0034 0.0044	1025 (890 — 1100) 265 (230 — 300)
K4 Ε/Μ/Α/D 0.10 0.65 0.0028 0.0034 0.0044 K5 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K6 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K7 E/M/A/D 0,10 0,65 0,070 0,085 0,11 K7 E/M/A/D 0,10 0,65 0,070 0,085 0,11 N1 E/M/A 0,10 0.65 0,0028 0,0034 0,0044 N1 E/M/A 0,10 0,65 0,10 0,12 0,15	870 (760 — 980)
K6 E/MIA/D 0.10 0.65 0.0028 0.0034 0.0044 K6 E/MIA/D 0,10 0,65 0,070 0,085 0,11 0.10 0.65 0.0028 0.0034 0.0044 K7 E/MIA/D 0,10 0,65 0,070 0,085 0,11 0.10 0.65 0.0028 0.0034 0.0044 N1 E/MIA 0,10 0,65 0,10 0,12 0,15	250 (220 — 280) 820 (730 — 910)
K6 E/M/A/D 0,10 0.10 0.65 0.65 0.0028 0.0034 0.0034 0.0044 K7 E/M/A/D 0,10 0.65 0.65 0.0028 0.0028 0.0034 0.0044 N1 E/M/A 0,10 0.65 0.65 0.002 0.0028 0.0034 0.0044	100 (79 — 120) 330 (260 — 390)
K7 E/M/A/D 0.10 0.10 0.10 0.65 0.65 0.65 0.0028 0.0028 0.0034 0.0034 0.0034 0.0044 0.0044 N1 F/M/Δ 0,10 0.65 0,65 0.65 0,10 0.10 0,12 0.15	150 (120 — 180)
0.10 0.65 0.0028 0.0034 0.0044 N1 F/M/Δ 0,10 0,65 0,10 0,12 0,15	490 (400 — 590) 130 (110 — 160)
	425 (370 — 520) 510 (390 — 630)
	1675 (1300 — 2000)
N2 E/M/A 0,10 0,65 0,10 0,12 0,15 0.0040 0.0048 0.0060	330 (250 — 400) 1075 (830 — 1300)
N3 F/M/Δ 0,10 0,65 0,10 0,12 0,15	220 (170 — 270)
0.70 0.00 0.0040 0.0048 0.0000 0.10 0.65 0.070 0.085 0.11	720 (560 — 880) 405 (270 — 530)
N11 E/M/A 0.10 0.65 0.0028 0.0034 0.0044 0.050 0.65 0.060 0.070 0.095	1325 (890 — 1700) 110 (66 — 150)
S1 E 0.050 0.65 0.0024 0.0028 0.0038	360 (220 — 490)
S2 E 0,050 0,65 0,060 0,070 0,095 0.050 0.050 0.65 0.0024 0.0028 0.0038	90 (53 — 120) 295 (180 — 390)
E 0,050 0,65 0,060 0,070 0,095	75 (46 — 100)
0.050 0.05 0.0024 0.0026 0.0038 0.10 0.65 0.070 0.085 0.11	245 (160 — 320) 175 (130 — 220)
0.10 0.05 0.0028 0.0034 0.0044	570 (430 — 720) 135 (95 — 170)
S12 E 0,10 0,65 0,070 0,085 0,11 0.10 0.65 0.0028 0.0034 0.0044	445 (320 — 550)
S13 E 0,10 0,65 0,070 0,085 0,11 0.10 0.65 0.0028 0.0034 0.0044	105 (74 — 130) 345 (250 — 420)
TS1 A/D 0,10 0,65 0,10 0,12 0,15	320 (200 — 440)
0.70 0.65 0.0040 0.0048 0.0060 0.10 0.65 0.10 0.12 0.15	1050 (660 — 1400) 320 (200 — 440)
1P1 A/D 0.10 0.65 0.0040 0.0048 0.0060 0.10 0.65 0.070 0.085 0.11	1050 (660 — 1400) 850 (710 — 980)
GR1 A/D 0.10 0.65 0.0028 0.0034 0.0044	2800 (2400 — 3200)

SECO !

Cutting data – XVB510 Copy milling roughing inch

	4	a _e /DC	a _p /DC		f _z		V _c
SMG				3/8	1/2	5/8	
P1	E/M/A/D	0,10	0,65	0,070	0,085	0,11	365 (320 — 420)
		0.10 0,10	0.65 0,65	0.0028 0,070	0.0034 0,085	0.0044 0,11	1200 (1100 — 1300) 355 (310 — 400)
P2	E/M/A/D	0.10	0.65	0.0028	0.0034	0.0044	1175 (1100 — 1300)
P3	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	305 (270 — 350) 1000 (890 — 1100)
P4	E/M/A/D	0,10	0,65	0,070	0,085	0,11	270 (230 — 310)
DE	E/M/A/D	0.10 0,10	0.65 0,65	0.0028 0,070	0.0034 0,085	<i>0.0044</i> 0,11	890 (760 — 1000) 175 (140 — 210)
P5	E/M/A/D	0.10	0.65	0.0028	0.0034	0.0044	570 (460 — 680)
P6	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	195 (160 — 240) 640 (530 — 780)
P7	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	185 (150 — 220) 610 (500 — 720)
P8	E/M/A/D	0,10	0,65	0,070	0,085	0,11	175 (140 — 210)
		0.10 0,10	0.65 0,65	0.0028 0,070	0.0034 0,085	<i>0.0044</i> 0,11	570 (460 — 680) 155 (130 — 180)
P11	E/M/A/D	0.10	0.65	0.0028	0.0034	0.0044	510 (430 — 590)
P12	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,060 0.0024	0,075 0.0030	0,090 <i>0.0036</i>	95 (78 — 110) 310 (260 — 360)
M1	E/M/A	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	185 (160 — 210) 610 (530 — 680)
M2	E/M/A	0,10	0,65	0,070	0,085	0,11	150 (130 — 170)
		0.10 0,10	0.65 0,65	0.0028 0,070	0.0034 0,085	0.0044 0,11	490 (430 — 550) 120 (95 — 140)
M3	E/M/A	0.10	0.65	0.0028	0.0034	0.0044	395 (320 — 450)
M4	E/M/A	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	90 (71 — 110) 295 (240 — 360)
M5	E/M/A	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	75 (59 — 92) 245 (200 — 300)
K1	E/M/A/D	0,10	0,65	0,070	0,085	0,11	360 (310 — 410)
		0.10 0,10	0.65 0,65	0.0028 0,070	0.0034 0,085	<i>0.0044</i> 0,11	1175 (1100 — 1300) 310 (270 — 350)
K2	E/M/A/D	0.10	0.65	0.0028	0.0034	0.0044	1025 (890 — 1100)
K3	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	265 (230 — 300) 870 (760 — 980)
K4	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	250 (220 — 280) 820 (730 — 910)
K5	E/M/A/D	0,10	0,65	0,070	0,085	0,11	100 (79 — 120)
		0.10 0,10	0.65 0,65	0.0028 0,070	0.0034 0,085	<i>0.0044</i> 0,11	330 (260 — 390) 150 (120 — 180)
K6	E/M/A/D	0.10	0.65	0.0028	0.0034	0.0044	490 (400 — 590)
K7	E/M/A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	130 (110 — 160) 425 (370 — 520)
N1	E/M/A	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,10 <i>0.0040</i>	0,12 <i>0.0048</i>	0,15 <i>0.0060</i>	510 (390 — 630) 1675 (1300 — 2000)
N2	E/M/A	0,10	0,65	0,10	0,12	0,15	330 (250 — 400)
		0.10 0,10	0.65 0,65	0.0040 0,10	0.0048 0,12	0.0060 0,15	1075 (830 — 1300) 220 (170 — 270)
N3	E/M/A	0.10	0.65	0.0040	0.0048	0.0060	720 (560 — 880)
N11	E/M/A	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	405 (270 — 530) 1325 (890 — 1700)
S1	E	0,050 <i>0.050</i>	0,65 <i>0.65</i>	0,060 <i>0.0024</i>	0,070 0.0028	0,095 <i>0.00</i> 38	110 (66 — 150) 360 (220 — 490)
S2	Е	0,050	0,65	0,060	0,070	0,095	90 (53 — 120)
		0.050 0,050	0.65 0,65	0.0024 0,060	0.0028 0,070	0.0038 0,095	295 (180 — 390) 75 (46 — 100)
S3	E	0.050	0.65	0.0024	0.0028	0.0038	245 (160 — 320)
S11	E	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	175 (130 — 220) 570 (430 — 720)
S12	E	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	135 (95 — 170) 445 (320 — 550)
S13	Е	0,10	0,65	0,070	0,085	0,11	105 (74 — 130)
		0.10 0,10	0.65 0,65	0.0028 0,10	0.0034 0,12	0.0044 0,15	345 (250 — 420) 320 (200 — 440)
TS1	A/D	0.10	0.65	0.0040	0.0048	0.0060	1050 (660 — 1400)
TP1	A/D	0,10 <i>0.10</i>	0,65 <i>0.65</i>	0,10 <i>0.0040</i>	0,12 0.0048	0,15 <i>0.0060</i>	320 (200 — 440) 1050 (660 — 1400)
GR1	A/D	0,10 <i>0.10</i>	0,65 0.65	0,070 0.0028	0,085 0.0034	0,11 <i>0.0044</i>	850 (710 — 980) 2800 (2400 — 3200)
		0.70	0.00	0.0020	0.0004	0.0077	2300 (2700 — 3200)



XVC506/509/512

General purpose – Universal – Chamfer – 2 Flutes

- Tolerances: SIG= ±1°

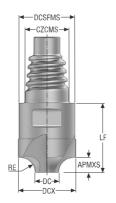
Designation	ltem number	Length index	Tool shape	CZCMS	DCX	DC	DCSFMS	APMXS	LF	SIG°	PCEDC	SW	Grade
					mm	mm	mm	mm	mm				SIRA
XVC506E10100N1SZ2	10138012	1	N	E10	10,0	1,5	9,7	7,23	11,8	60,0	2	6	
XVC506E12120N1SZ2	10138013	1	N	E12	12,0	1,5	11,7	7,73	14,0	60,0	2	8	
XVC509E10100N1SZ2	10138014	1	N	E10	10,0	1,5	9,7	4,23	11,8	90,0	2	6	
XVC509E12120N1SZ2	10138015	1	N	E12	12,0	1,5	11,7	5,23	14,0	90,0	2	8	•
XVC509E16160N1SZ2	10138016	1	N	E16	16,0	1,5	15,5	7,23	18,1	90,0	2	10	
XVC512E12120N1SZ2	10138017	1	N	E12	12,0	1,5	11,7	3,03	14,0	120,0	2	8	

Stocked standard.

Cutting data - XVC506 Chamfering

SMG	Ā	a _e /DC	a _p /DC	f	z	v _c
OMO				10	12	
P1	E/M/A/D	0,10	2,0 2.0	0,25 0.010	0,26 0.010	200 (180 — 220)
P2	E/M/A/D	0.10 0,10	2,0	0,25	0,26	660 (600 — 720) 195 (180 — 220)
		0.10 0,10	2.0 2,0	0.010 0,24	0.010 0,25	640 (600 — 720) 170 (150 — 190)
P3	E/M/A/D	0.10	2.0	0.0095	0.010	560 (500 — 620)
P4	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,24 0.0095	0,25 0.010	150 (130 — 160) 490 (430 — 520)
P5	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,24 0.0095	0,25 0.010	150 (140 — 170) 490 (460 — 550)
P6	E/M/A/D	0,10 0.10	2,0 2.0	0,24 0.0095	0,24 0.0095	170 (150 — 190)
P7	E/M/A/D	0,10	2,0	0,24	0,24	560 (500 — 620) 160 (140 — 180)
		0.10 0,10	2.0 2,0	0.0095 0,24	0.0095 0,26	520 (460 — 590) 150 (140 — 170)
P8	E/M/A/D	0.10 0,10	2.0 2,0	0.0095 0,24	0.010 0,24	490 (460 — 550) 105 (86 — 120)
P11	E/M/A/D	0.10	2.0	0.0095	0.0095	345 (290 — 390)
P12	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,16 0.0065	0,17 <i>0.0065</i>	65 (53 — 78) 215 (180 — 250)
M1	E/M/A	0,10 <i>0.10</i>	2,0 2.0	0,26 0.010	0,28 <i>0.011</i>	125 (99 — 140) 410 (330 — 450)
M2	E/M/A	0,10	2,0	0,24	0,25	100 (80 — 120)
		0.10 0,10	2.0 2,0	0.0095 0,24	0.010 0,25	330 (270 — 390) 65 (45 — 84)
M3	E/M/A	0.10	2.0	0.0095	0.010	215 (150 — 270)
M4	E/M/A	0,10 <i>0.10</i>	2,0 2.0	0,20 0.0080	0,22 0.0085	50 (35 — 65) 165 (120 — 210)
M5	E/M/A	0,10 <i>0.10</i>	2,0 2.0	0,20 0.0080	0,22 0.0085	42 (29 — 54) 140 (96 — 170)
K1	E/M/A/D	0,10	2,0 2.0	0,25 0.010	0,26 0.010	200 (180 — 220)
K2	E/M/A/D	0.10 0,10	2,0	0,22	0,24	660 (600 — 720) 175 (160 — 190)
		0.10 0,10	2.0 2,0	0.0085 0,22	0.0095 0,24	570 (530 — 620) 150 (130 — 160)
K3	E/M/A/D	0.10	2.0	0.0085	0.0095	490 (430 — 520)
K4	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,22 0.0085	0,24 0.0095	140 (130 — 150) 460 (430 — 490)
K5	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,20 0.0080	0,22 0.0085	85 (74 — 95) 280 (250 — 310)
K6	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,22 0.0085	0,24 0.0095	125 (110 — 140) 410 (370 — 450)
K7	E/M/A/D	0,10	2,0	0,20	0,22	110 (94 — 120)
		0.10 0,10	2.0 2,0	0.0080 0,24	0.0085 0,25	360 (310 — 390) 600 (500 — 690)
N1	E/M/A	0.10 0,10	2.0	0.0095 0,24	0.010 0,25	1975 (1700 — 2200) 385 (330 — 440)
N2	E/M/A	0.10	2.0	0.0095	0.010	1275 (1100 — 1400)
N3	E/M/A	0,10 0.10	2,0 2.0	0,24 0.0095	0,25 0.010	255 (220 — 290) 840 (730 — 950)
N11	E/M/A	0,10	2,0 2.0	0,24 0.0095	0,25	400 (350 — 450) 1300 (1200 — 1400)
S1	E	0.10 0,10	2,0	0,12	0.010 0,13	43 (15 — 71)
		0.10 0,10	2.0 2,0	0.0048 0,12	0.0050 0,13	140 (50 — 230) 35 (12 — 57)
S2	E	0.10	2.0	0.0048	0.0050	115 (40 — 180)
S3	E	0,10 <i>0.10</i>	2,0 2.0	0,12 0.0048	0,12 0.0048	30 (10 — 49) 100 (33 — 160)
S11	E	0,10 <i>0.10</i>	2,0 2.0	0,24 0.0095	0,25 0.010	95 (72 — 120) 310 (240 — 390)
S12	E	0,10	2,0	0,24	0,25	75 (55 — 94)
S13	E	0.10 0,10	2.0 2,0	0.0095 0,20	0.010 0,22	245 (190 — 300) 60 (44 — 75)
		0.10 0,050	2.0 2,0	0.0080 0,11	0.0085 0,12	195 (150 — 240) 120 (110 — 140)
H5	M/A	0.050	2.0	0.0044	0.0048	395 (370 — 450)
H8	M/A	0,050 0.050	2,0 2.0	0,085 0.0034	0,090 0.0036	120 (110 — 140) 395 (370 — 450)
H21	M/A	0,050 <i>0.050</i>	2,0 2.0	0,085 0.0034	0,090 0.0036	120 (110 — 140) 395 (370 — 450)
H31	M/A	0,050	2,0	0,075	0,080	95 (78 — 100)
TS1	A/D	0.050 0,10	2.0 2,0	0.0030 0,17	0.0032 0,18	310 (260 — 320) 260 (160 — 360)
		0.10 0,10	2.0 2,0	0.0065 0,17	0.0070 0,18	850 (530 — 1100) 260 (160 — 360)
TP1	A/D	0.10	2.0	0.0065	0.0070	850 (530 — 1100)
GR1	A/D	0,10 <i>0.10</i>	2,0 2.0	0,24 0.0095	0,25 0.010	600 (500 — 690) 1975 (1700 — 2200)

Cutting of	lata – XVC509 Chamfer	ing					
SMG	Ā	a _e /DC	a _p /DC		f _z		V _c
O.III O				10	12	16	
P1	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,24 0.0095	0,25 0.010	0,28 0.011	200 (180 — 220) 660 (600 — 720)
P2	E/M/A/D	0,10	2,0	0,24	0,26	0,28	195 (180 — 220)
		0.10 0,10	2.0 2,0	0.0095 0,24	0.010 0,24	0.011 0,26	640 (600 — 720) 170 (150 — 190)
P3	E/M/A/D	0.10	2.0	0.0095	0.0095	0.010	560 (500 — 620)
P4	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,22 0.0085	0,24 0.0095	0,26 <i>0.010</i>	150 (130 — 160) 490 (430 — 520)
P5	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,22 0.0085	0,24 0.0095	0,26 0.010	150 (140 — 170) 490 (460 — 550)
P6	E/M/A/D	0,10	2,0	0,22	0,24	0,26	170 (150 — 190)
		0.10 0,10	2.0 2,0	0.0085 0,22	0.0095 0,24	0.010 0,26	560 (500 — 620) 160 (140 — 180)
P7	E/M/A/D	0.10	2.0	0.0085	0.0095	0.010	520 (460 — 590)
P8	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,24 0.0095	0,25 0.010	0,28 0.011	150 (130 — 160) 490 (430 — 520)
P11	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,22 0.0085	0,24 0.0095	0,26 <i>0.010</i>	105 (85 — 120) 345 (280 — 390)
P12	E/M/A/D	0,10	2,0	0,15	0,16	0,18	65 (52 — 77)
M1	E/M/A	0.10 0,10	2.0 2,0	0.0060 0,25	0.0065 0,26	0.0070 0,28	215 (180 — 250) 120 (98 — 140)
		0.10 0,10	2.0 2,0	0.010 0,22	0.010 0,24	0.011 0,26	395 (330 — 450) 100 (80 — 120)
M2	E/M/A	0.10	2.0	0.0085	0.0095	0.010	330 (270 — 390)
M3	E/M/A	0,10 0.10	2,0 2.0	0,22 0.0085	0,24 0.0095	0,26 0.010	65 (45 — 84) 215 (150 — 270)
M4	E/M/A	0,10 <i>0.10</i>	2,0 2.0	0,20 <i>0.0080</i>	0,20 0.0080	0,22 0.0085	49 (35 — 64) 160 (120 — 200)
M5	E/M/A	0,10	2,0	0,20	0,20	0,22	41 (29 — 53)
		0.10 0,10	2.0 2,0	0.0080 0,24	0.0080 0,26	0.0085 0,28	135 (96 — 170) 200 (180 — 220)
K1	E/M/A/D	0.10 0,10	2.0 2,0	0.0095 0,22	0.010 0,24	0.011 0,26	660 (600 — 720) 175 (160 — 190)
K2	E/M/A/D	0.10	2.0	0.0085	0.0095	0.010	570 (530 — 620)
K3	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,22 0.0085	0,24 0.0095	0,26 <i>0.010</i>	145 (130 — 160) 475 (430 — 520)
K4	E/M/A/D	0,10 <i>0.10</i>	2,0 2.0	0,22 0.0085	0,24 0.0095	0,26 0.010	140 (130 — 150) 460 (430 — 490)
K5	E/M/A/D	0,10	2,0	0,20	0,22	0,24	85 (74 — 95)
		0.10 0,10	2.0 2,0	0.0080 0,22	0.0085 0,24	0.0095 0,26	280 (250 — 310) 125 (110 — 130)
K6	E/M/A/D	0.10 0,10	2.0 2,0	0.0085 0,20	0.0095 0,22	0.010 0,24	410 (370 — 420) 110 (94 — 120)
K7	E/M/A/D	0.10	2.0	0.0080	0.0085	0.0095	360 (310 — 390)
N1	E/M/A	0,10 0.10	2,0 2.0	0,22 0.0085	0,24 0.0095	0,26 0.010	600 (500 — 700) 1975 (1700 — 2200)
N2	E/M/A	0,10 <i>0.10</i>	2,0 2.0	0,22 0.0085	0,24 0.0095	0,26 <i>0.010</i>	385 (330 — 450) 1275 (1100 — 1400)
N3	E/M/A	0,10	2,0	0,22	0,24	0,26	255 (220 — 300)
N11	E/M/A	0.10 0,10	2.0 2,0	0.0085 0,22	0.0095 0,24	0.010 0,26	840 (730 — 980) 400 (350 — 450)
		0.10 0,10	2.0 2,0	0.0085 0,13	0.0095 0,13	0.010 0,15	1300 (1200 — 1400) 43 (15 — 71)
S1	Е	0.10	2.0	0.0050	0.0050	0.0060	140 (50 — 230)
S2	Е	0,10 <i>0.10</i>	2,0 2.0	0,13 <i>0.0050</i>	0,13 <i>0.0050</i>	0,15 <i>0.0060</i>	35 (12 — 57) 115 (40 — 180)
S3	Е	0,10 <i>0.10</i>	2,0 2.0	0,12 0.0048	0,12 0.0048	0,14 <i>0.0055</i>	30 (10 — 50) 100 (33 — 160)
S11	Е	0,10 0.10	2,0 2.0	0,22 0.0085	0,24 0.0095	0,26 0.010	100 (72 — 120)
S12	E	0,10	2,0	0,22	0,24	0,26	330 (240 — 390) 75 (55 — 94)
		0.10 0,10	2.0 2,0	0.0085 0,20	0.0095 0,22	0.010 0,22	245 (190 — 300) 60 (44 — 74)
S13	Е	0.10	2.0	0.0080	0.0085	0.0085	195 (150 — 240)
H5	M/A	0,10 0.10	2,0 2.0	0,12 <i>0.0048</i>	0,12 <i>0.0048</i>	0,14 <i>0.0055</i>	120 (110 — 140) 395 (370 — 450)
Н8	M/A	0,10 <i>0.10</i>	2,0 2.0	0,090 <i>0.0036</i>	0,095 <i>0.0038</i>	0,10 <i>0.0040</i>	120 (110 — 140) 395 (370 — 450)
H21	M/A	0,10	2,0	0,090	0,095	0,10	120 (110 — 140)
H31	M/A	0.10 0,10	2.0 2,0	0.0036 0,075	0.0038 0,080	0.0040 0,090	395 (370 — 450) 90 (77 — 100)
		0.10 0,10	2.0 2,0	0.0030 0,22	0.0032 0,24	0.0036 0,26	295 (260 — 320) 250 (150 — 350)
TS1	A/D	0.10	2.0	0.0085	0.0095	0.010	820 (500 — 1100)
TP1	A/D	0,10 <i>0.10</i>	2,0 2.0	0,22 0.0085	0,24 <i>0.00</i> 95	0,26 0.010	250 (150 — 350) 820 (500 — 1100)
GR1	A/D	0,10 <i>0.10</i>	2,0 2.0	0,22 0.0085	0,24 0.0095	0,26 0.010	600 (500 — 700) 1975 (1700 — 2200)
	1						/


Cutting d	ata – XVC512 Chamfering				
SMG	A	a _e /DC	a _p /DC	f _z	v _c
				12	
P1	E/M/A/D	0,10 <i>0.10</i>	1,3 <i>1.</i> 3	0,36 <i>0.014</i>	165 (150 — 180) 540 (500 — 590)
P2	E/M/A/D	0,10	1,3	0,36	160 (140 — 170)
		0.10 0,10	1.3 1,3	0.014 0,34	520 (460 — 550) 135 (120 — 150)
P3	E/M/A/D	0.10	1.3	0.013	445 (400 — 490)
P4	E/M/A/D	0,10 <i>0.10</i>	1,3 1.3	0,34 0.013	120 (110 — 130) 395 (370 — 420)
P5	E/M/A/D	0,10 <i>0.10</i>	1,3 <i>1.3</i>	0,34 0.013	120 (110 — 130) 395 (370 — 420)
P6	E/M/A/D	0,10 <i>0.10</i>	1,3 <i>1.</i> 3	0,32 <i>0.01</i> 3	135 (120 — 150) 445 (400 — 490)
P7	E/M/A/D	0,10 <i>0.10</i>	1,3 <i>1.</i> 3	0,32 0.013	125 (120 — 140) 410 (400 — 450)
P8	E/M/A/D	0,10 <i>0.10</i>	1,3 1.3	0,34 0.013	120 (110 — 130) 395 (370 — 420)
P11	E/M/A/D	0,10 <i>0.10</i>	1,3 <i>1.</i> 3	0,32 <i>0.01</i> 3	85 (68 — 100) 280 (230 — 320)
P12	E/M/A/D	0,10 <i>0.10</i>	1,3 1.3	0,22 0.0085	50 (41 — 61) 165 (140 — 200)
M1	E/M/A	0,10	1,3	0,36	100 (80 — 110)
		0.10 0,10	1.3 1,3	0.014 0,34	330 (270 — 360) 80 (65 — 96)
M2	E/M/A	0.10 0,10	1.3 1,3	0.013 0,34	260 (220 — 310) 50 (37 — 68)
M3	E/M/A	0.10	1.3	0.013	165 (130 — 220)
M4	E/M/A	0,10 <i>0.10</i>	1,3 1.3	0,30 0.012	39 (28 — 51) 130 (92 — 160)
M5	E/M/A	0,10 <i>0.10</i>	1,3 <i>1.</i> 3	0,30 0.012	33 (23 — 42) 110 (76 — 130)
K1	E/M/A/D	0,10 <i>0.10</i>	1,3 <i>1.</i> 3	0,36 <i>0.014</i>	160 (140 — 180) 520 (460 — 590)
K2	E/M/A/D	0,10 <i>0.10</i>	1,3 <i>1</i> .3	0,32 <i>0.01</i> 3	140 (130 — 150) 460 (430 — 490)
K3	E/M/A/D	0,10 0.10	1,3 1.3	0,32 0.013	115 (110 — 130) 375 (370 — 420)
K4	E/M/A/D	0,10 0,10 0.10	1,3	0,32 0.013	110 (98 — 120) 360 (330 — 390)
K5	E/M/A/D	0,10 0,10 <i>0.10</i>	1.3 1,3 1.3	0,30 0,012	65 (58 — 75) 215 (200 — 240)
K6	E/M/A/D	0,10	1,3	0,32	100 (86 — 110)
K7	E/M/A/D	0.10 0,10	1.3 1,3	0.013 0,30	330 (290 — 360) 85 (74 — 96)
N1	E/M/A	0.10 0,10	1.3 1,3	0.012 0,34	280 (250 — 310) 480 (410 — 560)
N2	E/M/A	0.10 0,10	1.3 1,3	0.013 0,34	1575 (1400 — 1800) 310 (260 — 360)
		0.10 0,10	1.3 1,3	0.013 0,34	1025 (860 — 1100) 205 (180 — 240)
N3	E/M/A	0.10 0,10	<i>1.3</i> 1,3	0.013 0,34	670 (600 — 780) 320 (290 — 360)
N11	E/M/A	0.10	1.3	0.013	1050 (960 — 1100)
S1	E	0,10 <i>0.10</i>	1,3 1.3	0,19 <i>0.0075</i>	35 (12 — 58) 115 (40 — 190)
S2	E	0,10 <i>0.10</i>	1,3 1.3	0,19 <i>0.0075</i>	29 (9,6 — 47) 95 (32 — 150)
S 3	E	0,10 <i>0.10</i>	1,3 1.3	0,17 0.0065	25 (8,3 — 41) 80 (28 — 130)
S11	E	0,10 <i>0.10</i>	1,3 1.3	0,34 0.013	80 (58 — 98) 260 (200 — 320)
S12	E	0,10 <i>0.10</i>	1,3 1.3	0,34 0.013	60 (45 — 76) 195 (150 — 240)
S13	E	0,10 <i>0.10</i>	1,3 <i>1.</i> 3	0,30 <i>0.012</i>	47 (35 — 59) 155 (120 — 190)
H5	M/A	0,10 <i>0.10</i>	1,3 1.3	0,17 0.0065	100 (83 — 110) 330 (280 — 360)
Н8	M/A	0,10 <i>0.10</i>	1,3 1.3	0,13 <i>0.0050</i>	100 (84 — 110) 330 (280 — 360)
H21	M/A	0,10 <i>0.10</i>	1,3 <i>1.</i> 3	0,13 <i>0.0050</i>	100 (84 — 110) 330 (280 — 360)
H31	M/A	0,10 <i>0.10</i>	1,3 <i>1.</i> 3	0,11 <i>0.0044</i>	75 (64 — 88) 245 (210 — 280)
TS1	A/D	0,10 <i>0.10</i>	1,3 <i>1.</i> 3	0,34 0.013	200 (130 — 280) 660 (430 — 910)
TP1	A/D	0,10 <i>0.10</i>	1,3 1.3	0,34 0.013	200 (130 — 280) 660 (430 — 910)
GR1	A/D	0,10 0.10	1,3 1.3	0,34 0.013	480 (410 — 560) 1575 (1400 — 1800)
		0.70	1.0	0.070	10.0 (1700 1000)

XVK310

General purpose – Universal – Concave – 4 Flutes

- Tolerances:
 RE= ≤5= ±0,05 mm
 RE= >5= ±0,01 mm

Designation	ltem number	Length index	Tool shape	CZCMS	DCX	DC	DCSFMS	APMXS	LF	RE	PCEDC	sw	Grade
					mm	mm	mm	mm	mm	mm			SIRA
XVK310E12120D1K300Z4	10137998	1	D	E12	12,0	5,0	11,7	3,0	14,5	3,0	4	10	
XVK310E12120D1K400Z4	10137999	1	D	E12	12,0	4,0	11,7	4,0	14,5	4,0	4	10	•
XVK310E16160D1K500Z4	10138000	1	D	E16	16,0	6,0	15,5	5,0	18,7	5,0	4	12	
XVK310E20200D1K600Z4	10138001	1	D	E20	20,0	8,0	19,3	6,0	21,3	6,0	4	16	

Stocked standard.

SECO I

Cutting data – XVK310 Side milling roughing

	SMG	a _p /D_c		f _z		v _c
			12	16	20	
21	E/M/A/D	0,24	0,048	0,065	0,080	290 (195 — 310)
'	LINIAD	0,24	0,0019	0,0026	0,0032	950 (640 — 1100)
2	E/M/A/D	0,24	0,050	0,065	0,080	280 (190 — 305)
		0,24	0,0022	0,0026	0,0032	910 (620 — 1000)
3	E/M/A/D	0,24 0,24	0,046 0,0018	0,060 0,0024	0,075 0,003	240 (165 — 260) 790 (540 — 850)
		0,24	0,046	0,060	0,075	210 (145 — 230)
4	E/M/A/D	0,24	0,0018	0,0024	0,003	680 (475 — 760)
5	E/M/A/D	0,24	0,046	0,060	0,075	205 (135 — 220)
J	LIMIPAD	0,24	0,0018	0,0024	0,003	670 (445 — 730)
6	E/M/A/D	0,24 <i>0</i> ,24	0,044 0,0017	0,060 0,0024	0,075 0,003	230 (155 — 245) 760 (510 — 800)
		0,24	0,044	0,060	0,075	215 (145 — 230)
7	E/M/A/D	0,24	0,0017	0,0024	0,003	710 (475 — 760)
10	E/M/A/D	0,24	0,046	0,060	0,075	205 (140 — 220)
8	E/M/A/D	0,24	0,0018	0,0024	0,003	670 (460 — 730)
11	E/M/A/D	0,24	0,044	0,060	0,075	210 (140 — 225)
		0,24	0,0017	0,0024 0,065	0,003 0,080	680 (460 — 740) 255 (170 — 270)
11	E/M/A	0,24 <i>0</i> ,24	0,050 0,0022	0,0026	0,080	840 (560 — 890)
10	E/8.4/A	0,24	0,046	0,060	0,075	205 (135 — 220)
12	E/M/A	0,24	0,0018	0,0024	0,003	670 (445 — 730)
13	E/M/A	0,24	0,036	0,048	0,060	150 (105 — 165)
		0,24	0,0014	0,0019	0,0024	490 (345 — 540)
14	E/M/A	0,24 <i>0</i> ,24	0,032 0,0013	0,042 0,0017	0,050 0,0022	110 (75 — 120) 360 (250 — 400)
		0,24	0,032	0,042	0,050	95 (65 — 100)
15	E/M/A	0,24	0,0013	0,0017	0,0022	310 (220 — 320)
(1	E/M/A/D	0,24	0,046	0,060	0,075	205 (135 — 220)
١.	LINIAD	0,24	0,0018	0,0024	0,003	670 (445 — 730)
2	E/M/A/D	0,24	0,040	0,055	0,065	175 (120 — 190)
		0,24 0,24	0,0016 0,040	0,0022 0,055	0,0026 0,065	570 (400 — 620) 150 (100 — 160)
.3	E/M/A/D	0,24	0,0016	0,0022	0,0026	490 (320 — 530)
.,	E/M/A/D	0,24	0,040	0,055	0,065	140 (95 — 150)
4	E/M/A/D	0,24	0,0016	0,0022	0,0026	460 (310 — 490)
(5	E/M/A/D	0,24	0,036	0,050	0,060	85 (55 — 90)
		0,24 0,24	0,0014 0,040	0,0022	0,0024	280 (180 — 300) 125 (85 — 135)
6	E/M/A/D	0,24	0,0016	0,055 0,0022	0,065 0,0026	410 (280 — 445)
,	E/AJ/A/D	0,24	0,036	0,050	0,060	105 (70 — 115)
7	E/M/A/D	0,24	0,0014	0,0022	0,0024	345 (220 — 375)
11	E/M/A	0,24	0,046	0,060	0,075	315 (215 — 340)
		0,24	0,0018	0,0024	0,003	1025 (710 — 1125)
12	E/M/A	0,24 <i>0</i> ,24	0,046 0,0018	0,060 0,0024	0,075 0,003	205 (135 — 220) 670 (445 — 730)
10		0,24	0,046	0,060	0,005	135 (90 — 145)
13	E/M/A	0,24	0,0018	0,0024	0,003	445 (300 — 475)
11	E/M/A	0,24	0,046	0,060	0,075	205 (135 — 220)
. 1	-14// \	0,24	0,0018	0,0024	0,003	670 (445 — 730)
1	Е	0,24 <i>0</i> ,24	0,048 0,0019	0,065 0,0026	0,080 0,0032	205 (140 — 220) 670 (460 — 730)
		0,24	0,0079	0,0026	0,0032	205 (140 — 220)
2	E	0,24	0,0019	0,0026	0,0032	670 (460 — 730)
3	Е	0,24	0,046	0,060	0,075	205 (135 — 220)
	L	0,24	0,0018	0,0024	0,003	670 (445 — 730)
11	E	0,24	0,046	0,060	0,075	265 (180 — 285)
		0,24 0,24	0,0018 0,046	0,0024 0,060	0,003 0,075	870 (590 — 940) 205 (135 — 220)
12	Е	0,24	0,046	0,0024	0,003	670 (445 — 730)
10	F	0,24	0,040	0,050	0,065	155 (105 — 165)
13	Е	0,24	0,0016	0,0022	0,0026	510 (345 — 540)
S1	A/D	0,24	0,046	0,060	0,075	205 (135 — 220)
.		0,24	0,0018	0,0024	0,003	670 (445 — 730)
21	A/D	0,24 <i>0</i> ,24	0,046 0,0018	0,060 0,0024	0,075 0,003	205 (135 — 220) 670 (445 — 730)
_		0,24	0,046	0,060	0,075	205 (135 — 220)
R1	A/D	0,24	0,0018	0,0024	0,003	670 (445 — 730)

	al standard culate param		side rou	gh cuttin	g data						iginal st		version s neters!	lotting c	utting (data
	Slo	tting		Side rough	1		Side f	inish		Ram	ping		Helical		Di	rilling
Straight					ĵ		L. Miller				to so.					
	a _p	f _z	a _e	f _z	a _p	V _c	a _e (% of DC)	f _z	a _p	a _p	f _z	f _z	a _p /360° (% of DC)	hole Ø (≥ % of DC)	f _z	a _p (% of DC)
										≤ 3	0° *					
JS412 LV2	100	100	100	100	100	140	3	40	120	80	100 0° *	50	10	130	50	100
JS413 LV2 LV3	100 X	100 X	100 25	100 60	100 240	150 120	3 3	40 40	120 230	70	50 50	50 50	10 10	130 130	X	X
										≤ 3						
JS452 LV2 LV3	100 50	100 60	100 75	100 60	100 50	140 120	3	35 40	120 100	70 70	100 70	50 50	10 10	130 130	50 20	100 10
JS453										≤ 1	0° *					
LV2 LV3	100 X	100 X	100 25	100 60	100 240	140 120	3	35 40	120 230	70 70	50 70	50 50	10 10	130 130	20 20	10 10
JSE512										≤ 3	0° *					
LV2	100	100	100	100	100	110	3	65	125	40 ≤ 5	40 5° *	100	5	130	40	40
JSE513 LV2 LV3	100 30	100 100	100 30	100 50	100 200	110 110	3 3	85 85	150 250	100 X ≤ !	100 X	100 X	5 X	130 X	50 X	40 X
JSE514 LV2 LV3	100 X	100 X	100 25	100 50	100 200	110 110	3 3	60 60	150 250	100 X	100 X	100 X	5 X	130 X	X	X
	Α		20	- 00	200	110		00	200	< 4						
JS553 LV1 LV2 LV3	100 100 40	100 100 60	100 100 40	100 100 105	100 100 200	110 110 110	3 3 3	55 55 55	150 150 250	50 50 50	55 55 15	35 35 35	3 3 3	130 130 130	35 35 35	50 50 50
	40	00	40	103	200	110	3	55	200	50 ≤ 5		33		130	33	30
JS554 LV1 LV2	100 100	100 100	100 100	100 100	100 100	110 110	3 3	53 53	150 150	100 100	100 100	100 100	3 3	130 130	X X	X X
LV3	40	60	38	105	200	110	3	53	250	50	50	60	3	130	Χ	X
JS564 LV2	Х	X	100	100	100	110	3	55	100	X	Х	100	2	130	Х	X
LV3	X	X	38	105	140	110	3	55	140	X	X	60	1,5	130	X	X
JS565 LV2	X	Х	100	100	100	110	3	55	100	X	Х	100	2	130	Х	Х
LV3	X	X	38	105	140	110	3	55	140	X	X	60	1,5	130	Χ	X

Use originather then recald	al standard ulate paran		side rou	gh cuttin	ng data						riginal st ecalcula		version s neters!	lotting c	utting	data
	Slo	tting		Side rougl	h		Side f	inish		Ram	ping		Helical		D	rilling
Straight					ĵ		N. Sand)		•
	a _p	f _z	a _e	f _z	a _p	V _c	a _e (% of DC)	f _z	a _p	a _p	f _z	f _z	a _p /360° (% of DC)	hole Ø (≥ % of DC)	f _z	a _p (% of DC)
										≤ 4	5° *					
J28 LV2	100	100	100	100	100	140	3	100	135	40	25	100	10	130	25	60
J36										≤)	(° *					
LV2	Х	Х	100	100	100	120	3	85	150	X < 2	XX	Х	X	Х	Х	X
J93F																
LV2	100	100	100	100	100	133	3	40	100	100 ≤	100 1°	100	3	130	25	30
JH120																
LV2	100	100	100	100	100	120	3	120	80	17	100 <° *	100	2	130	Х	X
JH130										27	\					
LV2	X	X	100	100	100	120	3	120	80	X	X	Х	X	Χ	Х	X
JH142										≤ >	(° *					
LV2	Х	Х	100	100	100	110	3	80	70	X	Х	30	2	130	Х	X
LV3	X	X	100	100	100	110	3	80	70	X	X	20	1	130	X	X
LV6	X	X	100	100	100	110	3	80	70	X	X	10	<u>i</u>	130	X	X
111000										≤ 4	5° *					
JH830 LV2	100	100	100	100	100	110	3	110	80	9	135	135	3	130	Χ	X
	100	100	100	100	100	110	·	110			Κ° *	100		100	^	
JH910																
LV2	100	100	100	100	100	125	4	100	80	15	140	140	3	130	X	X
LV3	80	80	100	80	80	125	4	80	65	10	110	110	3	130	Χ	X
JH930										≤ >	(° *					
LV2	X	Х	100	100	100	125	2	30	100	X	Х	X	X	X	Χ	X

Use original then recalcu			side roug	gh cuttin	g data						iginal sta ecalculat		version s neters!	lotting c	utting	data
	Slo	tting		Side rough	1		Side fi	nish		Ram	ping		Helical		Di	rilling
Straight			,		ĵ		L. Corre				1 80]		
	a _p	f _z	a _e	f _z	a _p	V _c	a _e (% of DC)	f _z	a _p	a _p	f _z	f _z	a _p /360° (% of DC)	hole Ø (≥ % of DC)	f _z	a _p (% of DC
										≤ 5	;° *					
JH40	400	400	400	400	400	400		0.5	400	00			0.5	400		
LV2	100	100	100	100	100	100 100	3	35 35	100	83	55 55	55 55	25 25	130	55 55	80
LV3	100	100	100	100	100	100	3	ან	100	83 ≤ 4	55 5° *	25	∠5	130	25	80
JH410																
LV2	100	100	100	100	100	125	2	25	100	100	67	67	40	130	67	80
LV2 (ML)	75	60	80	60	100	125	2	25	100	60	40	40	40	130	40	50
LV2 (TL)	125	100	100	100	100	100	2	100	100	100	50	100	40	130	150	80
LV2 (RS)	125	100	100	100	100	100	2	100	100	100	50	100	40	130	150	80
LV3 (RS)	95	95	80	100	100	100	2	100	100	50 ≤ 4	50 5° *	50	40	130	75	40
JH421										24	3					
LV2	100	100	100	100	100	100	4	35	100	100	100	100	25	130	45	80
										≤ 3	0° *					
JH440	100	100	100	100	100	125	3	40	100	100	400	400	5	130	V	Х
LV2	100	100	100	100	100	125	3	40	100	100	100	100	5	130	Х	
JHP750											,					
LV1	115	120	115	115	100	100	2	145	100	100	120	120	3	130	10	70
LV2	100	100	100	100	100	100	2	145	100	100	100	100	3	130	10	60
										≤ 5	5° *					
JHP951	400	400	400	400	400	450		=0			400	40=		400		
LV2	100	100	100	100	100	158	2	50	113	20 ≤ 1	100	125	3	130	6	20
JHP993										21	U					
LV2	100	100	100	100	100	Х	Х	Χ	Х	30	100	100	3	130	4	40
LV3	80	80	80	80	80	X	X	X	X	20	80	80	3	130	3	30
										≤ >	(° *					
JS520													.,	.,	.,	
LV2	X	X	100	100	100	133	2	65	100	X	X	X	X	X	X	X
LV3	Х	Χ	Χ	Χ	Χ	133	2	65	175	X ≤>	X (* *	Χ	X	Х	Х	Χ
JS522										/	`					
LV4	X	X	100	100	100	129	2	140	100	X	X	Χ	X	X	Χ	X
10=00																
JS720	V		100	100	100	110	2	G.F.	100			100	2	120	V	V
LV2 LV3	X	X	100 100	100 100	100 100	110 110	2 2	65 65	100 100	X	X X	100 100	2 2	130 130	X	X
LAO			100	100	100	110		υü	100	^	^	100		130	^	
JS754																
LV2	100	100	100	100	100	110	3	55	150	100	100	100	3	130	V	V
LV3	40	60	38	105	200	110	3	55	250	50	50	60	3	130	Х	Х
10===																
JS755	400	400	400	400	400	440			450	400	400	400	_	400		
LV2 LV3	100 40	100 60	100 38	100 105	100 100	110 110	3	55 55	150 250	100 50	100	100 60	3	130	Χ	Χ
ւ v չ Max ramping angl		- 00	- 30	100	100	110	3	00	200	30	50	00	. 3	130		

Use original st then recalcula			side rou	gh cuttin	g data						riginal st ecalculat		l version s meters!	ide millir	ng cutt	ing data
	Slot	ting		Side rough	1		Side f	finish		Ran	nping		Helical		D	rilling
Straight			1		Í		L.,)		
	a _p	f _z	a _e	f _z	a _p	V _c	a _e (% of DC)	f _z	a _p	a _p	f _z	f _z	a _p /360° (% of DC)	hole Ø (≥ % of DC)	f _z	a _p (% of DC
JME542-JME562-										≤	Χ°					
JME542-JME562- JME564																
JWE304 LV1	100	100	100	100	100	125	2	150	5	X	Х	Х	X	Х	Х	X
LV1 LV2	63	100	100	100	65	125	2	150	3	X	X	X	X	X	X	X
LV3	25	100	100	100	25	125	2	150	1	X	X	X	X	X	X	X
LV4 (TL)	18	100	100	100	20	125	2	150	1	X	X	X	X	Х	X	X
LV4 (XL)	12	100	100	100	10	125	2	150	1	X	X	Χ	X	Χ	X	X
LV5	10	100	100	100	10	125	2	150	1	X	X	X	X	Χ	X	X
LV6	4	100	100	100	5	125	2	150	1	X	X	X	X	Χ	X	X
LV7	2	100	100	100	2	125	2	150	1	X	X	X	X	Χ	X	X
										≤	Χ°					
JME142-JME144																
LV1	100	100	100	100	100	100	2	150	5	X	X	Χ	X	X	X	X
LV2	85	85	100	100	63	100	2	150	3	X	X	Χ	X	X	X	X
LV3	75	75	100	100	25	100	2	150	1	X	Χ	Χ	X	Χ	X	X
LV4	60	60	100	100	20	100	2	150	1	X	Х	Χ	X	Х	Χ	X
LV5	50	50	100	100	10	100	2	150	1	X	X	X	X	X	X	X
LV6	40	40	100	100	5	100	2	150	1	X	X	X	X	X	X	X
					•		_	,,,,			X° *	,	, ,	,,	,,	, ,
JM403-JM404-																
JM406																
LV1	100	100	100	100	100	Х	X	Х	Х	X	Х	Χ	X	Х	X	X
LV2	100	75	100	75	100	X	X	X	X	X	X	X	X	X	X	X
LV3 (L)	100	75	100	75	90	X	X	X	X	X	X	X	X	X	X	X
LV3 (TL)	90	75	100	75	70	X	X	X	X	X	X	X	X	X	X	X
LV4 (XL)	75	75	100	75	70	X	X	X	X	X	X	X	X	X	X	X
LV4 (SL)	75	75	100	75	45	X	X	X	X	X	X	X	X	X	X	X
LV4 (0L) LV5	50	50	100	50	30	X	X	X	X	X	X	X	X	X	X	X
JME642																
LV1																
LV1 LV3	100	100	100	100	100	100	2	85	200	X	X	Χ	X	Х	Χ	X
LV3 LV5	100	100	100	100	100	100	2	85	200	X	X	Χ	X	X	X	X
	30	100	60	100	100	100	2	85	200	X	X	Χ	X	Χ	Χ	X
LV6	30	100	60	100	100	100	2	85	200	X	X	Χ	X	Х	X	X
LV7	30	100	60	100	100	100	2	85	200	X	X	Χ	X	Χ	Χ	X
										5	≤2					
JC898																
LV3	X	Χ	100	100	100	X	X	Χ	X	X	50	80	3	130-160	Χ	Х
											5°					
JC899																
LV3	X	X	100	100	100	100	3	50	100	X	Х	Х				

Use original sthen recalcul			side rou	gh cuttin	g data						iginal st ecalcula		version s neters!	lotting c	utting	data
	Slo	tting		Side rough	1		Side f	inish		Ram	ping		Helical		D	rilling
Straight	Of	M.														
	a _p	f _z	a _e	f _z	a _p	V _c	a _e (% of DC)	f _z	a _p	a _p	f _z	f _z	a _p /360° (% of DC)	hole Ø (≥ % of DC)	f _z	a _p (% of DC
										S	1°					
JHP170																
LV2	100	100	100	100	100	130	3	175	80	100 ≤ 3	100	100	2	130	X	X
JHP490										5.	30-					
LV2 LV2 (E-Shape) LV3 LV4	100 100 100 150	100 75 75 75	100 100 80 80	100 100 100 100	100 100 100 100	X X X	X X X	X X X	X X X	50 50 50 50	50 50 50 50	35 35 35 35	5 5 5	130 130 130 130	30 30 30 30	50 50 50 50
	100			100	100				, ,	≤				100	- 00	
JHP760																
LV2	100	100	100	100	100	140	2	125	15	30	100	100	3	130	10	50
LV3	50	50	100	50	50	140	2	125	15	15	50 15°	50	3	130	5	25
JHP770											13					
LV2	100	100	100	100	100	170	3	125	100	100 ≤	40 5°	40	3	130	Х	X
JHP780																
LV1 LV2	100 100	100 100	100 100	100 100	100 100	160 160	2 2	135 135	140 140	100 100	100 100	35 35	3	130 130	35 35	50 50
JD620																
LV2	100	100	100	100	100	100	2	110	4	X	Х	Χ	X	Х	Χ	X
LV3	100	100	100	100	100	100	2	110	4	X	Χ	Χ	X	Χ	Χ	X
LV4	20	100	60	100	60	100	2	110	4	X	X	X	X	X	Χ	X
JD630										≤	Χ°					
JD630 LV2	100	100	100	100	100	100	2	110	4	X	X	Х	X	X	Х	X
LV3	100	100	100	100	100	100	2	110	4	x	X	X	X	X	X	X
LV4	100	100	100	100	100	100	2	110	4	X	X	X	X	X	X	X
										≤	X°					
JD640	100	100	100	400	100	400		440								
LV2	100	100	100	100	100	100	2	110	4	X	X	X	X	X	X	X
LV3 LV4	100 100	100 100	100 100	100 100	100 100	100 100	2 2	110 110	4	X	X	X	X	X	X	X

Use originather	al standard culate para			ough cı	ıtting d	ata							rd versi rameters		ng cu	tting data	1	
	Slo	tting		Side roug	h		Side f	inish		Ram	ping		Helical			Plung	ging	
Straight					j													
	a _p	f _z	a _e	f _z	a _p	Vc	a _e (% of DC)	f _z	a _p	a _p	f _z	f _z	a _p /360° (% of DC)	hole Ø (≥ % of DC)	v _c	a _e (% of DC)	f _z	a _e -sd (% of DC)
WE404																		
JHF181 LV1	100	100	100	100	100	X	X	Х	X	X	X	100	3,4	130	Х	X	Х	X
LV2	80	85	100	85	80	X	X	X	X	x	X	85	3,0	130	X	X	X	X
LV3	60	70	100	70	60	X	X	X	X	X	X	70	2,5	130	X	X	X	X
	- 00		100	70							,5° *	10	2,0	100				
JHF980																		
LV1	100	100	100	100	100	X	X	Χ	X	100	100	100	3	130	70	30	33	200
LV2	100	100	100	100	100	X	X	Χ	X	100	100	100	3	130	70	30	33	200
LV3	80	85	80	85	80	X	X	Χ	X	80	85	85	3	130	70	30	33	200
LV4	50	70	50	70	60	Х	Χ	Χ	Χ	60	70	70	3	130	70	30	33	200

Use origin	al standard	d versio	on cutti	ng data	then r	ecalcul	ate para	ameter	s!			l standa ulate pa			otting c	utting	data		
	Slo	tting	,	Side roug	h		Side	finish		Сору	milling ro	oughing	C	opy milli	ng finish	ing		Helical	
BALL							V. John			Ç									
	a _p	f _z	a _e	f _z	a _p	v _c	a _e (% of DC)	f _z	a _p	a _e	f _z	a _p	v _c	a _e (% of DC)	f _z	a _p	f _z	a _p /360° (% of DC)	hole Ø (≥ % of DC)
JSB512																			
LV2	X	X	100	100	100	125	3	125	10	X	Χ	X	X	Χ	Χ	X	100	5	130
JS532																			
LV1	Х	X	100	100	100	125	3	125	10	X	X	X	Х	Х	X	X	75	5	130
LV2	X	Х	70	100	70	125	3	125	10	X	X	Х	Х	X	X	Х	75	5	130
LV3	Х	X	Χ	Χ	Χ	125	3	125	10	Х	Χ	X	X	Χ	Χ	X	X	X	Χ
JS533																			
LV1	Х	X	100	100	100	125	3	125	15	X	X	X	Χ	Х	Х	X	75	5	130
LV2	X	X	75	75	75	125	3	125	15	X	X	X	X	X	X	X	75	5	130
JS534																			
LV1	Х	Х	100	100	100	125	3	170	20	X	Х	Х	Х	Χ	Х	Х	100	3	130
LV2	X	X	70	100	70	125	3	170	20	X	X	x	X	X	X	X	100	3	130
LV3	X	X	70	100	70	125	3	170	20	X	X	X	X	X	X	X	100	3	130
JHB970	v	.,	400	400	400	455		00	4.5				.,				40		400
LV1	X	X	100	100	100	155	2	30	15	X	X	X	X	X	X	X	40	3	130
LV2 LV3	X	X	100 100	100 100	100 100	155 155	2 2	30 30	15 15	X	X	X	X	X	X	X	40 40	3	130 130
JHB720																			
LV2	X	Χ	100	100	100	125	2	90	75	X	Χ	X	Х	Χ	X	X	40	3	130
JH112																			
LV1	Х	X	100	100	100	110	2	70	100	X	X	X	X	X	X	X	20	2	130
LV2	X	X	100	100	100	110	2	70	100	X	X	X	X	X	X	X	20	2	130
LV3	X	X	100	100	100	110	1,6	55	100	X	Χ	X	X	X	X	X	X	X	X
LV4	X	X	100	100	100	130	1,4	55	100	X	Χ	X	X	Х	X	X	Х	X	X
LV5	Х	X	100	100	100	130	1,4	50	100	X	Χ	X	X	Х	X	X	Х	X	X
LV6	X	X	100	100	100	130	1	35	100	X	Х	X	Х	Χ	Χ	X	X	X	X
JH150																			
LV2	Х	Х	100	100	100	165	1	90	35	X	Х	Х	Х	Х	Х	X	30	2	130
										- /\									

Use original s then recalcula				rough	cutting	data					original recalcı				otting c	utting	data		
	Slo	tting	,	Side roug	h		Side	finish		Сору	milling ro	ughing	С	opy milliı	ng finishi	ng		Helical	
BALL			1				1.			C									
	ap	f _z	a _e	f _z	a _p	v _c	a _e (% of DC)	f _z	a _p	a _e	f _z	a _p	v _c	a _e (% of DC)	f _z	a _p	f _z	a _p /360° (% of DC)	hole Ø (≥ % o DC)
JH160																			
Standard (2)	X	Х	Х	Х	Х	X	Χ	Х	X	X	Х	X	X	Х	Х	Х	Х	Х	X
JH450 Standard (2)	Х	Х	100	100	100	120	5	90	25	Х	Х	Х	Х	Х	Х	Х	45	5	130
JH460																			
Standard (2)	X	Χ	100	100	100	120	5	90	25	X	X	X	X	X	Х	X	X	X	X
JMB542-JMB562- JMB563 LV1 LV2 LV3 LV4 (TL) LV4 (XL) LV5 LV6 LV7 JMB112 LV1 LV2 LV3 LV4 LV5 LV6 JM413-JM416 LV1 LV2 LV3 LV2 LV3	100 65 26 20 12 10 4 2 100 65 26 20 110 4 2	100 100 100 100 100 100 100 100 100 100	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	100 100 100 100 100 100 100 100 100 56 45 38 30	100 100 100 100 100 100 100 100 100 85 75 60 50 40	100 63 25 19 12 10 4 2 100 85 75 60 50 40	125 125 125 125 125 125 125 125 125 128 118 118 118 118 118	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	150 150 150 150 150 150 150 150 120 120 120 120 120 120 120 120	5 3 1 1 1 1 1 1 1 5 3 1 1 1 1 1 1	x x x x x x x x x x x x x x x x x x x	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X
_V4 JMB642	X	X	100	60	75	100	5	40	10	X	X	X	X	X	X	X	X	X	X
V1 V3 V5 V6 V7	100 100 30 30 30	100 100 100 100 100	100 100 60 60 60	100 100 100 100 100	100 100 100 100 100	100 100 100 100 100	2 2 2 2 2	85 85 85 85 85	200 200 200 200 200 200	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X
JD660 LV1 LV2 LV3 LV4 LV5 Max ramping angle	X X X X	X X X X	100 100 100 100 100	100 100 100 100 100	100 100 100 100 100	100 100 100 100 100	2 2 2 2 2	100 100 100 100 100	100 100 100 100 100	X X X X	X X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X	X X X X

Nomenclature and formulae

RPM

$$n = \frac{v_c \cdot 1000}{\pi \cdot D_c}$$

(rev/min)

Cutting speed

$$V_c = \frac{n \cdot \pi \cdot D_c}{1000}$$

(m/min)

Feed speed

$$v_f = \, n \, \cdot \, z_n \, \cdot \, f_z$$

(mm/min)

Feed per revolution

$$f = z_n \cdot f_z$$

(mm/rev)

Metal removal rate

$$Q = \frac{a_e \cdot a_p \cdot v_f}{1000}$$

(cm³/min)

Cutting speed and RPM for copying

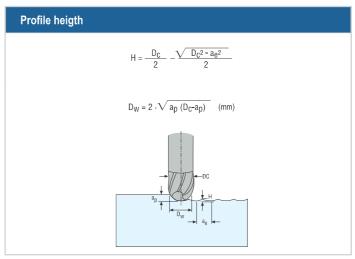
$$v_c = \frac{n \cdot \pi \cdot D_W}{1000}$$

(m/min)

$$n = \frac{v_c \cdot 1000}{\pi \cdot D_W}$$

(RPM)

$$D_{W} = 2 \cdot \sqrt{a_{p} (D_{c}-a_{p})}$$


(mm)

Calculation of ap vs. overhang length:

If the overhang length (XS) is longer than 4 x DC and Cylindrical shanks are used it is important to adopt another depth of cut (a_{p}) value than that indicated in the table.

Use the following formula to calculate the new ap value

 a_p new = $a_p \times (4 \times DC/XS)^2$

Profile heigth H (um)

DC	Pitch a _e	, (Im)					
	0,06	0,08	0,11	0,15	0,20	0,3	0,45
1	0,90	1,60	3,00	5,70	10,0	23,0	53,0
2	0,45	0,80	1,50	2,80	5,0	11,0	26,0
4	0,23	0,40	0,76	1,40	2,5	5,60	13,0
6	0,15	0,27	0,50	0,94	1,7	3,80	8,40
8	0,11	0,20	0,38	0,70	1,3	2,80	6,30
10	0,09	0,16	0,30	0,56	1,0	2,30	5,10
12	0,08	0,13	0,25	0,47	0,83	1,90	4,20

a_p = Depth of cut mm/axial depth of cut (mm)

a_e = Width of cut mm/radial depth of cut (mm)

DC = Cutter diameter

f = Feed per revolution (mm/rev)

f_z = Feed per tooth (mm/tooth)

 $z_n = No. of teeth$

n = RPM (rev/min)

Q = Material removal rate (cm³/min)

 v_c = Cutting speed (m/min)

v_f = Feed speed (mm/min)

D_w = Working diameter

Operation recommendations

Ramping method

The table below shows the feed rate percentage to use at certain ramping angles

Recommended diameter of hole for helical interpolation ramping

Diameter of end mill DC	Diameter of hole
1-2,5	1,4 x DC
3-6	1,3 x DC
8-12	1,2 x DC
16-32	1,15 x DC

Trochoidal method

The figure below shows a method often called the trochoidal method for milling slots

Recommendation of width of slot

Diameter of end mill DC	Slot width
1-2,5	1,8 x DC
3-6	1,6 x DC
8-12	1,4 x DC
16-32	1,2 x DC

ONE SECO TAP — A MULTITUDE OF APPLICATIONS

SECO THREADING TAPS

YOUR CHALLENGE

High-mix/low production involves various part materials and types that require extensive inventories of thread cutting and forming taps.

OUR SOLUTION

For versatility and cost savings, the Seco Tools line of thread cutting and forming taps handles a wide range of materials.

YOUR CHALLENGE

Spending too much time selecting proper tap for the application at hand.

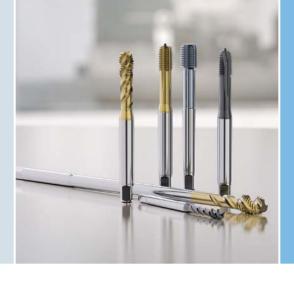
OUR SOLUTION

The Seco range of thread cutting and forming taps offers various performance levels that encompass versatile and costeffective general-purpose tools.

YOUR CHALLENGE

Chips can cause tool breakage when threading stainless steel and other long chip materials.

OUR SOLUTION


Seco thread cutting and forming taps efficiently control chips at hole depths up to 3 x diameter.

CUSTOMER BENEFITS

- Do more with less tooling and reduce tooling inventory and
- Get jobs up and running faster
- Improve process stability and consistency
- Process a wider range of part materials with single universal-type
- Uninterrupted machining operations
- Process security

SECO THREADING TAPS

THREAD WITH SECO VERSATILITY

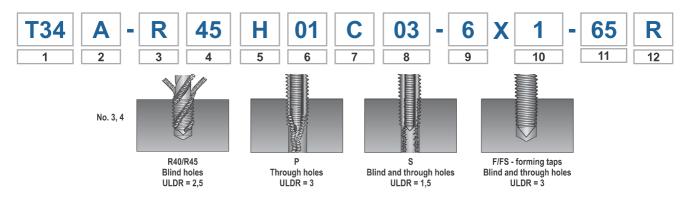
To help shops accomplish more work with less tooling, Seco Taps provide versatile and cost-effective thread cutting taps and forming taps for a wide range of materials and part types. The product line encompasses three available performance levels that give manufacturers the perfectly matched taps for their applications. With the combination of superior base materials, advanced coatings and special edge preparations, Seco Taps generate precision threads while they also maximize chip evacuation, shorten setup times and extend tool life.

T34 - NEW HIGH PERFORMANCE **VERSATILE TAPS**

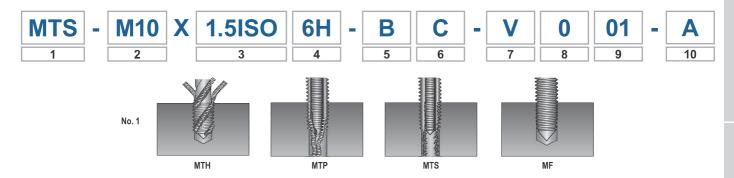
THREADS RANGE
M 1 ÷ 36; MF 3x0,35 ÷ 24x1,5
UNC #4-40 ÷ 5/8-11; UNF #4-48 ÷ 5/8-18
G 1/8 ÷ 1
EG (M, UNC, UNF)
APPLICATION (Rm UP TO 1200 MPa):
P, M, K, N
MATERIAL & COATING:
HSSE-PM & TiAIN+WC/C
TYPE OF FLUTES & CHAMFERS:
Spiral point & chamfer B — through holes / available also with internal radial cooling
Helix flutes 45° & & chamfer C or E - blind holes / available also with internal axial cooling
ACC. TO STANDARDS:
DIN 371
DIN 376/374
DIN 5156
TOLERANCE:
6HX (4H for <m1.4) for="" metric="" td="" threads<="" —=""></m1.4)>
2BX – for UN threads
Normal-X – for G threads

T32 - REPLACEMENT OF -V TAPS

THREADS RANGE
M 1 ÷ 52, MF 8x1 ÷ 30x2
UNC #4-40 ÷ 1 ½ -6; UNF #12-28 ÷ 1 ½ -12
G ½" − 1"
APPLICATION (Rm UP TO 1000 MPa):
P, M, K, N
MATERIAL & COATING:
HSSE & TIAIN+TIN
TYPE OF FLUTES & CHAMFERS:
Straight & chamfer C – both types of holes
Spiral point & chamfer B – through holes
Helix flutes 40° & chamfer C - blind holes
ACC. TO STANDARDS:
DIN 371 + Extra long version (EL)
DIN 376/374 + Extra long version (EL)
DIN 5156
TOLERANCE:
6H (4H for <m1,4), -="" 6g="" for="" m="" td="" threads<=""></m1,4),>
2B — for UN threads
Normal — for G threads

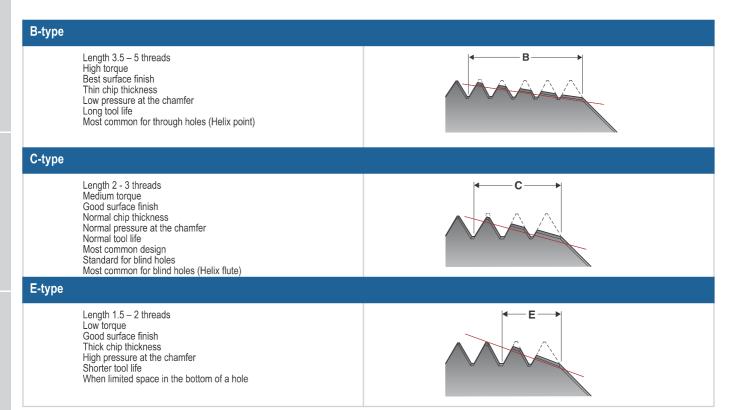

T33 - REPLACEMENT OF -MF FORMING TAPS

annu de la company de la compa
THREADS RANGE
M 2 \div 20; MF 4x0,5 \div 20x1,5
UNC #5-40 ÷ 5/8-11; UNF #5-44 ÷ 5/8-18
G 1/8" ÷ ¾"
APPLICATION:
P, M, N
MATERIAL & COATING:
HSSE-PM & TIAIN+TIN
HSSE-PM & TICN
CHAMFER:
C for both types of holes
E recommended mainly for blind holes / also available with radial or axial internal cooling
ACC. TO STANDARDS:
DIN 371
DIN 376/374
DIN 5156
TOLERANCE:
6HX, 6GX — M threads
2BX – UN threads
Normal- $X - G$ threads

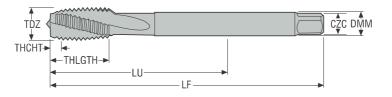

Code key – Taps T34, T33 and T32

	Description			
1	Family	T34 – High performance versatile T33 – Forming taps T32 – Versatile cutting taps	cutting taps	
2	Internal coolant	[Blank] – Without coolant A – Axial B – Radial		
3	Design	P – Helix Point S – Straight Flutes R – Right hand spiral flutes	L – Left hand flute F – Forming tap FS – Forming tap with oil grooves	
4	Flute angle	40 45	Used for Design R and L	
5	Coating	C – TiN + TiCN H – TiAIN + WC/C N – TiAIN + TiN		
6	Thread Type	01 – M 02 – MF 04 – EGM 08 – UNC	09 – UNF 16 – EGUNC 17 – EGUNF 21 – G	
7	Type of chamfer	B C E		
8	Standard	03 – DIN371 04 – DIN371/EL 05 – DIN374	06 – DIN376 07 – DIN376/EL 09 – DIN5156	
9	Thread size			
10	Pitch			
11	Tolerance	M threads: 41 – 4H 61 – 6G 62 – 6GX 63 – 6H 64 – 6H mod (for EG M) 65 – 6HX	For UNC and UNF threads 21 – 2B 22 – 2BX	For G threads: 11 – Normal 12 – Normal X
12	Hand	R - Right L - Left		

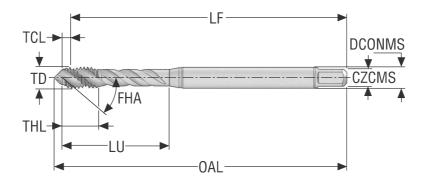
Code key - Taps MTH, MTS, MF and MTP


SECO I

	Description
1	MTH = Threadmaster™ Tap Helix flute MTP = Threadmaster™ Tap Helix point MTS = Threadmaster™ Tap Straight flute tap MF = Threadmaster™ FormTap
2	Thread type and size
3	Pitch and thread form
4	Tolerance (tctr) 4H, 6H, 6HX, 6G, 6GX metric and 2B, 2BX, 3B, 3BX, Normal, NormalX inch
5	Operation B = Blind hole T = Through hole X = Blind and Through hole
6	Entering Chamfer(THCHT) B = Entering chamfer 3,5 - 5 threads C = Entering chamfer 2 - 3 threads E = Entering chamfer 1,5 - 2 threads
7	V = Versatile P = Steel M = Stainless Steel K = Cast Iron N = Non ferrous metals S = Superalloys and titanium
8	Release No. = 0 (2014)
9	Tool type No. = 01, 02, 03, 04 etc
10	A = Through coolant



Taps – Entering chamfer THCHT



Definitions for -P, -M, -K, -N, -S, -V and MF

Definitions S	Definitions Seco Threadmaster™		
BSG	= Basic standard group		
CZC	= Connection size code		
DMM	= Shank diameter		
FHA	= Flute helix angle		
LF	= Functional length		
LU	= Usable length		
NOF	= Number of flutes		
PHDR	= Recommended premachined hole diameter		
PHDX	= Maximum premachined hole diameter		
TCTR	= Thread tolerance class		
TD	= Thread diameter		
TDZ	= Thread diameter size		
THCHT	= Thread chamfer type		
THFT	= Thread form type ISO, Withworth, UN		
THLGTH	= Thread length		
TPIX	= Threads per inch maximum		
TTP	= Thread type internal/external/both		
TPX	= Thread pitch maximum		
ULDR	= Usable length diameter ratio		

Definitions for T32, T33 and T34

Definitions Sec	Definitions Seco Threadmaster™		
BSG	= Basic standard group		
TD	= Thread diameter		
TDZ	= Thread diameter size		
THCHT	= Threading chamfer type		
TCL	= Thread chamfer length		
THL	= Thread length		
LU	= Usable length		
LF	= Functional length		
OAL	= Overall length		
FHA	= Flute Helix angle		
DCONS	= Connection diameter machine side		
CZCMS	= Connection size code machine side		
NOF	= Flute count		
PHDR	= Recommended premachined hole diameter		
PHDX	= Maximum premachined hole diameter		
TCTR	= Thread tolerance class		
TPI	= Threads per inch		
ULDR	= Usable length diameter ratio		

Taps - Choice of toolholder

The tool holder choice is made according to the machine spindle, with or without synchronization.

Modern CNC machine with synchronization:

The modern CNC machines can synchronize the spindle feed rate and rotation in order to make a rigid tapping operation. The TCER – tapping chucks with micro-compensation is the most suitable for synchronized tapping.

TCER Tapping chucks with micro-compensation, for synchronized tapping:

TCER for synchronized tapping has a micro-compensation system to avoid the small discrepancies and axial forces during rigid tapping machining. The taps are mounted in specific ER collets with square drive

Note: These ER collets with square drive can also be mounted in ER collet chucks, but then without micro-compensation.

SECO I

Troubleshooting

Wrong tap for application

- Refer to application charts

Oversized thread

- Incorrect axial feed
- Ensure feed rate is controlled
- If possible, use tool holder for syncronized tapping

Wrong cutting speed

- Refer to recommendations

Wrong tolerance

- Choose tap with lower tolerance

Undersized thread

Tap worn out

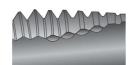
- Replace tap
- Tap drill hole too small
- Check drilling recommendations

Material closing after tapping

- Increase drill diameter
- Wrong tolerance on tap
- Choose tap with higher tolerance

Chipping

Wrong tap for the application


- Check for tool selection
- Incorrect or lack of lubricant
- Use appropriate emulsion or oil

Tap hitting bottom of hole

- Increase drill depth or reduce thread depth

Trapped chip

- Check tool selection
- Surface hardening in drilled hole
- Check drilling recommendations

Breakage

Too high torque

- Use tap holder with torque settings

Tap worn out

- Replace tap

Incorrect or lack of lubricant

- Use appropriate emulsion or oil

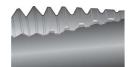
Tap hitting bottom of hole

- Increase drill depth or reduce thread depth

Wrong cutting speed - Refer to recommendations

- Birdnest around tool
- Check tool selection

 Tap drill hole too small
- Check drilling recommendations

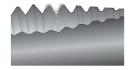

Rapid wear

Wrong type of tap for application

- Refer to tap choice
- Incorrect or lack of lubricant
- Use appropriate emulsion or oil
- Too high cutting speed
 Refer to recommendations
- Work (surface) hardening in drilled hole
- Check drilling recommendations
- Drill worn out

Tap drill hole too small

- Check drilling recommendations


Built-up edge

Incorrect or lack of lubricant

- Use appropriate emulsion or oil
- Tap worn out
- Replace tap

Wrong cutting speed

- Refer to recommendations
- Wrong type of tap for application
- Refer to tap choice

Taps Selection T32

Туре	of tap	T32-SNC-micro	T32-SNC	T32-PNB-micro	T32-PNB	T32-PNB	T32-R40NC-micro	T32-R40NC	T32-R40NC
Туре	of hole	Blind and through holes	Blind and through holes	Through holes	Through holes	Through holes	Blind holes	Blind holes	Blind holes
Chamf	er form	С	С	В	В	В	С	С	С
Cod	lant	External	External	External	External	External	External	External	External
Subs	trate:	HSS-PM	HSSE	HSS-PM	HSSE	HSSE	HSS-PM	HSSE	HSSE
	M	293, 294	295, 296, 297	304, 305	306, 307, 308	309, 310	323, 324	325, 326, 327	328, 329
	M 6G				311, 312			330, 331	
	M LH		298, 299		313, 314			332, 333	
	MF		300, 301, 302		315, 316, 317			334, 335, 336	
Page(s)	UNC				318, 319			337, 338	
i age(s)	UNF				320, 321			339, 340	
	G		303		322			341	
	EG M								
	EG UNC								
	EG UNF								

For cutting data see page(s) 260

Cutting data T32

SMG			,	/c		
Oillio	T32-SNC-micro	T32-SNC	T32-PNB-micro	T32-PNB	T32-R40NC-micro	T32-R40NC
P1	20 65	20 65	20 65	20 65	20 65	20 65
D0	20	20	20	20	20	20
P2	65	65	65	65	65	65
P3	17 <i>55</i>	17 55	17 55	17 55	17 55	17 55
P4	15	15	15	15	15	15
Г4	49	49	49	49	49	49
P5	14 46	14 46	14 46	14 46	14 46	14 46
P6	16	16	16	16	16	16
	<i>50</i> 15	50 15	50 15	50 15	50 15	50 15
P7	49	49	49	49	49	49
P8	14 46	14 46	14 46	14 46	14 46	14 46
D44	15	15	15	15	15	15
P11	49	49	49	49	49	49
P12	8,7 29	8,7 29	8,7 29	8,7 29	8,7 29	8,7 29
M1	12	12	12	12	12	12
IVII	39	39	39 10	39 10	39	39 10
M2	10 33	10 33	33	33	10 33	33
M3	7,6	7,6	7,6	7,6	7,6	7,6
	25 5,7	25 5,7	25 5,7	25 5,7	25 5,7	25 5,7
M4	19	19	19	19	19	19
M5	4,8 16	4,8 16	4,8 16	4,8 16	4,8 16	4,8 16
174	17	17	17	17		——————————————————————————————————————
K1	55	55	55	55	_	_
K2	15 <i>4</i> 9	15 <i>4</i> 9	15 49	15 49	_ _	
K3	13	13	13	13	13	13
	<i>43</i> 12	43 12	43 12	43 12	43 12	43 12
K4	39	39	39	39	39	39
K5	_	_	_	_	_	_
		_	_	_	_	_
K6	_	_	_	_	_	_
K7	_ _	<u>-</u>	<u> </u>		_	
N1	23	23	23	23	23	23
141	75 15	75 15	75 15	75 15	75 15	75 15
N2	15 49	15 49	15 49	15 49	15 49	15 49
N3	10	10	10	10	10	10
	33 13	33 13	33 13	33 13	33 13	33 13
N11	13 43	43	43	43	43	43
S1	_	_	_	_	_	_
S2	_	_	_	_	_	_
	_	_	_	_	_	_
S3	_ _			_		
S11	_	_	_	_	_	_
					_	
S12	_	=	_	_	_	_
S13	<u>-</u> -	_		<u> </u>		_
	_	-	-	_	_	

SMG = Seco material group Cutting speeds, (v_c = m/min, (sf/min), in the table are recommendations for a start value.

For more detailed information on cutting data, please visit MyPages or Seco Suggest on secotools.com

Taps Selection T34

Туре	of tap	T34-PHB- micro	Т34-РНВ	Т34В-РНВ	T34-R45HC-micro	T34-R45HC	T34A-R45HC	T34-R45HE	T34A-R45HE
Туре	of hole	Through holes	Through holes	Through holes	Blind holes	Blind holes	Blind holes	Blind holes	Blind holes
Chamfe	er form	В	В	В	С	С	С	Е	Е
Coo	lant	External	External	Internal	External	External	Internal	External	Internal
Subs	trate:	HSS-PM	HSSE-PM	HSSE-PM	HSS-PM	HSSE-PM	HSSE-PM	HSSE-PM	HSSE-PM
	М	342, 343	344, 345	346, 347	363, 364	365, 366	369, 370	367, 368	
	M 6G								
	M LH								
	MF		348, 349	350, 351		371, 372	375, 376	373, 374	377
_	UNC		352, 353			378, 379			
Page(s)	UNF		354, 355			380, 381			
	G		356			382			
	EG M		357, 358					383, 384	
	EG UNC		359, 360					385, 386	
	EG UNF		361, 362					387, 388	

Cutting data T34

SMG				,	' c			
56	T34-PHB-micro	T34-PHB	T34B-PHB	T34-R45HC-micro	T34-R45HC	T34A-R45HC	T34-R45HE	T34A-R45HE
P1	28	28	43	28	28	43	28	43
	90 28	90 28	140 41	90 28	90 28	140 41	90 28	140 41
P2	90	90	135	90	90	135	90	135
P3	24	24	36	24	24	36	24	36
10	80	80	120	80	80	120	80	120
P4	21 70	21 70	31 100	21 70	21 70	31 100	21 70	31 100
P5	20	20	30	20	20	30	20	30
P0	65	65	100	65	65	100	65	100
P6	22 70	22 70	34 110	22 70	22 70	34 110	22 70	34 110
	21	21	32	21	21	32	21	32
P7	70	70	105	70	70	105	70	105
P8	20	20	30	20	20	30	20	30
	65 21	65 21	100 31	65 21	65 21	100 31	65 21	100 31
P11	70	70	100	70	70	100	70	100
P12	12	12	18	12	12	18	12	18
1 12	39	39	60	39	39	60	39	60
M1	15 49	15 49	21 70	15 49	15 49	21 70	15 49	21 70
MO	12	12	17	12	12	17	12	17
M2	39	39	55	39	39	55	39	55
M3	9,1 <i>30</i>	9,1 30	13 43	9,1 <i>30</i>	9,1 30	13 43	9,1 30	13 43
	6,9	6,9	9,7	6,9	6,9	9,7	6,9	9,7
M4	23	23	32	23	23	32	23	32
M5	5,7	5,7	8,1	5,7	5,7	8,1	5,7	8,1
	19 24	19 24	27 36	19 24	19 24	27 36	19 24	27 36
K1	80	80	120	80	80	120	80	120
K2	21	21	31	21	21	31	21	31
NZ	70	70	100	70	70	100	70	100
K3	18 <i>60</i>	18 60	26 85	18 60	18 60	26 85	18 60	26 85
K4	17	17	25	17	17	25	17	25
N4	55	55	80	55	55	80	55	80
K5	_	10 33	15 49		10 33	15 49	10 33	15 49
	15	15	22	15	15	22	15	22
K6	49	49	70	49	49	70	49	70
K7	13	13	19	13	13	19	13	19
	43 26	43 26	60 39	43 26	43 26	60 39	43 26	60 39
N1	85	85	130	85	85	130	85	130
N2	17	17	25	17	17	25	17	25
	55 11	55 11	80 17	55 11	55 11	80 17	55 11	80 17
N3	36	36	55	36	36	55	36	55
N11	15	15	22 70	15	15	22	15	22
1411	49	49		49	49	70	49	70
S1		4,0 13	4,0 13		4,0 13	4,0 13	4,0 13	4,0 13
S2	_	-	-	_	-	— —	-	
32	_	_	_	_	_		_	_
S3	_	_		_	_	_	_	_
	_	4,0	4,0	_	4,0	4,0	4,0	4,0
S11	_	13	13	_	13	13	13	13
S12	_	_	_	_	_	_	_	_
	<u> </u>	_	_	_		_		
S13	_	_	_		_	_		_

SMG = Seco material group Cutting speeds, (v_c = m/min, (sf/min), in the table are recommendations for a start value.

For more detailed information on cutting data, please visit MyPages or Seco Suggest on secotools.com

Taps Selection T33

Туре	of tap	T33-FNC	T33-FSNC	T33-FSCC	T33-FSCE	T33B-FSCE	T33A-FSCE
				Washington, Commence of the Co	Miniminum.		Deceased the state of the state
Туре с	of hole	Blind and through holes	Blind and through holes	Blind and through holes	Blind and through holes	Through holes	Blind holes
Chamfe	er form	С	С	С	Е	Е	Е
Coo	lant	External	External	External	External	Internal	Internal
Subs	trate:	HSSE-PM	HSSE-PM	HSSE-PM	HSSE-PM	HSSE-PM	HSSE-PM
	М	389, 390	391, 392	402	403	405	404
	М 6G		393, 394				
	M LH						
	MF		395, 396	406, 407			
Page(s)	UNC		397, 398				
. 230(0)	UNF		399, 400				
	G		401				
	EG M						
	EG UNC						
	EG UNF						

Cutting data T33

T33-FNC T33-FSNC T33-FSCC T33-FSCE T33A-FSCE P1	
P2	T33B-FSCE
P2 21 21 21 21 28 90 P3 18 18 18 18 24 80 </th <th>28 90</th>	28 90
P3 18 18 18 18 24 60 60 60 60 80 P4 16 16 16 16 21 50 50 50 50 70 P5 15 15 15 15 20 P6 17 17 17 17 22 55 55 55 55 70 P7 16 16 16 16 21 P7 16 16 16 16 21 50 50 50 50 70 P8 — — — — P11 — — — — P12 — — — — M1 19 19 19 19 19 60 60 60 60 60	28
P4	90 24
P5 50 50 50 50 50 70 70 7	80 21
P6	70 20
P6 55 55 55 55 70 P7 16 16 16 16 16 16 21 70 P8	65
P8	22 70
P8 — — — — — P11 — — — — — P12 — — — — — M1 19 19 19 19 19 60 60 60 60 60	21 70
P11	_
P12	_ _
M1 19 19 19 19 19 19 19 19 19 60 60 60 60	_ _
60 60 60 60	 19
	60
M2 15 15 15 15 15 15 15 49 49 49 49	15 49
M3 11 11 11 11 11 11 11 11 11 36 36 36 36	11 36
— 8,6 8,6 8,6	8,6
M5	28 —
	_
	_ _
K2	=
КЗ	
K4	_
к5	_
К6 — — — — — — — — — — — — — — — — — — —	_
K7 — — — — — — — — — — — — — — — — — — —	_
	 47
N1 100 100 155 155 155	155
N2 20 20 30 30 30 30 100 100	30 100
N3 — — 20 20 20 20 65 65	20 65
N11 — — 27 27 27 27 27 90 90 90	27 90
S1	_ _ _
S2	_
	_
	_
	_
	_
S13	_

SMG = Seco material group Cutting speeds, (v_c = m/min, (sf/min), in the table are recommendations for a start value.

For more detailed information on cutting data, please visit MyPages or Seco Suggest on secotools.com

Taps Selection MTH-P001 (-A) – MTH-P011

Tool type	MTH-P001 30-48 HRC	MTH-P001-A 30-48 HRC	MTH-P002 30-48 HRC	MTH-P002-A 30-48 HRC	MTH-P003	MTH-P003-A	MTH-P004	MTH-P004-A	MTH-P011
Thread type	М	М	М	М	М	М	М	М	MF
TCTR	6H	6H	6H	6H	6HX	6HX	6HX	6HX	6HX
ULDR	1.5	1.5	1.5	1.5	3	3	3	3	3
тнснт	С	С	С	С	С	С	С	С	С
BSG	SECO-DIN	SECO-DIN	DIN376	DIN376	DIN371	DIN371	DIN376	DIN376	DIN374
Thread size	M3 - M10	M4 - M10	M12 - M20	M12 - M20	M1.6 - M10	M4 - M10	M5 - M30	M12 - M30	MF 4X0.5 - MF 30X2.0
FHA	15°	15°	15°	15°	48°	48°	48°	48°	48°
Coolant	No	Yes	No	Yes	No	Yes	No	Yes	No
Page(s)	437	438	439	440	441	442	443	444	445, 446

Cutting data MTH-P001 (-A) - P011

SMG					v _c				
	MTH- P001	MTH- P001-A	MTH- P002	MTH- P002-A	MTH- P003	MTH- P003-A	MTH- P004	MTH- P004-A	MTH- P011
P1	_	_	_	_	55 180	55 180	55 180	55 180	55 180
P2	-	_	_	_	55	55	55	55	55
		_	_	_	180 45	180 45	180 45	180 45	180 45
P3	_	_	_	_	150	150	150	150	150
P4	_	_	_	_	40 130	40 130	40 130	40 130	40 130
P5	_	_	_	_	38	38	38	38	38
	_	_	_	_	125 43	125 43	125 43	125 43	125 43
P6	_	_	_	_	140	140	140	140	140
P7	_	_	_	_	40 130	40 130	40 130	40 130	40 130
P8	_	_	_	_	38 125	38 125	38 125	38 125	38 125
P11	_	_	_	_	39	39	39	39	39
FII	_	_	_	_	130 23	130 23	130 23	130 23	130 23
P12	_	_	_	_	75	75	75	75	75
M1	_	_	_	_	_	_	_	_	_
M2	-	_	_	_	_	_	_	-	_
	_	_	_	_	_	_	_	_	_
M3	_	_	_	_	_	_	-	_	_
M4	_	_	_	_	_	_	_	_	_
M5	_	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_	_
K1	_	_	_	_	_	_	_	-	_
K2	_	_	_	_	_	_	_	_	_
K3	_	_	_	_		_	_	_	_
K4	_	_	_	_	_	_	_	_	_
174	_ _	_	_	_	_	_	_ _	_	_
K5	_	_	_	_	_	_		_	
K6	_	_	_	_	_		_	_	_
K7	_	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_	_
N1	_	-	_	_	_	_	_	_	_
N2	_	_	_	_	_	_	_	_	_
N3	-	_	_	_	-	_	-	-	-
N11	_	_	_ _	_	_	_	_	_	_
	- 17	-	- 17	17	_	_	_	_	_
H5	55	55	55	55	_	_	_	_	_
Н8	17 55	17 55	17 55	17 55			_		_
	00	00	55		_	_	_		

SMG = Seco material group v_c = m/min (sf/min)

Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

Taps Selection MTP-P001 – MTP-P011

Tool type	MTP-P001 30-48 HRC	MTP-P002 30-48 HRC	MTP-P003	MTP-P003-A	MTP-P004	MTP-P004-A	MTP-P011
Thread type	М	M	М	M	M	M	MF
TCTR	6H	6H	5HX/6HX	6HX	6HX	6HX	6HX
ULDR	2.5	2.5	3	3	3	3	3
тнснт	В	В	В	В	В	В	В
BSG	SECO-DIN	DIN376	DIN371	DIN371	DIN376	DIN376	DIN374
Thread size	M3 - M10	M12 - M20	M1 - M10	M4 - M10	M4 - M30	M12 - M30	MF 4X0.5 - MF 30X2.0
						The state of the s	Managamanassa
Coolant	No	No	No	Yes	No	Yes	No
Page(s)	408	409	410	411	412	413	414, 415

Cutting data MTP-P001 - P011

SMG				V _c			
	MTP- P001	MTP- P002	MTP- P003	MTP- P003-A	MTP- P004	MTP- P004-A	MTP- P011
P1	=	=	60 195	60 195	60 195	60 195	60 195
Do	_	_	60	60	60	60	60
P2	_	_	195	195	195	195	195
P3	_	_	50 165	50 165	50 165	50 165	50 165
P4	_	_	45	45	45	45	45
	_	_	150 43	150 43	150 43	150 43	150 43
P5	_	_	140	140	140	140	140
P6	_ _	<u> </u>	48 155	48 155	48 155	48 155	48 155
P7	_	_	46	46	46	46	46
17	_	_	150 43	150 43	150 43	150 43	150 43
P8	_	_	140	140	140	140	140
P11	_	_	44 145	44 145	44 145	44 145	44 145
D40	_ _	_	26	26	26	26	26
P12	_	_	85	85	85	85	85
M1	_	_	_ _	_			_
M2	_	_	_	_	_	_	_
		_	_ _	_	_	_	_
M3	Ξ	_	Ξ	=	=	=	_
M4	_	_	_	_	_	_	_
M5	_	_	_	_	_	_	_
IVIO	_	_	_	_	_	_	_
K1	<u> </u>		_	_	_	_	_
K2	_	_	_	_	_	_	_
140	_ _	_	_	_	_	_	_
K3	_	_	_	_	_	_	_
K4	_	_	_	_	_	_	_
K5	_	_	_	_	_	_	_
	_ _	_	_	_		_	_
K6	_	_	_	_	_	_	_
K7	<u> </u>		<u> </u>	_		_	_
N1	_	_	_	_	_	_	_
	_	_	_ _	_	_	_	_
N2	_	_	_	_	_	_	_
N3	_	_	_	_	_	_	_
	_ _	_	_ _	_ _	_ _	_	_
N11	_	_	_	_	_	_	_
H5	17 55	17 55		_	_	_	_
Н8	17	17	_	_	_	_	_
	55	55	_	_	_	_	_

SMG = Seco material group v_c = m/min (sf/min)

Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

Taps Selection MTH-M003 (-A) – MTP-M004 (-A)

Tool type	MTH-M003	MTH-M003-A	MTH-M004	MTH-M004-A	MTP-M003-A	MTP-M004	MTP-M004-A
Thread type	М	M	М	M	M	M	М
TCTR	6H	6H	6H	6H	6H	6H	6H
ULDR	2.5	2.5	2.5	2.5	2.5	2.5	2.5
тнснт	С	С	С	С	В	В	В
BSG	DIN371	DIN371	DIN376	DIN376	DIN371	DIN376	DIN376
Thread size	M1.6 - M10	M4 - M10	M12 - M20	M12 - M20	M4 - M10	M12 - M20	M12 - M24
FHA	48°	48°	48°	48°	-	_	-
Coolant	No	Yes	No	Yes	Yes	No	Yes
Page(s)	447	448	449	450	416	417	418

Cutting data MTH-M003 (-A) - M004 (-A)

SMG				V _c			
	MTH- M003	MTH- M003-A	MTH- M004	MTH- M004-A	MTP- M003-A	MTP- M004	MTP- M004-A
P1	_	_	_	_	_	_	_
P2	_	_	_	_	_	_	_
	_	_	_	_	_	_	_
P3	_	_	_	_	_	_	_
P4	_	_	_	_	_	_	_
P5	_	_		_	_	_	_
P6	_	_	_	_	_	_	_
P7	_	_	_	_	_	_	_
	_ _	_	<u>-</u> -	_ _	_ _	_	_
P8	_	_	_	_	_	_	_
P11	_	_	_	_	_	_	_
P12	_	_	_				_
M1	12	12	12	12	12	12	12
	39 10	39 10	39 10	39 10	39 10	39 10	39 10
M2	33	33	33	33	33	33	33
M3	8 26	8 26	8 26	8 26	8 26	26	8 26
M4	6 20	6 20	6 20	6 20	6 20	6 20	6 20
M5	5	5	5	5	5	5	5
K1	16 —	16 —	16 —	16 —	16 —	16 —	16 —
	_	_	_	_	_	_	_
K2	_	_	_	_	_	_	_
K3	_ _	_			_	_	
K4	=	=	=	_	=	=	=
K5	_	_	_	_	_	_	_
	_	_	_	_	_	_	_
K6	_	_	_	_	_	_	_
K7	_	_	_	_	_	_	_
N1	_	_	_	_	_	_	_
N2	_	_	_	_	_	_	_
N3	_	_	_	_	_	_	_
	_	_	<u> </u>	_ _	_ _	_	_
N11		=	_	_	_	_	_
H5	_ _	_	_ _		_	_	_
Н8	_	_	_	_	_	_	_
	_	_	_	_	_	_	_

SMG = Seco material group v_c = m/min (sf/min)

Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

Taps Selection MTH-N001 – MTP-N002 (-A)

SECO I

Tool type	MTH-N001	MTH-N002	MTP-N001	MTP-N001-A	MTP-N002	MTP-N002-A
Thread type	M	М	М	M	М	М
TCTR	6H	6H	6H	6H	6H	6H
ULDR	1.5	1.5	3	3	3	3
ТНСНТ	С	С	В	В	В	В
BSG	DIN371	DIN376	DIN371	DIN371	DIN376	DIN376
Thread size	M3 - M10	M12 - M16	M3 - M10	M4 - M10	M12 - M16	M12 - M16
FHA	15°	15°	-	_	-	-
					Annananana	
Coolant	No	No	No	Yes	No	Yes
Page(s)	451	452	419	420	421	422

Cutting data MTH-N001 - N002 (-A)

SMG			V	'c		
SING	MTH- N001	MTH- N002	MTP- N001	MTP- N001-A	MTP- N002	MTP- N002-A
P1	_		_	_	_	_
P2	_	_	_	_	_	_
P3	_		_	_ _	_	_
	_ _	_ _	_ _	_ _		_ _
P4	_	_	_	_	_	_
P5	_	_	_	_	_	_
P6		<u> </u>		<u> </u>		_
P7	_	_	=	_	_	=
P8	_	_	_	_	_	_
P11	_	_	_	_	_	_
	_ _	_ _		_ _		_ _
P12	_	_	_	_	_	_
M1	_	_	_	_	_	_
M2		_ _		_ _		_
M3	=	_	_	_	_	_
M4	_	_	_	_	_	_
M5	_		_	_	_	_
	_ _	_ _	_ _	_ _		_ _
K1	_	_	_	_	_	_
K2	_	_	_	_	_	_
К3	_ _					
K4	_		_	_	_	_
K5	_	_	_	_	_	_
K6	_ _		_	_ _	_	_
	_ _	_ _	_	_ _	_	_
K7	 55	 55		 55	 55	 55
N1	180	180	180	180	180	180
N2	35 115	35 115	35 115	35 115	35 115	35 115
N3	23 75	23 75	23 75	23 75	23 75	23 75
N11	31 100	31 100	31 100	31 100	31 100	31 100
H5	— —	— —	— —	— — —	— — —	— —
		_ _	_ _	-	_	
H8			_	_	_	_ _

SMG = Seco material group v_c = m/min (sf/min)

Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

Taps Selection MTH-S001 – MTH-S032

Tool type	MTH-S001	MTH-S002	MTH-S003	MTH-S004	MTH-S011	MTH-S012	MTH-S031	MTH-S032
Thread type	M	М	M	М	MF	MJ	UNC	UNJC
TCTR	6HX	6HX	6HX	6HX	6HX	4H	2B	3B
ULDR	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
тнснт	С	С	С	С	С	С	С	С
BSG	DIN371	DIN371	DIN371	DIN371	DIN371	DIN371	DIN2184-1	DIN2184-1
Thread size	M3-M10	M12-M16	M3-M10	M12-M16	MF8X1-MF12X1,5	MJ3-MJ6	UNC2-56- UNC3/8-16	UNJC4-40- UNJC3/8-16
FHA	10°	10°	10°	10°	10°	10°	25°	10°
	Multiplication	Multipapaaaaaaa			Multipopopopopopopopopopopopopopopopopopopo	MUMUMANAAAAA		
Coolant	No	No	No	No	No	No	No	No
Page(s)	453	454	455	456	457	458	459	460

Cutting data MTH-S001 - S032

SMG				,	/c			
SIVIG	MTH-S001	MTH-S002	MTH-S003	MTH-S004	MTH-S011	MTH-S012	MTH-S031	MTH-S032
P1	_	_	_	_	_	_	_	_
P2	_	_	_	_	_	_	_	_
P3	_ _	_	_	_	_	_	_	_
	_ _	_	<u> </u>	_	_		_	<u> </u>
P4	_ _	_	_ _	_	_	_	_	_
P5	_	_	_	_	_	_	_	_
P6	3 10	3 10	7 23	7 23	3 10	3 10	3 10	3 10
P7	3 10	3 10	7 23	7 23	3 10	3 10	3 10	3 10
P8		_	_	_	_		_	
P11	3 10	3 10	6 20	6 20	3 10	3 10	3 10	3 10
P12	2	2	4	4	2	2	2	2
M1	7 —	7 —	13 —	13 —	7 —	7 —	7 —	7 —
	_ _	_	_ _	_ _	_ _			<u> </u>
M2	_	_	_	_	_	_		_
M3	_	_	_	_	=	Ξ	_	_
M4		_		_	_	_	2 7	_
M5	<u>-</u>	_	_	_			2 7	_
K1	_	_	_	_	_	_	_	_
K2	_	_	_	_	_	_	_	_
K3	_ _	_		_	_	_	_	_
	_	_	_	_	_	_	_	_
K4	_ _	_	<u> </u>	_		_		
K5	_	_	_	_	_	_	_	
K6	_ _	_	_	_	_ _	<u>-</u> -	_	_
K7		_	_ _	_	_	_		
N1	_	_	_ _	_	_	_	_	_
N2	_	_	_	_	_	_	_	_
N3	16	16	<u></u>	25	16	16	_	
	50 —	50 —	80	80 —	50 —	50 —		50
N11	2	<u> </u>	<u> </u>	4	<u> </u>	<u> </u>	2	<u></u>
S1	7	7	13	13	7	7	7	7
S2	2 7	2 7	3 10	3 10	2 7	2 7	2 7	2 7
S3	2 7	2 7	3 10	3 10	2 7	2 7	2 7	2 7
S11	_	_	_	_	_	_	_	_
S12	_	_	_	_	_	_	_	_
S13	_	_	_	_	_	_	_	_
	_	_	-	_	_	_	_	_
H5	_ _	_	<u>-</u>					_
H8	_	_	_	_	_	_	_	_

Thread tapping

Taps Selection MTH-S041 – MTH-S142

Tool type	MTH-S041	MTH-S042	MTH-S043	MTH-S044	MTH-S101	MTH-S102	MTH-S111	MTH-S112	MTH-S142
Thread type	UNF	UNJF	EGUNF	EGUNF	М	М	MF	MJ	UNJF
TCTR	3B	3B	3B	3B	6HX	6HX	6HX	4H	3B
ULDR	1.5	1.5	2.0	1.5	2.0	2.0	2.0	2.0	2.0
THCHT	С	С	С	С	С	С	С	С	С
BSG	DIN2184-1	DIN2184-1	DIN2184-1	DIN2184-1	DIN371	DIN376	DIN376	DIN371	DIN2184-1
Thread size	UNF6-40- UNF3/8-24	UNJF6-40-UN- JF3/8-24	EGUNF6-40- EGUNF3/8-24	EGUNF6-40- EGUNF3/8-24	M2-M10	M12-M20	MF6X0,75- MF14X1,5	MJ3-MJ10	UNJF10-32- UNJF3/8-24
FHA	25°	10°	15°	10°	15°	15°	15°	15°	15°
		Within the season and		Municipage			Difference	Difference	
Coolant	No	No	No	No	No	No	No	No	No
Page(s)	461	462	463	464	465	466	467	468	469

Thread turning

Cutting data MTH-S041 - S142

SMG					V _c				
SINIO	MTH-S041	MTH-S042	MTH-S043	MTH-S044	MTH-S101	MTH-S102	MTH-S111	MTH-S112	MTH-S142
P1	_	_	_	_	_	_	_	_	_
P2	_	_	_	_	_	_	_	_	_
P3		_	_	_	_	_	_	_	_
		_		_	_ _		_	_	_
P4	_	_	_	_	_	_	_	_	_
P5	_	_	_	_	_	_	_	_	_
P6	3 10	3 10	7 23	3 10	7 23	7 23	7 23	7 23	7 23
P7	3 10	3 10	7 23	3 10	7 23	7 23	7 23	7 23	7 23
P8	_	_	_	_	_	_	_	_	_
P11	3	3	6	3	6	6	6	6	6
	10 2	10 2	20 4	10 2	20 4	20 4	20 4	20	20 4
P12	7	7	13	7	13	13	13	13	13
M1	_	_	_	_	_ _	_	_	_	_
M2		_	_	_		_	_	_	
M3	_	_	_	_	_	_	_	_	
M4	2	_	6	_	6	6	6	6	6
	7 2	_	20 5	_	20 5	20 5	20 5	20 5	20 5
M5	7	_	16	_	16	16 —	16	16 —	16
K1	_	_	_	_	_	_	_	_	_
K2	_	_	_	_	_	_	_	_	_
K3		_	_	_		_	_	_	
K4	_	_	_	_	_	_	_	_	_
K5	_	_	_	_	_	_	_	_	_
K6	_	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_ _		_ _
K7	_	_	_	_	_	_	_	_	_
N1	_	_	_	_	_	_	_	_	_
N2		_	_	_	_	_	_	_	
N3	_	16 50	25 80	16 50	25 80	25 80	25 80	25 80	25 80
N11	_	_			_	_	_	_	_
S1	2	2	_	2	_	_	_ _	_	_
	7 2	7 2	_	7 2	_	_	<u> </u>	_ _	_
S2	7	7	_	7	_	_	_	_	_
S3	2 7	2 7	_	2 7	_	_	_	_	_
S11	_		5 16	_	5 16	5 16	5 16	5 16	5 16
S12	_	_	4 13	_	4 13	4 13	4 13	4 13	4 13
S13	_	_	3	_	3	3	3	3	3
	_	_	10 —	_	10 —	10	10 —	10 —	10
H5		_	_	_	_	_	_ _		_
H8		_	_	_	_	_	_	_	_

Taps Selection MTP-S001 – MTP-S043

Tool type	MTP-S001	MTP-S002	MTP-S011	MTP-S012	MTP-S013	MTP-S042	MTP-S043
Thread type	М	M	MF	MJ	EGM	UNFJ	EGUNF
TCTR	6HX	6HX	6HX	4H	4H	3B	3B
ULDR	2.0	2.0	2.0	2.0	2.0	2.0	2.0
тнснт	В	В	В	В	В	В	В
BSG	DIN371	DIN376	DIN371	DIN371	DIN40435	DIN2184-1	DIN2184-1
Thread size	M2-M10	M12-M20	MF6X0,75-MF14X1,5	MJ4-MJ8	EGM4-EGM8	UNJF10-32- UNJF3/8-24	EGUNF10-32- EGUNF3/8-24
FHA	-	-	-	-	-	_	-
	Topographic			**************************************		- Constitutation of the constitution of the co	
Coolant	No	No	No	No	No	No	No
Page(s)	423	424	425	426	427	428	429

Thread turning

Cutting data MTP-S001 – S043

SMG				v _c			
SIVIG	MTP-S001	MTP-S002	MTP-S011	MTP-S012	MTP-S013	MTP-S042	MTP-S043
P1	_	_	_	_	_	_	_
D0	_	_	<u> </u>	_	_	_	_
P2	_	_	_	_	_	_	_
P3	_	_	_	_	_	_	_
P4	_	_	_	_	_	_	_
P5	_	_	_	_	_	_	_
	_	_	_		_	_	_
P6	_	_	_	_	_	_	_
P7		_	<u> </u>	_ _			
P8	_	_	_	_	_	_	_
	_		_	_	_	_	_
P11	_	_	_	_	_	_	_
P12	_	_	_	_	_	_	_
M1	Ξ	=	Ξ	_	=	=	_
M2	<u> </u>	_	<u> </u>	_	_	_	<u> </u>
	_	_	<u> </u>	_ _	_ _	_ _	_ _
M3	_	_	_	_	_	_	_
M4	6 20	6 20	6 20	6 20	2 7	6 20	2 7
M5	5	5	5	5	2	5	2
	16 —	16 —	16 —	16 —	7	16 —	7
K1	_	_	_	_	_	_	_
K2	_	_	_	_	_	_	_
К3	_	_	_	_	_	_	_
K4		_	_	_	_	_	_
	<u>-</u>	_	<u> </u>	_	_	_	_
K5	_	_	_	_	_	_	_
K6	_ _	_	_ _	_ _	_	_	_
K7	_	_	_	_	_	_	_
N1	_	_		_	_	_	_
	_	_	_	_	_	_	_
N2	_	_	_	_		_	=
N3	25 80	25 80	25 80	25 80	16 50	25 80	16 50
N11						_	_
	4	4	4	4	4	4	4
S1	13	13	13	13	13	13	13
S2	3 10	3 10	3 10	3 10	3 10	3 10	3 10
S3	3 10	3 10	3	3	3 10	3 10	3 10
S11	5	5	10 5	10 5	4	5	4
	16 4	16 4	16 4	16 4	13 3	16 4	13 3
S12	13	13	13	13	10	13	10
S13	3 10	3 10	3 10	3 10	2 7	3 10	2 7
H5	_	_	_	_ _ _	_	_	_
	_	_					_
H8	_	_	_	_	_	_	_

Taps Selection MTS-K101 (-A) – MTS-K141

Tool type	MTS-K101	MTS-K101-A	MTS-K002	MTS-K002-A	MTS-K102	MTS-K102-A	MTS-K111	MTS-K121	MTS-K131	MTS-K141
Thread type	M	М	М	М	M	М	MF	G	UNC	UNF
TCTR	6HX	6HX	6HX	6HX	6HX	6HX	6HX	NORMAL-X	2BX	2BX
ULDR	2.5	2.5	2	2.5	2.5	2.5	2.5	2.5	2.5	2.5
тнснт	С	C/E	С	C/E	С	C/E	С	С	С	С
BSG	DIN371	DIN371	DIN376	DIN376	DIN376	DIN376	DIN374	DIN5156	DIN2184-1	DIN2184-1
Thread size	M3 - M10	M4 - M10	M27 - M42	M27 - M42	M8 - M24	M12 - M24	MF 10X1 - MF 20X1.5	G1/8-28 - G1-11	UNC 1/4-20 - UNC 7/8-9	UNF 1/4-28 - UNF 7/8-14
FHA	_	_	_	_	_	_	_	_	_	_
	Tronsummer	TATION OF THE PARTY OF THE PART					The state of the s			
Coolant	No	Yes	No	Yes	No	Yes	No	No	No	No
Page(s)	487	488	489	490	491	492	493	494	495	496

Cutting data MTS-K101 - MTS-K141

SMG				٧	'c			
Oillio	MTS- K101	MTS- K101-A	MTS- K102	MTS- K102-A	MTS- K111	MTS- K121	MTS- K131	MTS- K141
P1	_	_	_	_	_	_	_	Ξ
P2	_	_	_	_	_	_	_	_
P3	_	_	_	_	_	_	_	_
	_ _	_	_	_	_	_	_ _	_
P4	_	_	_	_	_	_	_	_
P5	_	_	_	_	_	_	_ _	_
P6	_	_	_	_	_	_	_	_
P7	-	_	_	_	_	_	_	_
P8	_ _	_	_	_	_	_	_ _	_
		_					_ _	
P11	-	_	_	_	_	_	_	_
P12	_	_	_	_	_	_	_	_
M1	_	_	_ _	_	_ _	_	_ _	_
M2	_ _	_	_	_	_	_	_	_
M3	_	_	_	_	_	_	_	_
	_ _	_	<u> </u>	_	<u> </u>	_	_	_
M4	_	_	_		_	_	_ _	_
M5	_	_	_	_	_	_	-	_
K1	85 280	85 280	85 280	85 280	85 280	85 280	85 280	85 280
K2	75 245	75 245	75 245	75 245	75 245	75 245	75 245	75 245
K3	65	65	65	65	65	65	65	65
	215 60	215 60	215 60	215 60	215 60	215 60	215 60	215 60
K4	195 36	195 36	195 36	195 36	195 36	195 36	195 36	195 36
K5	120	120	120	120	120	120	120	120
K6	55 180	55 180	55 180	55 180	55 180	55 180	55 180	55 180
K7	46 150	46 150	46 150	46 150	46 150	46 150	46 150	46 150
N1	-	_	_	_	_	_	_	_
N2	_	_	_	_	_	_	_ _	_
	_		_			_	_ _	_
N3	_	_	_	_	_	_	_	_
N11	_	_	_	_	_	_	_	_
H5	_	_	_	_	_	_	_	_
Н8	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_

SMG = Seco material group v_c = m/min (sf/min)

Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

Taps Selection MTH-V011 – MTH-V030 (-A)

Tool type	MTH-V011	MTH-V015	MTH-V016	MTH-V025	MTH-V026	MTH-V029	MTH-V030	MTH-V030-A
Thread type	MF	М	M	M	М	М	М	М
TCTR	6HX	6H	6H	6H	6H	6G	6H	6H
ULDR	2	2	2	3	3	3	2.5	2.5
тнснт	С	С	С	С	С	С	С	С
BSG	DIN374	DIN371	DIN376	DIN371	DIN376	DIN376	DIN371	DIN371
Thread size	MF 8X0.75 - MF 24X2.0	M3 - M10	M12 - M36	M3 - M10	M12 - M20	M12 - M20	M2 - M10	M4 - M10
FHA	15°	15°	15°	45°	45°	45°	45°	45°
	Comment of the commen		Comment of the commen					
Coolant	No	No	No	No	No	No	No	Yes
Page(s)	470	471	472	473	474	475	476	477

Cutting data MTH-V011 - MTH-V030 (-A)

SMG				,	/c			
	MTH- V011	MTH- V015	MTH- V016	MTH- V025	MTH- V026	MTH- V029	MTH- V030	MTH- V030-A
P1	40 130							
DO	39	39	39	39	39	39	39	39
P2	130	130	130	130	130	130	130	130
P3	33 110							
P4	29	29	29	29	29	29	29	29
	95 28							
P5	90	90	90	90	90	90	90	90
P6	31 100							
P7	30	30	30	30	30	30	30	30
	100 28							
P8	90	90	90	90	90	90	90	90
P11	29 95							
P12	17	17	17	17	17	17	17	17
	55 9							
M1	30	30	30	30	30	30	30	30
M2	7 23							
M3	5	5	5	5	5	5	5	5
IVIO	16 4							
M4	13	13	13	13	13	13	13	13
M5	3 10							
K1	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
K2	_	_	_	_	_	_	_	_
К3	_ _	_	_		_	_	_	_
K4	_	_	_	_	_	_	_	_
	_ _	_	_	_	_	_	_	_
K5	_	_	_	_	_	_	_	_
K6	_	_	_	_	_	_	_	_
K7	_	_	_	_	_	_	_	_
N1	37	37	37	37	37	37	37	37
	120 24							
N2	80	24 80	80	24 80	24 80	80	24 80	24 80
N3	16 50							
N11	21	21	21	21	21	21	21	21
	70 —							
H5	_	_	_	_	_	_	_	_
Н8	_	_	_			_		

SMG = Seco material group v_c = m/min (sf/min)

Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

Taps Selection MTH-V033 (-A) – MTH-V045

SECO I

Tool type	MTH-V033	MTH-V033-A	MTH-V038	MTH-V038-A	MTH-V043	MTH-V045
Thread type	М	М	MF	MF	UNF	G
TCTR	6H	6H	6H	6H	2B	NORMAL
ULDR	2.5	2.5	2.5	2.5	2.5	2.5
тнснт	С	С	С	С	С	С
BSG	DIN376	DIN376	DIN374	DIN374	DIN2184-1	DIN5156
Thread size	M6 - M64	M12 - M64	MF 4X0.5 - MF 30X2.0	MF 6X0.75 - MF 30X2.0	UNF 8-36 - UNF 1-12	G 1/8-28 - G11/2-11
FHA	45°	45°	45°	45°	45°	45°
Coolant	No	No	No	No	No	Yes
Page(s)	478	479	480	481, 482	483	484

Cutting data MTH-V033 (-A) - MTH-V045

SMG			,	/ c		
55	MTH- V033	MTH- V033-A	MTH- V038	MTH- V038-A	MTH- V043	MTH- V045
P1	40 130	40 130	40 130	40 130	40 130	40 130
D0	39	39	39	39	39	39
P2	130	130	130	130	130	130
P3	33 110	33 110	33 110	33 110	33 110	33 110
P4	29 95	29 95	29 95	29 95	29 95	29 95
P5	28	28	28	28	28	28
	90 31	90 31	90	90 31	90 31	90
P6	100	100	100	100	100	100
P7	30 100	30 100	30 100	30 100	30 100	30 100
P8	28	28	28	28	28	28
	90 29	90 29	90 29	90 29	90 29	9 <i>0</i> 29
P11	95	95	95	95	95	95
P12	17 55	17 55	17 55	17 55	17 55	17 55
M1	9	9	9	9	9	9
	30 7	30 7	30 7	30 7	30 7	30 7
M2	23	23	23	23	23	23
M3	5 16	5 16	5 16	5 16	5 16	5 16
M4	4 13	4 13	4 13	4 13	4 13	4 13
M5	3	3	3	3	3	3
IVIO	10 —	10	10	10	10	10
K1	_	_	_	_	_	_
K2	_ _		_		_	_
K3	_	_	_	_	_	_
	_ _	_ _	_ _		_	_
K4	_	_	_	_	_	_
K5	_	_	_	_	_	_
K6	-	_	_	_	_	_
K7	_ _	_ _	_	_	_	_
	 37	37	37	- 37	37	37
N1	120	120	120	120	120	120
N2	24 80	24 80	24 80	24 80	24 80	24 80
N3	16	16	16	16	16	16
	50 21	50 21	50 21	50 21	50 21	50 21
N11	70	70	70	70	70	70
H5	_ _	_	_		_	_
Н8	_	=	_	_	_	_
	_	_	-	<u> </u>	_	_

SMG = Seco material group v_c = m/min (sf/min)

Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

Taps Selection MTP-V002 – MTP-V008 (-A)

Tool type	MTP-V002	MTP-V007	MTP-V007-A	MTP-V008	MTP-V008-A
Thread type	М	М	М	М	М
TCTR	6H	6H	6H	6H	6H
ULDR	3	2.5	2.5	2.5	2.5
тнснт	В	В	В	В	В
BSG	DIN376	DIN371	DIN371	DIN376	DIN376
Thread size	M12 - M20	M2 - M10	M4 - M10	M3 - M36	M12 - M36
FHA	_	_	_	_	_
Coolant	No	No	Yes	No	Yes
Page(s)	430	431	432	433	434

Cutting data MTP-V002 - MTP-V008 (-A)

SMG			V _c		
	MTP- V002	MTP- V005	MTP- V007-A	MTP- V008	MTP- V008-A
P1	40	40	40	40	40
	130 39	130 39	130 39	130 39	130 39
P2	130	130	130	130	130
P3	33 110	33 110	33 110	33 110	33 110
P4	29 95	29 95	29 95	29 95	29 95
P5	28	28	28	28	28
	90 31	90 31	90 31	90	9 <i>0</i> 31
P6	100	100	100	100	100
P7	30 100	30 100	30 100	30 100	30 100
P8	28	28	28	28	28
	90 29	90 29	9 <i>0</i> 29	90 29	9 <i>0</i> 29
P11	95	95	95	95	95
P12	17 55	17 55	17 55	17 55	17 55
M1	9	9	9	9	9
	30 7	30 7	30 7	30 7	30 7
M2	23	23	23	23	23
M3	5 16	5 16	5 16	5 16	5 16
M4	4 13	4 13	4	4	4 13
M5	3	3	13	13	3
IVIO	10 —	10 —	10	10 —	10
K1	_	_	_	_	_
K2	_ _	_ _			
КЗ	_	_			
K4	_	_	_	_	_
	_ _	_ _	_ _	_ _	_ _
K5		_	_	_	_
K6	_	_	_ _		
K7	_	_			
N1	37	37	37	37	37
	120 24	120 24	120 24	120 24	120 24
N2	24 80	24 80	24 80	24 80	24 80
N3	16 50	50	16 50	16 50	50
N11	21 70	16 50 21 70 —	21 70 — —	21 70	16 50 21 70 —
H5	— —	-	_	— —	_
	<u> </u>	_ _			_ _
H8	_	_	_	_	<u> </u>

SMG = Seco material group v_c = m/min (sf/min)

Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

Taps Selection MTP-V014 (-A) – MTP-V023

Tool type	MTP-V014	MTP-V014-A
Thread type	MF	MF
TCTR	6H	6H
ULDR	2.5	2.5
тнснт	В	В
BSG	DIN374	DIN374
Thread size	MF 4X0.5 - MF 30X2.0	MF 6X0.75 - MF 24X2.0
FHA	-	-
		Ammunumum din sa
Coolant	No	Yes
Page(s)	435	436

Cutting data MTP-V014 (-A) - MTP-V023

0110		v_c
SMG	MTP- V014	MTP- V014-A
P1	40	40
P2	130 39	130 39
	130 33	130 33
P3	110	110
P4	29 95	29 95
P5	28 90	28 90
P6	31 100	31 100
P7	30	30
P8	100 28	100 28
	90 29	90 29
P11	95 17	95 17
P12	55	55
M1	9 30	9 30
M2	7 23	7 23
M3	5 16	5 16
M4	4	4
M5	13 3	13 3
K1	10 —	10 —
	_ _	
K2	-	=
K3	=	Ξ
K4	_	Ξ
K5	- -	<u>-</u>
K6	Ξ	=
K7	_	-
N1	37	
N2	120 24	120 24 80
	24 80 16 50	80 16
N3	50	16 50 21
N11	21 70 —	21 70
H5	_	Ξ
Н8	_ _	

SMG = Seco material group

v_c = m/min (sf/min)

Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

Taps Selection MTH-V048 – MTH-V050

Tool type	MTH-V048	MTH-V050
Thread type	NPT	NPTF
TCTR	NORMAL	NORMAL
ULDR	1.5	1.5
тнснт	С	С
BSG	DIN/ANSI	DIN/ANSI
Thread size	NPT 1/16-27 NPT 1-11.5	NPTF 1/16-27 NPTF 3/4-14
FHA	15°	15°
Coolant	No	No
Page(s)	485	486

Cutting data MTH-V048 - V050

SMG	,	/c
OWIG	MTH- V048	MTH- V050
P1	11 36	11 36
P2	11	11 36
P3	36 10	10
	33 8	33 8
P4	26 8	26 8
P5	26	26
P6	9 30	9 30
P7	8 26	8 26
P8	8 26	8 26
P11	8 26	8 26
P12	5	5
M1	16 9 30	16 9 30
	30 7	30 7
M2	23 5	23 5
M3	16	16
M4	4 13	4 13
M5	3 10	3 10
K1	14 46	14 46
K2	12 39	12 39
K3	10	10
K4	33 10	33 10
	33 6	33 6
K5	20 9	20 9
K6	30	30
K7	8 26	8 26
N1	23 75	23 75
N2		15 49
N3	10 33	10 33
N11	15 49 10 33 13 43 —	13 43
H5	43 —	43 — —
	_	<u> </u>
H8	_	-

SMG = Seco material group v_c = m/min (sf/min)

Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

SECO I

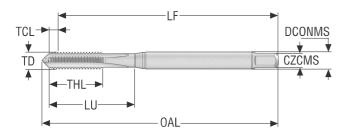
Taps Selection MF-V053 – MF-V063 (-A)

Tool type	MF-V054	MF-V055	MF-V056	MF-V057	MF-V058	MF-V060-A	MF-V063	MF-V063-A
Thread type	М	М	UNC	UNF	М	M	MF	MF
TCTR	5HX/6HX	6HX	2BX	2BX	6GX	6HX	6HX	6HX
ULDR	3	3	3	3	3	3	3	3
тнснт	С	С	С	С	С	С	С	С
BSG	DIN2174	DIN2174	DIN2184-1	DIN2184-1	DIN2174	DIN2174	DIN2174	DIN2174
Thread size	M1 - M2.6	M3 - M48	UNC 4-40 - UNC 1-8	UNF 10-32 - UNF 1-12	M3 - M12	M5 - M48	MF 5X0.5 - MF 16X1.5	MF 5X0.5 - MF 16X1.5
FHA	-	_	_	_	-	_	_	_
Coolant	No	No	No	No	No	Yes	No	Yes
Page(s)	497	498	499	500	501	502	503	504

Cutting data MF-V053 - MF-V063 (-A)

SMG				,	'c			
O.M.C	MF- V054	MF- V055	MF- V056	MF- V057	MF- V058	MF- V060	MF- V063	MF- V063-A
P1	55	55	55 180	55	55	55	55	55 180
	180 55	180 55	55	180 55	180 55	180 55	180 55	55
P2	180	180	180	180	180	180	180	180
P3	48	48	48	48	48	48	48	48
	155 42							
P4	140	140	140	140	140	140	140	140
P5	40 130							
DC	45	45	45	45	45	45	45	45
P6	150	150	150	150	150	150	150	150
P7	42 140							
DO	40	40	40	40	40	40	40	40
P8	130	130	130	130	130	130	130	130
P11	41 135							
P12	24	24	24	24	24	24	24	24
FIZ	80	80	80	80	80	80	80	80
M1	17 55							
M2	14	14	14	14	14	14	14	14
IVIZ	46	46	46	46	46	46	46	46
M3	11 36							
M4	8	8	8	8	8	8	8	8
IVIT	26	26	26 7	26	26	26 7	26 7	26
M5	7 23	7 23	23	7 23	7 23	23	23	7 23
K1	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
K2	_	_	_	_	_	_	_	_
K3	_	_	_	_	_	_	_	_
	_	_	_	_	_	_	_	_
K4	_	_	_	_	_	_	_	_
K5	_	_	_ _	_	_ _	_	_	<u> </u>
140	_	_	_	_	_	_	_	_
K6	_	_	_	_	_	_	_	_
K7	_	_	_	_	_	_	_	_
N1	55 180							
	35	35	35	35		35	35	
N2	115	115	115	115	35 115	115	115	35 115
N3	23 75							
N111	31	31	31	31	31	31	31	31
N11	100	100	100	100	100	100	100	100
H5			_	_	_ _	_	_	_
Н8	_	_	_	_	_	_	_	_
110	_	_	_	_		_	_	_

SMG = Seco material group v_c = m/min (sf/min)


Cutting speeds (v_c) in the table are recommendations for a start value and calculated when running in 2xD, except for V048, V050 and MTH-S (001, 002, 003, 004, 011, 012, 031, 032, 041, 042 and 044) that are calculated from 1,5xD.

When running in 1,5xD increse speed by 20% and at 2,5 x D reduce speed by 20%. At 3 x D reduce by 30%. Due to machine, material and setup condition it is advisable also to optimize cutting data.

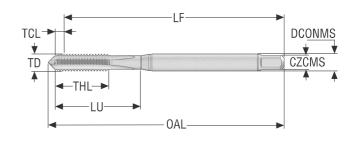
SECO I

T32-SNC-micro

Blind and through holes - Metric coarse threads

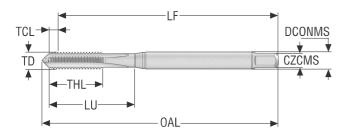
- Substrate: HSS-PMCoating: TiAlN + TiNStandard: DIN371

- Thread tolerance class: 4H
 For cutting data see page(s) 260


Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN01C03-1X0.25-41R	10139661	M1	0,25	0,68 0.027	6,0 0.236	13 0.512	39,32 1.548	40,9 1.610	2,5 0.098	2.50X2.10	0,75 0.030	2	С
T32-SN01C03-1.1X0.25-41R	10139662	M1.1	0,25	0,68 0.027	6,0 0.236	13 0.512	39,32 1.548	41,0 1.614	2,5 0.098	2.50X2.10	0,85 0.033	2	С
T32-SN01C03-1.2X0.25-41R	10139663	M1.2	0,25	0,68 0.027	6,0 0.236	13 <i>0.512</i>	39,32 1.548	41,1 1.618	2,5 0.098	2.50X2.10	0,95 0.037	2	С
T32-SN01C03-1.4X0.3-41R	10139664	M1.4	0,3	0,79 0.031	7,0 0.276	13 0.512	39,21 1.544	41,3 1,626	2,5 0.098	2.50X2.10	1,1 0.043	2	С

T32-SNC-micro

Blind and through holes – Metric coarse threads



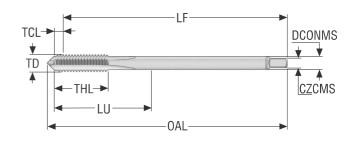
- Substrate: HSS-PM
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN01C03-1.6X0.35-63R	10139665	M1.6	0,35	0,92 0.036	8,0 0.315	13 <i>0.512</i>	39,08 1.539	41,4 1.630	2,5 0.098	2.50X2.10	1,25 0.049	2	С
T32-SN01C03-1.7X0.35-63R	10139666	M1.7	0,35	0,92 0.036	8,0 <i>0.315</i>	13 <i>0.512</i>	39,08 1.539	41,5 1.634	2,5 0.098	2.50X2.10	1,35 0.053	2	С
T32-SN01C03-1.8X0.35-63R	10139667	M1.8	0,35	0,92 0.036	8,0 <i>0.315</i>	13 0.512	39,08 1.539	41,6 1.638	2,5 0.098	2.50X2.10	1,45 0.057	2	С
T32-SN01C03-2X0.4-63R	10139668	M2	0,4	1,13 0.044	10,0 <i>0.394</i>	13 0.512	43,87 1.727	46,3 1.823	2,8 0.110	2.80X2.10	1,6 0.063	2	С
T32-SN01C03-2.2X0.45-63R	10139669	M2.2	0,45	1,24 0.049	10,0 <i>0.394</i>	13 0.512	43,76 1.723	46,3 1.823	2,8 0.110	2.80X2.10	1,75 0.069	2	С
T32-SN01C03-2.3X0.4-63R	10139670	M2.3	0,4	1,13 0.044	10,0 <i>0.394</i>	13 0.512	43,87 1.727	46,3 1.823	2,8 0.110	2.80X2.10	1,9 <i>0.075</i>	2	С
T32-SN01C03-2.5X0.45-63R	10139672	M2.5	0,45	1,24 0.049	9,0 <i>0.354</i>	14 0.551	48,76 1.920	51,7 2.035	2,8 0.110	2.80X2.10	2,05 0.081	2	С
T32-SN01C03-2.6X0.45-63R	10139673	M2.6	0,45	1,24 0.049	9,0 <i>0.354</i>	14 0.551	48,76 1.920	51,7 2.035	2,8 0.110	2.80X2.10	2,15 0.085	2	С

T32-SNC

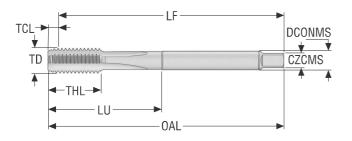
Blind and through holes - Metric coarse threads

- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 For cutting data see page(s) 260


Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN01C03-3X0.5-63R	10139674	МЗ	0,5	1,1 0.043	10,0 <i>0.394</i>	18 0.709	54,9 2.161	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	С
T32-SN01C03-3.5X0.6-63R	10139675	M3.5	0,6	1,28 0.050	12,0 0.472	20 0.787	54,72 2.154	57,4 2.260	4,0 0.157	4.00X3.00	2,9 0.114	3	С
T32-SN01C03-4X0.7-63R	10139676	M4	0,7	1,61 <i>0.06</i> 3	12,0 0.472	21 0.827	61,39 2.417	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	С
T32-SN01C03-4.5X0.75-63R	10139677	M4.5	0,75	1,61 <i>0.063</i>	14,0 0.551	25 0.984	68,39 2.693	71,8 2.827	6,0 0.236	6.00X4.90	3,8 0.150	3	С
T32-SN01C03-5X0.8-63R	10139678	M5	0,8	1,78 0.070	14,0 0.551	25 0.984	68,22 2.686	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	С
T32-SN01C03-6X1-63R	10139679	M6	1,0	2,14 0.084	18,0 <i>0.709</i>	30 1.181	77,86 3.065	82,4 3.244	6,0 0.236	6.00X4.90	5,0 <i>0.197</i>	3	С
T32-SN01C03-7X1-63R	10139680	M7	1,0	2,14 0.084	18,0 <i>0.709</i>	30 1.181	77,86 3.065	82,9 3.264	7,0 0.276	7.00X5.50	6,0 0.236	3	С
T32-SN01C03-8X1.25-63R	10139681	M8	1,25	2,94 0.116	20,0 0.787	35 1.378	87,06 3.428	93,3 3.673	8,0 0.315	8.00X6.20	6,8 0.268	3	С
T32-SN01C03-9X1.25-63R	10139682	M9	1,25	2,94 0.116	20,0 0.787	35 1.378	87,06 3.428	91,7 3.610	9,0 0.354	9.00X7.00	7,8 0.307	3	С
T32-SN01C03-10X1.5-63R	10139683	M10	1,5	3,55 0.140	20,0 0.787	39 1.535	96,45 3.797	101,8 4.008	10,0 0.394	10.00X8.00	8,5 0.335	3	С

T32-SNC

Blind and through holes - Metric coarse threads



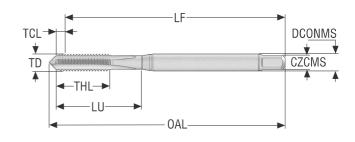
- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	ТНСНТ
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN01C06-3X0.5-63R	10139694	M3	0,5	1,1 0.043	11,0 <i>0.4</i> 33	36 1.417	54,9 2.161	57,2 2.252	2,2 0.087	2.20X1.80	2,5 0.098	3	С
T32-SN01C06-4X0.7-63R	10139696	M4	0,7	1,61 0.063	12,0 <i>0.4</i> 72	43 1.693	61,39 2.417	64,6 2.543	2,8 0.110	2.80X2.10	3,3 0.130	3	С
T32-SN01C06-5X0.8-63R	10139697	M5	0,8	1,78 0.070	14,0 <i>0.551</i>	49 1.929	68,22 2.686	72,0 2.835	3,5 0.138	3.50X2.70	4,2 0.165	3	С
T32-SN01C06-6X1-63R	10139698	M6	1,0	2,14 0.084	18,0 <i>0.70</i> 9	59 2.323	77,86 3.065	82,4 3.244	4,5 0.177	4.50X3.40	5,0 0.197	3	С

T32-SNC

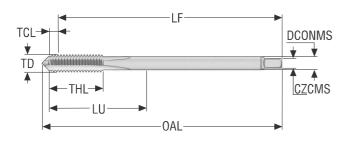
Blind and through holes - Metric coarse threads

- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 6H
 For cutting data see page(s) 260


Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCH
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN01C06-8X1.25-63R	10139700	M8	1,25	2,94 0.116	20,0 0.787	67 2.638	87,06 3.428	90,0 3.543	6,0 0.236	6.00X4.90	6,8 0.268	3	С
T32-SN01C06-10X1.5-63R	10139702	M10	1,5	3,55 0.140	20,0 0.787	77 3.031	96,45 3.797	100,0 3.937	7,0 0.276	7.00X5.50	8,5 0.335	3	С
T32-SN01C06-12X1.75-63R	10139703	M12	1,75	4,17 0.164	24,0 0.945	83 3.268	105,83 <i>4.167</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,2 0.402	3	С
T32-SN01C06-14X2-63R	10139704	M14	2,0	4,78 0.188	25,0 0.984	81 3.189	105,22 4.143	110,0 <i>4.331</i>	11,0 0.433	11.00X9.00	12,0 0.472	4	С
T32-SN01C06-16X2-63R	10139705	M16	2,0	4,88 0.192	32,0 1.260	68 2.677	105,12 <i>4.1</i> 39	110,0 <i>4.331</i>	12,0 <i>0.4</i> 72	12.00X9.00	14,0 0.551	4	С
T32-SN01C06-18X2.5-63R	10139706	M18	2,5	5,97 0.235	32,0 1.260	81 3.189	119,03 <i>4.686</i>	125,0 4.921	14,0 0.551	14.00X11.00	15,5 0.610	4	С
T32-SN01C06-20X2.5-63R	10139707	M20	2,5	6,17 0.243	32,0 1.260	95 3.740	133,83 5.269	140,0 5.512	16,0 0.630	16.00X12.00	17,5 0.689	4	С
T32-SN01C06-22X2.5-63R	10139708	M22	2,5	6,17 0.243	32,0 1.260	93 3.661	133,83 5.269	140,0 5.512	18,0 <i>0.70</i> 9	18.00X14.50	19,5 <i>0.</i> 768	4	С
T32-SN01C06-24X3-63R	10139709	M24	3,0	7,4 0.291	38,0 1.496	113 <i>4.44</i> 9	152,6 6.008	160,0 6.299	18,0 <i>0.70</i> 9	18.00X14.50	21,0 0.827	4	С
T32-SN01C06-27X3-63R	10139710	M27	3,0	7,4 0.291	38,0 1.496	97 3.819	152,6 6.008	160,0 6.299	20,0 0.787	20.00X16.00	24,0 0.945	4	С
T32-SN01C06-30X3.5-63R	10139711	M30	3,5	8,4 0.331	45,0 1.772	115 4.528	171,6 6.756	180,0 7.087	22,0 0.866	22.00X18.00	26,5 1.043	4	С
T32-SN01C06-33X3.5-63R	10139712	M33	3,5	8,4 0.331	45,0 1.772	113 4.449	171,6 6.756	180,0 7.087	25,0 0.984	25.00X20.00	29,5 1.161	4	С
T32-SN01C06-36X4-63R	10139713	M36	4,0	9,4 0.370	50,0 1.969	131 5.157	190,6 7.504	200,0 7.874	28,0 1.102	28.00X22.00	32,0 1.260	4	С
T32-SN01C06-39X4-63R	10139714	M39	4,0	9,4 0.370	50,0 1.969	102 4.016	190,6 7.504	200,0 7.874	32,0 1.260	32.00X24.00	35,0 1.378	4	С
T32-SN01C06-42X4.5-63R	10139715	M42	4,5	10,4 <i>0.40</i> 9	60,0 2.362	102 4.016	189,6 7.465	200,0 7.874	32,0 1.260	32.00X24.00	37,5 1.476	5	С
T32-SN01C06-45X4.5-63R	10139716	M45	4,5	10,42 <i>0.410</i>	60,0 2.362	117 4.606	209,58 8.251	220,0 8.661	36,0 1.417	36.00X29.00	40,5 1.594	5	С
T32-SN01C06-48X5-63R	10139717	M48	5,0	11,4 0.449	65,0 2.559	147 5.787	238,6 9.394	250,0 9.843	36,0 1.417	36.00X29.00	43,0 1.693	5	С
T32-SN01C06-52X5-63R	10139718	M52	5,0	11,4 <i>0.44</i> 9	65,0 2.559	120 4.724	238,6 9.394	250,0 9.843	40,0 1.575	40.00X32.00	47,0 1.850	5	С

T32-SNC

Blind and through holes - Metric coarse threads, left hand thread



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 For cutting data see page(s) 260

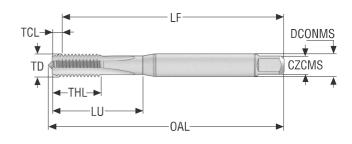
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	ТНСНТ
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN01C03-3X0.5-63L	10139686	M3	0,5	1,1 0.043	10,0 <i>0.394</i>	18 0.709	54,9 2.161	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	С
T32-SN01C03-4X0.7-63L	10139687	M4	0,7	1,61 0.063	12,0 <i>0.4</i> 72	21 0.827	61,39 2.417	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	С
T32-SN01C03-5X0.8-63L	10139688	M5	0,8	1,78 0.070	14,0 0.551	25 0.984	68,22 2.686	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	С
T32-SN01C03-6X1-63L	10139689	M6	1,0	2,14 0.084	18,0 <i>0.709</i>	30 1.181	77,86 3.065	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	3	С
T32-SN01C03-7X1-63L	10139690	M7	1,0	2,14 0.084	18,0 <i>0.709</i>	30 1.181	77,86 3.065	82,9 3.264	7,0 0.276	7.00X5.50	6,0 0.236	3	С
T32-SN01C03-8X1.25-63L	10139691	M8	1,25	2,94 0.116	20,0 0.787	35 1.378	87,06 3.428	93,3 3.673	8,0 0.315	8.00X6.20	6,8 0.268	3	С
T32-SN01C03-9X1.25-63L	10139692	M9	1,25	2,94 0.116	20,0 0.787	35 1.378	87,06 3.428	91,7 3.610	9,0 0.354	9.00X7.00	7,8 0.307	3	С
T32-SN01C03-10X1.5-63L	10139693	M10	1,5	3,55 0.140	20,0 <i>0.787</i>	39 1.535	96,45 3.797	101,8 <i>4.008</i>	10,0 <i>0</i> .394	10.00X8.00	8,5 0.335	3	С

T32-SNC

Blind and through holes - Metric coarse threads, left hand thread

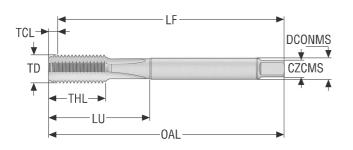
- Substrate: HSSECoating: TiAlN + TiNStandard: DIN376

- Thread tolerance class: 6H
 For cutting data see page(s) 260


Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN01C06-12X1.75-63L	10139751	M12	1,75	4,17 0.164	24,0 0.945	83 3.268	105,83 <i>4.16</i> 7	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,2 0.402	3	С
T32-SN01C06-16X2-63L	10139752	M16	2,0	4,88 0.192	32,0 1.260	68 2.677	105,12 <i>4.1</i> 39	110,0 <i>4.331</i>	12,0 <i>0.472</i>	12.00X9.00	14,0 <i>0.551</i>	4	С
T32-SN01C06-20X2.5-63L	10139753	M20	2,5	6,17 0.243	32,0 1.260	95 3.740	133,83 5.269	140,0 5.512	16,0 <i>0.630</i>	16.00X12.00	17,5 0.689	4	С
T32-SN01C06-24X3-63L	10139754	M24	3,0	7,4 0.291	38,0 1.496	113 <i>4.44</i> 9	152,6 6.008	160,0 6.299	18,0 0.709	18.00X14.50	21,0 0.827	4	С

T32-SNC

Blind and through holes – MF threads



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 For cutting data see page(s) 260

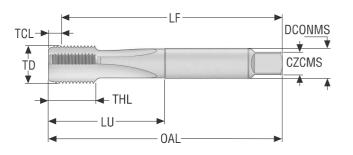
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN02C03-8X1-63R	10139684	MF8X1	1,0	2,44 0.096	20,0 0.787	35 1.378	87,56 3.447	93,3 3.673	8,0 0.315	8.00X6.20	7,0 0.276	3	С
T32-SN02C03-10X1-63R	10139685	MF10X1	1,0	2,54 0.100	20,0 <i>0.787</i>	35 1.378	87,46 3.443	91,8 3.614	10,0 <i>0.</i> 39 <i>4</i>	10.00X8.00	9,0 <i>0.354</i>	3	С

T32-SNC

Blind and through holes - MF threads

- Substrate: HSSECoating: TiAlN + TiNStandard: DIN374

- Thread tolerance class: 6H
 For cutting data see page(s) 260

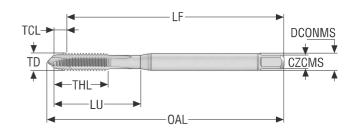

								• For c	utting data see	page(s) 260			
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN02C05-8X1-63R	10139719	MF8X1	1,0	2,44 0.096	20,0 0.787	67 2.638	87,56 3.447	90,0 3.543	6,0 0.236	6.00X4.90	7,0 0.276	3	С
T32-SN02C05-10X0.75-63R	10139720	MF10X0.75	0,75	3,43 0.135	18,0 <i>0.709</i>	67 2.638	86,57 3.408	90,0 3.543	7,0 0.276	7.00X5.50	9,2 <i>0.</i> 362	3	С
T32-SN02C05-10X1-63R	10139721	MF10X1	1,0	2,54 0.100	20,0 <i>0.787</i>	67 2.638	87,46 3.443	90,0 3.543	7,0 <i>0.2</i> 76	7.00X5.50	9,0 <i>0.354</i>	3	С
T32-SN02C05-10X1.25-63R	10139722	MF10X1.25	1,25	3,04 0.120	20,0 0.787	77 3.031	96,96 3.817	100,0 3.937	7,0 0.276	7.00X5.50	8,8 0.346	3	С
T32-SN02C05-12X1-63R	10139723	MF12X1	1,0	2,65 0.104	20,0 0.787	73 2.874	97,35 3.833	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,0 <i>0.433</i>	3	С
T32-SN02C05-12X1.25-63R	10139724	MF12X1.25	1,25	3,16 <i>0.124</i>	20,0 0.787	73 2.874	96,84 3.813	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,8 <i>0.425</i>	3	С
T32-SN02C05-12X1.5-63R	10139725	MF12X1.5	1,5	3,66 0.144	20,0 <i>0.787</i>	73 2.874	96,34 3.793	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,5 <i>0.413</i>	3	С
T32-SN02C05-14X1-63R	10139726	MF14X1	1,0	2,75 0.108	20,0 <i>0</i> .787	71 2.795	97,25 3.829	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	13,0 <i>0.512</i>	4	С
T32-SN02C05-14X1.25-63R	10139727	MF14X1.25	1,25	3,26 0.128	20,0 0.787	71 2.795	96,74 3.809	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	12,8 <i>0.504</i>	4	С
T32-SN02C05-14X1.5-63R	10139728	MF14X1.5	1,5	3,76 0.148	20,0 <i>0.787</i>	71 2.795	96,24 3.789	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	12,5 <i>0.4</i> 92	4	С
T32-SN02C05-16X1-63R	10139729	MF16X1	1,0	2,85 0.112	20,0 0.787	58 2.283	97,15 3.825	100,0 3.937	12,0 <i>0.4</i> 72	12.00X9.00	15,0 <i>0.591</i>	4	С
T32-SN02C05-16X1.5-63R	10139730	MF16X1.5	1,5	3,86 0.152	20,0 <i>0.</i> 787	58 2.283	96,14 3.785	100,0 3.937	12,0 0.472	12.00X9.00	14,5 0.571	4	С
T32-SN02C05-18X1.5-63R	10139731	MF18X1.5	1,5	3,96 <i>0.156</i>	24,0 0.945	66 2.598	106,04 <i>4.175</i>	110,0 <i>4.331</i>	14,0 <i>0.551</i>	14.00X11.00	16,5 <i>0.650</i>	4	С
T32-SN02C05-18X2-63R	10139732	MF18X2	2,0	4,98 0.196	27,0 1.063	81 3.189	120,02 <i>4.7</i> 25	125,0 <i>4</i> .921	14,0 <i>0.551</i>	14.00X11.00	16,0 <i>0.630</i>	4	С
T32-SN02C05-20X1.5-63R	10139733	MF20X1.5	1,5	4,16 <i>0.164</i>	24,0 0.945	80 3.150	120,84 <i>4.7</i> 57	125,0 <i>4</i> .921	16,0 <i>0.630</i>	16.00X12.00	18,5 <i>0.728</i>	4	С
T32-SN02C05-20X2-63R	10139734	MF20X2	2,0	5,18 0.204	27,0 1.063	95 3.740	134,82 5.308	140,0 5.512	16,0 <i>0.630</i>	16.00X12.00	18,0 <i>0.70</i> 9	4	С
T32-SN02C05-22X1.5-63R	10139735	MF22X1.5	1,5	4,16 <i>0.164</i>	24,0 0.945	78 3.071	120,84 <i>4.7</i> 57	125,0 <i>4</i> .921	18,0 <i>0.70</i> 9	18.00X14.50	20,5 0.807	4	С
T32-SN02C05-22X2-63R	10139736	MF22X2	2,0	5,18 <i>0.204</i>	27,0 1.063	93 3.661	134,82 5.308	140,0 5.512	18,0 <i>0.70</i> 9	18.00X14.50	20,0 <i>0.787</i>	4	С
T32-SN02C05-24X1.5-63R	10139737	MF24X1.5	1,5	3,88 0.153	27,0 1.063	93 3.661	136,12 5.359	140,0 5.512	18,0 <i>0.70</i> 9	18.00X14.50	22,5 0.886	4	С
T32-SN02C05-24X2-63R	10139738	MF24X2	2,0	4,89 0.193	27,0 1.063	93 3.661	135,11 <i>5.31</i> 9	140,0 5.512	18,0 <i>0.70</i> 9	18.00X14.50	22,0 0.866	4	С
T32-SN02C05-27X1.5-63R	10139739	MF27X1.5	1,5	4,38 0.172	27,0 1.063	77 3.031	135,62 5.339	140,0 5.512	20,0 0.787	20.00X16.00	25,5 1.004	4	С

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN02C05-27X2-63R	10139740	MF27X2	2,0	5,39 0.212	27,0 1.063	77 3.031	134,61 5.300	140,0 5.512	20,0 <i>0.787</i>	20.00X16.00	25,0 0.984	4	С
T32-SN02C05-30X1.5-63R	10139741	MF30X1.5	1,5	4,38 0.172	27,0 1.063	85 3.346	145,62 5.733	150,0 5.906	22,0 0.866	22.00X18.00	28,5 1.122	4	С
T32-SN02C05-30X2-63R	10139742	MF30X2	2,0	5,39 0.212	27,0 1.063	85 3.346	144,61 5.693	150,0 5.906	22,0 0.866	22.00X18.00	28,0 1.102	4	С

T32-SNC

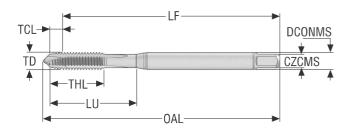
Blind and through holes - G threads

- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN5156
 Thread tolerance class: NORMAL
 For cutting data see page(s) 260


Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-SN21C09-1/8-28-11R	10139743	G1/8	9,728 <i>0.</i> 383	28.0	2,43 0.096	18,0 0.709	67 2.638	87,57 3.448	90,0 3.543	7,0 0.276	7.00X5.50	8,8 0.346	3	С
T32-SN21C09-1/4-19-11R	10139744	G1/4	13,157 <i>0.518</i>	19.0	3,52 0.139	22,0 0.866	71 2.795	96,48 3.798	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	11,8 0.465	4	С
T32-SN21C09-3/8-19-11R	10139745	G3/8	16,662 <i>0.656</i>	19.0	3,72 0.146	22,0 0.866	58 2.283	96,28 3.791	100,0 3.937	12,0 0.472	12.00X9.00	15,25 0.600	4	С
T32-SN21C09-1/2-14-11R	10139746	G1/2	20,955 0.825	14.0	5,02 0.198	25,0 0.984	80 3.150	119,98 <i>4.</i> 72 <i>4</i>	125,0 4.921	16,0 0.630	16.00X12.00	19,0 <i>0.748</i>	4	С
T32-SN21C09-5/8-14-11R	10139747	G5/8	22,911 0.902	14.0	4,94 0.194	25,0 0.984	78 3.071	120,06 <i>4.</i> 727	125,0 4.921	18,0 0.709	18.00X14.50	21,0 0.827	4	С
T32-SN21C09-3/4-14-11R	10139748	G3/4	26,441 1.041	14.0	5,19 0.204	28,0 1.102	77 3.031	134,81 5.307	140,0 5.512	20,0 0.787	20.00X16.00	24,5 0.965	4	С
T32-SN21C09-7/8-14-11R	10139749	G7/8	30,201 1.189	14.0	5,13 0.202	30,0 1.181	85 3.346	144,87 5.704	150,0 5.906	22,0 0.866	22.00X18.00	28,25 1.112	4	С
T32-SN21C09-1-11-11R	10139750	G1	33,249 1.309	11.0	6,03 0.237	32,0 1.260	93 3.661	153,97 6.062	160,0 6.299	25,0 0.984	25.00X20.00	30,75 1.211	4	С

T32-PNB-micro

Through holes – Metric coarse threads



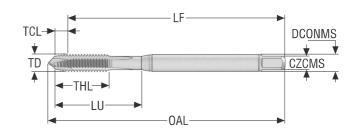
- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 4H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B03-1X0.25-41R	10139427	M1	0,25	1,13 0.044	6,0 0.236	13 0.512	38,87 1.530	40,9 1.610	2,5 0.098	2.50X2.10	0,75 0.030	2	В
T32-PN01B03-1.1X0.25-41R	10139428	M1.1	0,25	1,13 <i>0.044</i>	6,0 0.236	13 <i>0.512</i>	38,87 1.530	41,0 1.614	2,5 0.098	2.50X2.10	0,85 0.033	2	В
T32-PN01B03-1.2X0.25-41R	10139429	M1.2	0,25	1,13 <i>0.044</i>	6,0 0.236	13 <i>0.512</i>	38,87 1.530	41,1 1.618	2,5 0.098	2.50X2.10	0,95 0.037	2	В
T32-PN01B03-1.4X0.3-41R	10139430	M1.4	0,3	1,32 0.052	7,0 0.276	13 0.512	38,68 1.523	41,3 1.626	2,5 0.098	2.50X2.10	1,1 0.043	2	В

T32-PNB-micro

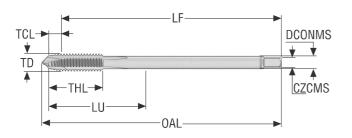
Through holes - Metric coarse threads

- Substrate: HSSECoating: TiAlN + TiNStandard: DIN371


- Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B03-1.6X0.35-63R	10139431	M1.6	0,35	1,54 0.061	8,0 <i>0.315</i>	13 <i>0.512</i>	38,46 1.514	41,4 1.630	2,5 0.098	2.50X2.10	1,25 0.049	2	В
T32-PN01B03-1.7X0.35-63R	10139432	M1.7	0,35	1,54 0.061	8,0 <i>0.315</i>	13 0.512	38,46 1.514	41,5 1.634	2,5 0.098	2.50X2.10	1,35 0.053	2	В
T32-PN01B03-1.8X0.35-63R	10139433	M1.8	0,35	1,54 0.061	8,0 <i>0.315</i>	13 0.512	38,46 1.514	41,6 1.638	2,5 0.098	2.50X2.10	1,45 0.057	2	В
T32-PN01B03-2X0.4-63R	10139434	M2	0,4	1,89 <i>0.074</i>	10,0 0.394	13 0.512	43,11 1.697	46,3 1.823	2,8 0.110	2.80X2.10	1,6 0.063	2	В
T32-PN01B03-2.2X0.45-63R	10139435	M2.2	0,45	2,07 0.081	10,0 0.394	13 0.512	42,93 1.690	46,3 1.823	2,8 0.110	2.80X2.10	1,75 0.069	2	В
T32-PN01B03-2.3X0.4-63R	10139436	M2.3	0,4	1,89 <i>0.074</i>	10,0 0.394	13 0.512	43,11 1.697	46,3 1.823	2,8 0.110	2.80X2.10	1,9 <i>0.075</i>	2	В
T32-PN01B03-2.5X0.45-63R	10139437	M2.5	0,45	2,07 0.081	9,0 0.354	14 0.551	47,93 1.887	51,7 2.035	2,8 0.110	2.80X2.10	2,05 0.081	2	В
T32-PN01B03-2.6X0.45-63R	10139438	M2.6	0,45	2,07 0.081	9,0 <i>0.354</i>	14 0.551	47,93 1.887	51,7 2.035	2,8 0.110	2.80X2.10	2,15 0.085	2	В

Through holes – Metric coarse threads

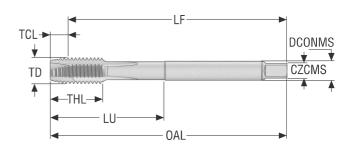


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B03-3X0.5-63R	10139439	M3	0,5	2,28 0.090	10,0 <i>0.394</i>	18 <i>0.70</i> 9	53,72 2.115	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	В
T32-PN01B03-3.5X0.6-63R	10139440	M3.5	0,6	2,65 0.104	12,0 <i>0.4</i> 72	20 0.787	53,35 2.100	57,4 2.260	4,0 0.157	4.00X3.00	2,9 0.114	3	В
T32-PN01B03-4X0.7-63R	10139441	M4	0,7	3,33 0.131	12,0 <i>0.472</i>	21 0.827	59,67 2.349	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	В
T32-PN01B03-4.5X0.75-63R	10139442	M4.5	0,75	3,33 0.131	14,0 <i>0.551</i>	25 0.984	66,67 2.625	71,8 2.827	6,0 0.236	6.00X4.90	3,8 0.150	3	В
T32-PN01B03-5X0.8-63R	10139443	M5	0,8	3,68 0.145	14,0 <i>0.551</i>	25 0.984	66,32 2.611	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	В
T32-PN01B03-6X1-63R	10139444	M6	1,0	4,41 0.174	18,0 <i>0.709</i>	30 1.181	75,59 2.976	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	3	В
T32-PN01B03-7X1-63R	10139445	M7	1,0	4,41 0.174	18,0 <i>0.709</i>	30 1.181	75,59 2.976	82,9 3.264	7,0 0.276	7.00X5.50	6,0 0.236	3	В
T32-PN01B03-8X1.25-63R	10139446	M8	1,25	5,43 0.214	20,0 <i>0.787</i>	35 1.378	84,57 3.330	93,3 3.673	8,0 0.315	8.00X6.20	6,8 0.268	3	В
T32-PN01B03-9X1.25-63R	10139447	M9	1,25	5,7 0.224	20,0 <i>0.787</i>	35 1.378	84,3 3.319	91,7 3.610	9,0 <i>0.354</i>	9.00X7.00	7,8 0.307	3	В
T32-PN01B03-10X1.5-63R	10139448	M10	1,5	6,84 0.269	20,0 <i>0.787</i>	39 1.535	93,16 3.668	101,8 <i>4.008</i>	10,0 <i>0.</i> 394	10.00X8.00	8,5 0.335	3	В

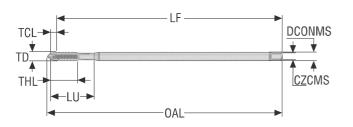
T32-PNB

Through holes - Metric coarse threads


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B06-3X0.5-63R	10139482	M3	0,5	2,2 0.087	11,0 <i>0.4</i> 33	36 1.417	53,8 2.118	57,2 2.252	2,2 0.087	2.20X1.80	2,5 0.098	3	В
T32-PN01B06-4X0.7-63R	10139484	M4	0,7	3,3 0.130	12,0 <i>0.4</i> 72	43 1.693	59,7 2.350	64,6 2.543	2,8 0.110	2.80X2.10	3,3 0.130	3	В
T32-PN01B06-5X0.8-63R	10139485	M5	0,8	3,6 0.142	14,0 <i>0.551</i>	49 1.929	66,4 2.614	72,0 2.835	3,5 0.138	3.50X2.70	4,2 0.165	3	В
T32-PN01B06-6X1-63R	10139486	M6	1,0	4,4 0.173	18,0 0.709	59 2.323	75,6 2.976	82,4 3.244	4,5 0.177	4.50X3.40	5,0 0.197	3	В

Through holes – Metric coarse threads

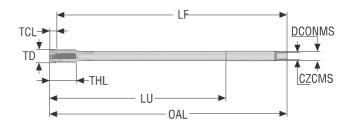


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B06-8X1.25-63R	10139488	M8	1,25	5,7 0.224	20,0 <i>0.787</i>	67 2.638	84,3 3.319	90,0 3.543	6,0 0.236	6.00X4.90	6,8 0.268	3	В
T32-PN01B06-9X1.25-63R	10139489	M9	1,25	5,7 0.224	20,0 <i>0.787</i>	67 2.638	84,3 3.319	90,0 3.543	7,0 0.276	7.00X5.50	7,8 0.307	3	В
T32-PN01B06-10X1.5-63R	10139490	M10	1,5	6,84 0.269	20,0 <i>0.787</i>	77 3.031	93,16 3.668	100,0 3.937	7,0 0.276	7.00X5.50	8,5 0.335	3	В
T32-PN01B06-12X1.75-63R	10139491	M12	1,75	8,01 <i>0.315</i>	24,0 0.945	83 3.268	101,99 <i>4.015</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,2 <i>0.4</i> 02	3	В
T32-PN01B06-14X2-63R	10139492	M14	2,0	9,14 0.360	25,0 0.984	81 3.189	100,86 3.971	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	12,0 <i>0.4</i> 72	3	В
T32-PN01B06-16X2-63R	10139493	M16	2,0	9,24 0.364	32,0 1.260	68 2.677	100,76 3.967	110,0 <i>4.331</i>	12,0 <i>0.4</i> 72	12.00X9.00	14,0 <i>0.551</i>	3	В
T32-PN01B06-18X2.5-63R	10139494	M18	2,5	11,38 <i>0.448</i>	32,0 1.260	81 3.189	113,62 <i>4.4</i> 73	125,0 <i>4</i> .921	14,0 <i>0.551</i>	14.00X11.00	15,5 0.610	4	В
T32-PN01B06-20X2.5-63R	10139495	M20	2,5	11,58 <i>0.456</i>	32,0 1.260	95 3.740	128,42 5.056	140,0 5.512	16,0 0.630	16.00X12.00	17,5 0.689	4	В
T32-PN01B06-22X2.5-63R	10139496	M22	2,5	11,78 <i>0.464</i>	32,0 1.260	93 3.661	128,22 5.048	140,0 5.512	18,0 <i>0.70</i> 9	18.00X14.50	19,5 <i>0.7</i> 68	4	В
T32-PN01B06-24X3-63R	10139497	M24	3,0	13,68 <i>0.5</i> 39	38,0 1.496	113 <i>4.44</i> 9	146,32 5.761	160,0 6.299	18,0 <i>0.709</i>	18.00X14.50	21,0 0.827	4	В
T32-PN01B06-27X3-63R	10139498	M27	3,0	13,88 0.546	38,0 1.496	97 3.819	146,12 5.753	160,0 6.299	20,0 0.787	20.00X16.00	24,0 0.945	4	В
T32-PN01B06-30X3.5-63R	10139499	M30	3,5	15,93 <i>0.627</i>	45,0 1.772	115 <i>4.528</i>	164,07 6.459	180,0 7.087	22,0 0.866	22.00X18.00	26,5 1.043	4	В
T32-PN01B06-33X3.5-63R	10139500	M33	3,5	15,93 <i>0.627</i>	45,0 1.772	113 <i>4.44</i> 9	164,07 <i>6.45</i> 9	180,0 7.087	25,0 0.984	25.00X20.00	29,5 1.161	4	В
T32-PN01B06-36X4-63R	10139501	M36	4,0	17,97 <i>0.707</i>	50,0 1.969	131 <i>5.157</i>	182,03 7.167	200,0 7.874	28,0 1.102	28.00X22.00	32,0 1.260	4	В
T32-PN01B06-39X4-63R	10139502	M39	4,0	17,97 <i>0.707</i>	50,0 1.969	102 4.016	182,03 7.167	200,0 7.874	32,0 1.260	32.00X24.00	35,0 1.378	4	В
T32-PN01B06-42X4.5-63R	10139503	M42	4,5	20,02 <i>0.788</i>	60,0 2.362	102 4.016	179,98 7.086	200,0 7.874	32,0 1.260	32.00X24.00	37,5 1.476	5	В
T32-PN01B06-45X4.5-63R	10139504	M45	4,5	20,02 <i>0.788</i>	60,0 2.362	117 <i>4.606</i>	199,98 7.873	220,0 8.661	36,0 1.417	36.00X29.00	40,5 1.594	5	В
T32-PN01B06-48X5-63R	10139505	M48	5,0	22,07 0.869	65,0 2.559	147 5.787	227,93 8.974	250,0 9.843	36,0 1.417	36.00X29.00	43,0 1.693	5	В
T32-PN01B06-52X5-63R	10139506	M52	5,0	22,07 0.869	65,0 2.559	120 4.724	227,93 8.974	250,0 9.843	40,0 1.575	40.00X32.00	47,0 1.850	5	В

T32-PNB

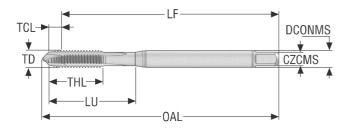
Through holes - Metric coarse threads



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371/EL
 Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B04-3X0.5-63R	10139652	M3	0,5	2,28 0.090	10,0 <i>0.394</i>	18 <i>0.70</i> 9	97,72 3.847	101,2 3.984	3,5 0.138	3.50X2.70	2,5 0.098	3	В
T32-PN01B04-4X0.7-63R	10139653	M4	0,7	3,33 0.131	12,0 <i>0.4</i> 72	21 0.827	121,67 <i>4.</i> 790	126,6 <i>4.</i> 984	4,5 0.177	4.50X3.40	3,3 0.130	3	В
T32-PN01B04-5X0.8-63R	10139654	M5	0,8	3,68 <i>0.145</i>	14,0 <i>0.551</i>	25 0.984	136,32 5.367	142,0 5.591	6,0 0.236	6.00X4.90	4,2 0.165	3	В
T32-PN01B04-6X1-63R	10139655	M6	1,0	4,41 0.174	18,0 <i>0.709</i>	30 1.181	155,59 6.126	162,4 6.394	6,0 0.236	6.00X4.90	5,0 0.197	3	В

Through holes – Metric coarse threads

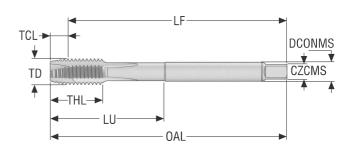


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376/EL
 Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B07-8X1.25-63R	10139656	M8	1,25	5,7 0.224	20,0 <i>0.787</i>	157 6.181	174,3 6.862	180,0 7.087	6,0 0.236	6.00X4.90	6,8 0.268	3	В
T32-PN01B07-10X1.5-63R	10139657	M10	1,5	6,84 0.269	20,0 <i>0.787</i>	177 6.969	193,16 7.605	200,0 7.874	7,0 0.276	7.00X5.50	8,5 0.335	3	В
T32-PN01B07-12X1.75-63R	10139658	M12	1,75	8,01 <i>0.315</i>	24,0 0.945	83 3.268	211,99 8.346	220,0 8.661	9,0 <i>0.354</i>	9.00X7.00	10,2 <i>0.402</i>	3	В
T32-PN01B07-16X2-63R	10139659	M16	2,0	9,24 0.364	32,0 1.260	191 7.520	210,76 8.298	220,0 8.661	11,0 <i>0.4</i> 33	11.00X9.00	14,0 0.551	3	В

T32-PNB

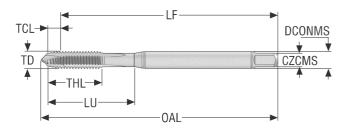
Through holes - Metric coarse threads, 6G



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6G
 For cutting data see page(s) 260

									atting adia coo	1-0-(-)			
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B03-3X0.5-61R	10139474	M3	0,5	2,28 0.090	10,0 0.394	18 0.709	53,72 2.115	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	В
T32-PN01B03-4X0.7-61R	10139475	M4	0,7	3,33 0.131	12,0 <i>0.4</i> 72	21 0.827	59,67 2.349	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	В
T32-PN01B03-5X0.8-61R	10139476	M5	0,8	3,68 0.145	14,0 <i>0.551</i>	25 0.984	66,32 2.611	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	В
T32-PN01B03-6X1-61R	10139477	M6	1,0	4,41 0.174	18,0 <i>0.709</i>	30 1.181	75,59 2.976	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	3	В
T32-PN01B03-7X1-61R	10139478	M7	1,0	4,41 0.174	18,0 <i>0.709</i>	30 1.181	75,59 2.976	82,9 3.264	7,0 0.276	7.00X5.50	6,0 0.236	3	В
T32-PN01B03-8X1.25-61R	10139479	M8	1,25	5,43 0.214	20,0 0.787	35 1.378	84,57 3.330	93,3 3.673	8,0 0.315	8.00X6.20	6,8 0.268	3	В
T32-PN01B03-9X1.25-61R	10139480	M9	1,25	5,7 0.224	20,0 <i>0</i> .787	35 1.378	84,3 3.319	91,7 3.610	9,0 0.354	9.00X7.00	7,8 0.307	3	В
T32-PN01B03-10X1.5-61R	10139481	M10	1,5	6,84 0.269	20,0 0.787	39 1.535	93,16 3.668	101,8 <i>4.008</i>	10,0 <i>0.394</i>	10.00X8.00	8,5 0.335	3	В

Through holes - Metric coarse threads, 6G

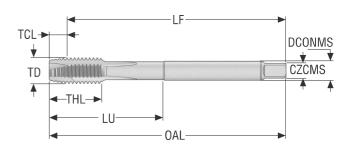


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 6G
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	ТНСНТ
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B06-12X1.75-61R	10139564	M12	1,75	8,01 <i>0.315</i>	24,0 0.945	83 3.268	101,99 <i>4.015</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,2 <i>0.402</i>	3	В
T32-PN01B06-16X2-61R	10139565	M16	2,0	9,24 0.364	32,0 1.260	68 2.677	100,76 3.967	110,0 <i>4.331</i>	12,0 0.472	12.00X9.00	14,0 <i>0.551</i>	3	В
T32-PN01B06-20X2.5-61R	10139566	M20	2,5	11,58 <i>0.45</i> 6	32,0 1.260	95 3.740	128,42 5.056	140,0 5.512	16,0 0.630	16.00X12.00	17,5 0.689	4	В
T32-PN01B06-24X3-61R	10139567	M24	3,0	13,68 <i>0.5</i> 39	38,0 1.496	113 <i>4.44</i> 9	146,32 5.761	160,0 6.299	18,0 <i>0.70</i> 9	18.00X14.50	21,0 0.827	4	В

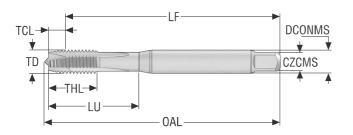
T32-PNB

Through holes – Metric coarse threads, left hand thread


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B03-3X0.5-63L	10139466	МЗ	0,5	2,2 0.087	10,0 <i>0.</i> 39 <i>4</i>	18 <i>0.70</i> 9	53,8 2.118	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	В
T32-PN01B03-4X0.7-63L	10139467	M4	0,7	3,3 0.130	12,0 <i>0.4</i> 72	21 0.827	59,7 2.350	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	В
T32-PN01B03-5X0.8-63L	10139468	M5	0,8	3,6 0.142	14,0 <i>0.551</i>	25 0.984	66,4 2.614	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	В
T32-PN01B03-6X1-63L	10139469	M6	1,0	4,4 0.173	18,0 <i>0.709</i>	30 1.181	75,6 2.976	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	3	В
T32-PN01B03-7X1-63L	10139470	M7	1,0	4,4 0.173	18,0 0.709	30 1.181	75,6 2.976	82,9 3.264	7,0 0.276	7.00X5.50	6,0 0.236	3	В
T32-PN01B03-8X1.25-63L	10139471	M8	1,25	5,4 0.213	20,0 0.787	35 1.378	84,6 3.331	93,3 3.673	8,0 0.315	8.00X6.20	6,8 0.268	3	В
T32-PN01B03-9X1.25-63L	10139472	M9	1,25	5,7 0.224	20,0 <i>0</i> .787	35 1.378	84,3 3.319	91,7 3.610	9,0 0.354	9.00X7.00	7,8 0.307	3	В
T32-PN01B03-10X1.5-63L	10139473	M10	1,5	6,8 0.268	20,0 <i>0</i> .787	39 1.535	93,2 3.669	101,8 <i>4.008</i>	10,0 <i>0.394</i>	10.00X8.00	8,5 0.335	3	В

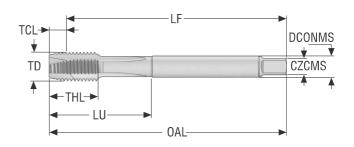
Through holes – Metric coarse threads, left hand thread



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN01B06-12X1.75-63L	10139560	M12	1,75	8,01 <i>0.315</i>	24,0 0.945	83 3.268	101,99 <i>4.015</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,2 0.402	3	В
T32-PN01B06-16X2-63L	10139561	M16	2,0	9,24 0.364	32,0 1.260	68 2.677	100,76 3.967	110,0 <i>4.331</i>	12,0 <i>0.4</i> 72	12.00X9.00	14,0 <i>0.551</i>	3	В
T32-PN01B06-20X2.5-63L	10139562	M20	2,5	11,58 0.456	32,0 1.260	95 3.740	128,42 5.056	140,0 5.512	16,0 <i>0.630</i>	16.00X12.00	17,5 0.689	4	В
T32-PN01B06-24X3-63L	10139563	M24	3,0	13,68 0.539	38,0 1.496	113 <i>4.44</i> 9	146,32 5.761	160,0 6.299	18,0 <i>0.709</i>	18.00X14.50	21,0 0.827	4	В

Through holes – MF threads

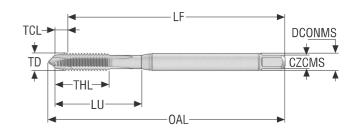

- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 For cutting data see page(s) 260

Designation	Item numbe	r TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN02B03-8X1-63R	10139449	MF8X1	1,0	4,41 0.174	20,0 <i>0</i> .787	35 1.378	85,59 3.370	93,3 3.673	8,0 0.315	8.00X6.20	7,0 0.276	3	В
T32-PN02B03-10X1-63R	10139450	MF10X1	1,0	4,77 0.188	20,0 0.787	35 1.378	85,23 3.356	91,8 3.614	10,0 <i>0.394</i>	10.00X8.00	9,0 <i>0.354</i>	3	В
T32-PN02B03-10X1.25-63R	10139451	MF10X1.25	1,25	5,8 0.228	20,0 0.787	39 1.535	94,2 3.709	101,8 <i>4.00</i> 8	10,0 0.394	10.00X8.00	8,8 0.346	3	В

Through holes – MF threads

- Substrate: HSSECoating: TiAIN + TiNStandard: DIN374

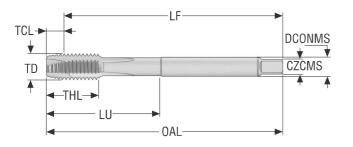
- Thread tolerance class: 6H
 For cutting data see page(s) 260


Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN02B05-8X1-63R	10139507	MF8X1	1,0	4,67 0.184	20,0 0.787	67 2.638	85,33 3.359	90,0 3.543	6,0 0.236	6.00X4.90	7,0 0.276	3	В
T32-PN02B05-10X0.75-63R	10139508	MF10X0.75	0,75	3,73 0.147	18,0 <i>0.709</i>	67 2.638	86,27 3.396	90,0 3.543	7,0 0.276	7.00X5.50	9,2 0.362	3	В
T32-PN02B05-10X1-63R	10139509	MF10X1	1,0	4,79 0.189	20,0 <i>0</i> .787	67 2.638	85,21 3.355	90,0 3.543	7,0 0.276	7.00X5.50	9,0 0.354	3	В
T32-PN02B05-10X1.25-63R	10139510	MF10X1.25	1,25	5,8 0.228	20,0 <i>0.</i> 787	77 3.031	94,2 3.709	100,0 3.937	7,0 0.276	7.00X5.50	8,8 0.346	3	В
T32-PN02B05-12X1-63R	10139511	MF12X1	1,0	4,89 0.193	20,0 <i>0.</i> 787	73 2.874	95,11 3.744	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,0 <i>0.4</i> 33	3	В
T32-PN02B05-12X1.25-63R	10139512	MF12X1.25	1,25	5,94 0.234	20,0 <i>0.</i> 787	73 2.874	94,06 3.703	100,0 3.937	9,0 0.354	9.00X7.00	10,8 <i>0.4</i> 25	3	В
T32-PN02B05-12X1.5-63R	10139513	MF12X1.5	1,5	6,97 0.274	20,0 0.787	73 2.874	93,03 3.663	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,5 0.413	3	В
T32-PN02B05-14X1-63R	10139514	MF14X1	1,0	4,99 0.196	20,0 0.787	71 2.795	95,01 3.741	100,0 3.937	11,0 <i>0.433</i>	11.00X9.00	13,0 0.512	3	В
T32-PN02B05-14X1.25-63R	10139515	MF14X1.25	1,25	6,04 0.238	20,0 0.787	71 2.795	93,96 3.699	100,0 3.937	11,0 <i>0.433</i>	11.00X9.00	12,8 0.504	3	В
T32-PN02B05-14X1.5-63R	10139516	MF14X1.5	1,5	7,07 0.278	20,0 0.787	71 2.795	92,93 3.659	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	12,5 0.492	3	В
T32-PN02B05-16X1-63R	10139517	MF16X1	1,0	5,09 0.200	20,0 0.787	58 2.283	94,91 3.737	100,0 3.937	12,0 0.472	12.00X9.00	15,0 0.591	3	В
T32-PN02B05-16X1.5-63R	10139518	MF16X1.5	1,5	7,17 0.282	20,0 <i>0.787</i>	58 2.283	92,83 3.655	100,0 3.937	12,0 <i>0.4</i> 72	12.00X9.00	14,5 0.571	3	В
T32-PN02B05-18X1.5-63R	10139519	MF18X1.5	1,5	7,27 0.286	24,0 0.945	66 2.598	102,73 4.044	110,0 4.331	14,0 <i>0.551</i>	14.00X11.00	16,5 0.650	4	В
T32-PN02B05-18X2-63R	10139520	MF18X2	2,0	9,34 0.368	27,0 1.063	81 3.189	115,66 <i>4.554</i>	125,0 4.921	14,0 <i>0.551</i>	14.00X11.00	16,0 0.630	4	В
T32-PN02B05-20X1.5-63R	10139521	MF20X1.5	1,5	7,47 0.294	24,0 0.945	80 3.150	117,53 <i>4.627</i>	125,0 4.921	16,0 <i>0.630</i>	16.00X12.00	18,5 0.728	4	В
T32-PN02B05-20X2-63R	10139522	MF20X2	2,0	9,54 0.376	27,0 1.063	95 3.740	130,46 5.136	140,0 5.512	16,0 <i>0.630</i>	16.00X12.00	18,0 0.709	4	В
T32-PN02B05-22X1.5-63R	10139523	MF22X1.5	1,5	7,67 0.302	24,0 0.945	78 3.071	117,33 <i>4.619</i>	125,0 <i>4</i> .921	18,0 <i>0.70</i> 9	18.00X14.50	20,5 0.807	4	В
T32-PN02B05-22X2-63R	10139524	MF22X2	2,0	9,74 0.383	27,0 1.063	93 3.661	130,26 5.128	140,0 5.512	18,0 <i>0.709</i>	18.00X14.50	20,0 0.787	4	В
T32-PN02B05-24X1.5-63R	10139525	MF24X1.5	1,5	7,5 0.295	27,0 1.063	93 3.661	132,5 5.217	140,0 5.512	18,0 <i>0.709</i>	18.00X14.50	22,5 0.886	4	В
T32-PN02B05-24X2-63R	10139526	MF24X2	2,0	9,57 0.377	27,0 1.063	93 3.661	130,43 5.135	140,0 5.512	18,0 <i>0.709</i>	18.00X14.50	22,0 0.866	4	В
T32-PN02B05-27X1.5-63R	10139527	MF27X1.5	1,5	7,7 0.303	27,0 1.063	77 3.031	132,3 5.209	140,0 5.512	20,0 <i>0.787</i>	20.00X16.00	25,5 1.004	4	В

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN02B05-27X2-63R	10139528	MF27X2	2,0	9,77 0.385	27,0 1.063	77 3.031	130,23 5.127	140,0 5.512	20,0 0.787	20.00X16.00	25,0 0.984	4	В
T32-PN02B05-30X1.5-63R	10139529	MF30X1.5	1,5	7,7 0.303	27,0 1.063	85 3.346	142,3 5.602	150,0 5.906	22,0 0.866	22.00X18.00	28,5 1.122	4	В
T32-PN02B05-30X2-63R	10139530	MF30X2	2,0	9,77 0.385	27,0 1.063	85 3.346	140,23 5.521	150,0 5.906	22,0 0.866	22.00X18.00	28,0 1.102	4	В

T32-PNB

Through holes – UNC threads



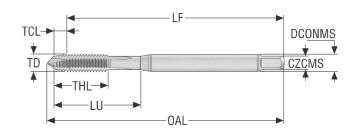
- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 2B
 For cutting data see page(s) 260

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN08B03-4-40-21R	10139452	UNC4-40	2,845 0.112	40.0	2,81 0.111	10,0 0.394	18 0.709	53,19 2.094	56,0 2.205	3,5 0.138	3.50X2.70	2.35 0.093	3	В
T32-PN08B03-5-40-21R	10139453	UNC5-40	3,175 0.125	40.0	2,92 0.115	10,0 0.394	18 0.709	53,08 2.090	57,2 2.252	3,5 0.138	3.50X2.70	2.65 0.104	3	В
T32-PN08B03-6-32-21R	10139454	UNC6-32	3,505 <i>0.138</i>	32.0	3,71 0.146	12,0 0.472	20 0.787	52,29 2.059	57,4 2.260	4,0 0.157	4.00X3.00	2.85 0.112	3	В
T32-PN08B03-8-32-21R	10139455	UNC8-32	4,166 <i>0.164</i>	32.0	3,59 0.141	12,0 0.472	21 0.827	59,41 2.339	64,6 2.543	4,5 0.177	4.50X3.40	3.5 0.138	3	В
T32-PN08B03-10-24-21R	10139456	UNC10-24	4,826 0.190	24.0	4,82 0.190	14,0 0.551	25 0.984	65,18 2.566	72,0 2.835	6,0 0.236	6.00X4.90	3.9 <i>0.154</i>	3	В
T32-PN08B03-12-24-21R	10139457	UNC12-24	5,486 0.216	24.0	4,69 0.185	18,0 0.709	30 1.181	75,31 2.965	82,2 3.236	6,0 0.236	6.00X4.90	4.5 0.177	3	В
T32-PN08B03-1/4-20-21R	10139458	UNC1/4-20	6,35 0.250	20.0	5,6 0.220	18,0 0.709	32 1.260	74,4 2.929	82,4 3.244	7,0 0.276	7.00X5.50	5.1 0.201	3	В
T32-PN08B03-5/16-18-21R	10139459	UNC5/16-18	7,937 0.312	18.0	6,26 0.246	20,0 0.787	35 1.378	83,74 3.297	93,3 3.673	8,0 0.315	8.00X6.20	6.6 0.260	3	В
T32-PN08B03-3/8-16-21R	10139460	UNC3/8-16	9,525 0.375	16.0	7,28 0.287	20,0 0.787	39 1.535	92,72 3.650	100,0 3.937	10,0 <i>0.394</i>	10.00X8.00	8.0 0.315	3	В

T32-PNB

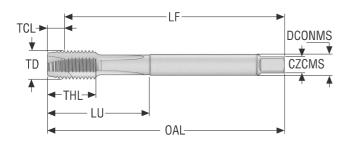
Through holes – UNC threads

- Substrate: HSSECoating: TiAlN + TiNStandard: DIN376


- Thread tolerance class: 2B
 For cutting data see page(s) 260

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN08B06-7/16-14-21R	10139531	UNC7/16-14	11,112 <i>0.4</i> 37	14.0	8,27 0.326	22,0 0.866	76 2.992	91,73 3.611	100,0 3.937	8,0 0.315	8.00X6.20	9,3 0.366	3	В
T32-PN08B06-1/2-13-21R	10139540	UNC1/2-13	12,7 0.500	13.0	9,01 <i>0.355</i>	24,0 0.945	83 3.268	100,99 3.976	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,7 <i>0.421</i>	3	В
T32-PN08B06-9/16-12-21R	10139533	UNC9/16-12	14,287 <i>0.562</i>	12.0	9,76 0.384	25,0 0.984	81 3.189	100,24 3.946	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	12,3 <i>0.484</i>	3	В
T32-PN08B06-5/8-11-21R	10139534	UNC5/8-11	15,875 <i>0.625</i>	11.0	10,51 <i>0.414</i>	32,0 1.260	68 2.677	99,49 3.917	110,0 <i>4.331</i>	12,0 0.472	12.00X9.00	13,5 0.531	3	В
T32-PN08B06-3/4-10-21R	10139535	UNC3/4-10	19,05 <i>0.750</i>	10.0	11,55 0.455	32,0 1.260	81 3.189	113,45 <i>4.467</i>	125,0 4.921	14,0 0.551	14.00X11.00	16,5 <i>0.650</i>	4	В
T32-PN08B06-7/8-9-21R	10139536	UNC7/8-9	22,225 0.875	9.0	13,04 <i>0.513</i>	32,0 1.260	93 3.661	126,96 <i>4.</i> 998	140,0 5.512	18,0 0.709	18.00X14.50	19,5 <i>0.768</i>	4	В
T32-PN08B06-1-8-21R	10139537	UNC1-8	25,4 1.000	8.0	14,86 0.585	38,0 1.496	97 3.819	145,14 <i>5.714</i>	160,0 6.299	20,0 0.787	20.00X16.00	22,25 0.876	4	В
T32-PN08B06-1_1/8-7-21R	10139756	UNC1 1/8-7	28,575 1.125	7.0	16,48 0.649	45,0 1.772	115 4.528	163,52 6.438	180,0 7.087	22,0 0.866	22.00X18.00	25,0 0.984	4	В
T32-PN08B06-1_1/4-7-21R	10139538	UNC1 1/4-7	31,75 1.250	7.0	16,74 0.659	45,0 1.772	115 4.528	163,26 <i>6.428</i>	180,0 7.087	22,0 0.866	22.00X18.00	28,0 1.102	4	В
T32-PN08B06-1_3/8-6-21R	10139532	UNC1 3/8-6	34,925 1.375	6.0	19,04 <i>0.750</i>	50,0 1.969	131 5.157	180,96 7.124	200,0 7.874	28,0 1.102	28.00X22.00	30,75 1.211	4	В
T32-PN08B06-1_1/2-6-21R	10139539	UNC1 1/2-6	38,1 1.500	6.0	19,3 0.760	55,0 2.165	131 5.157	180,7 7.114	200,0 7.874	28,0 1.102	28.00X22.00	34,0 1.339	4	В

Through holes – UNF threads



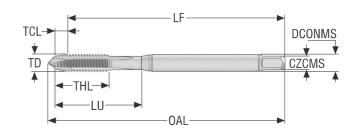
- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 2B
 For cutting data see page(s) 260

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN09B03-10-32-21R	10139461	UNF10-32	4,826 0.190	32.0	3,8 0.150	14,0 0.551	25 0.984	66,2 2.606	72,0 2.835	6,0 0.236	6.00X4.90	4,1 0.161	3	В
T32-PN09B03-12-28-21R	10139462	UNF12-28	5,486 0.216	28.0	4,01 0.158	18,0 0.709	30 1.181	75,99 2.992	82,4 3.244	6,0 0.236	6.00X4.90	4,6 0.181	3	В
T32-PN09B03-1/4-28-21R	10139463	UNF1/4-28	6,35 0.250	28.0	4,24 0.167	18,0 0.709	30 1.181	75,76 2.983	82,4 3.244	7,0 0.276	7.00X5.50	5,5 0.217	3	В
T32-PN09B03-5/16-24-21R	10139464	UNF5/16-24	7,937 0.312	24.0	4,89 0.193	20,0 0.787	35 1.378	85,11 3.351	93,3 3.673	8,0 0.315	8.00X6.20	6,9 0.272	3	В
T32-PN09B03-3/8-24-21R	10139465	UNF3/8-24	9,525 0.375	24.0	5,22 0.206	20,0 0.787	35 1.378	84,78 3.338	90,0 3. <i>543</i>	10,0 <i>0.394</i>	10.00X8.00	8,5 0.335	3	В

T32-PNB

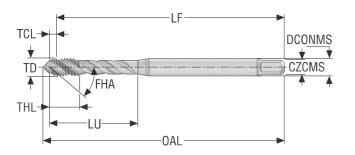
Through holes – UNF threads

- Substrate: HSSECoating: TiAlN + TiNStandard: DIN374


- Thread tolerance class: 2B
 For cutting data see page(s) 260

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN09B05-7/16-20-21R	10139542	UNF7/16-20	11,112 0.437	20.0	5,88 0.231	20,0 0.787	76 2.992	94,12 3.706	100,0 3.937	8,0 0.315	8.00X6.20	9,9 0.390	3	В
T32-PN09B05-1/2-20-21R	10139551	UNF1/2-20	12,7 0.500	20.0	6,28 0.247	20,0 0.787	73 2.874	93,72 3.690	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,5 0.453	3	В
T32-PN09B05-9/16-18-21R	10139544	UNF9/16-18	14,287 0.562	18.0	6,69 0.263	20,0 0.787	71 2.795	93,31 3.674	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	13,0 0.512	3	В
T32-PN09B05-5/8-18-21R	10139545	UNF5/8-18	15,875 0.625	18.0	6,76 0.266	20,0 0.787	58 2.283	93,24 3.671	100,0 3.937	12,0 0.472	12.00X9.00	14,5 0.571	3	В
T32-PN09B05-3/4-16-21R	10139546	UNF3/4-16	19,05 <i>0.750</i>	16.0	7,81 0.307	24,0 0.945	66 2.598	102,19 <i>4.0</i> 23	110,0 <i>4.331</i>	14,0 0.551	14.00X11.00	17,5 0.689	4	В
T32-PN09B05-7/8-14-21R	10139547	UNF7/8-14	22,225 0.875	14.0	8,96 0.353	24,0 0.945	78 3.071	116,04 <i>4.5</i> 69	125,0 4.921	18,0 0.709	18.00X14.50	20,5 0.807	4	В
T32-PN09B05-1-12-21R	10139548	UNF1-12	25,4 1.000	12.0	10,44 <i>0.411</i>	27,0 1.063	93 3.661	129,56 <i>5.101</i>	140,0 5.512	18,0 0.709	18.00X14.50	23,3 0.917	4	В
T32-PN09B05-1_1/8-12-21R	10139757	UNF1 1/8-12	28,575 1.125	12.0	10,37 <i>0.408</i>	27,0 1.063	85 3.346	139,63 5.497	150,0 5.906	22,0 0.866	22.00X18.00	26,5 1.043	4	В
T32-PN09B05-1_1/4-12-21R	10139549	UNF1 1/4-12	31,75 1.250	12.0	10,29 <i>0.405</i>	27,0 1.063	85 3.346	139,71 5.500	150,0 5.906	22,0 0.866	22.00X18.00	29,5 1.161	4	В
T32-PN09B05-1_3/8-12-21R	10139543	UNF1 3/8-12	34,925 1.375	12.0	10,55 <i>0.415</i>	30,0 1.181	101 3.976	159,45 6.278	170,0 6.693	28,0 1.102	28.00X22.00	32,8 1.291	4	В
T32-PN09B05-1_1/2-12-21R	10139550	UNF1 1/2-12	38,1 1.500	12.0	10,48 <i>0.41</i> 3	30,0 1.181	101 3.976	159,52 6.280	170,0 6.693	28,0 1.102	28.00X22.00	36,0 1.417	4	В

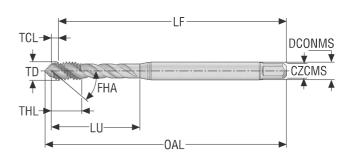
Through holes – G threads



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN5156
 Thread tolerance class: NORMAL
 For cutting data see page(s) 260

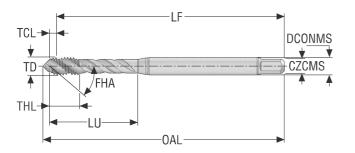
Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-PN21B09-1/8-28-11R	10139552	G1/8	9,728 <i>0.</i> 383	28.0	4,76 0.187	18,0 0.709	67 2.638	85,24 3.356	90,0 3.543	7,0 0.276	7.00X5.50	8,8 0.346	3	В
T32-PN21B09-1/4-19-11R	10139553	G1/4	13,157 <i>0.518</i>	19.0	6,77 0.267	22,0 0.866	71 2.795	93,23 3.670	100,0 3.937	11,0 <i>0.433</i>	11.00X9.00	11,8 <i>0.465</i>	3	В
T32-PN21B09-3/8-19-11R	10139554	G3/8	16,662 <i>0.656</i>	19.0	6,89 0.271	22,0 0.866	58 2.283	93,11 3.666	100,0 3.937	12,0 0.472	12.00X9.00	15,25 0.600	4	В
T32-PN21B09-1/2-14-11R	10139555	G1/2	20,955 0.825	14.0	9,22 0.363	25,0 0.984	80 3.150	115,78 <i>4.558</i>	125,0 4.921	16,0 0.630	16.00X12.00	19,0 <i>0.748</i>	4	В
T32-PN21B09-5/8-14-11R	10139556	G5/8	22,911 <i>0</i> .902	14.0	9,4 0.370	25,0 0.984	78 3.071	115,6 <i>4.551</i>	125,0 4.921	18,0 <i>0.70</i> 9	18.00X14.50	21,0 0.827	4	В
T32-PN21B09-3/4-14-11R	10139557	G3/4	26,441 1.041	14.0	9,36 0.369	28,0 1.102	77 3.031	130,64 5.143	140,0 5.512	20,0 0.787	20.00X16.00	24,5 0.965	4	В
T32-PN21B09-7/8-14-11R	10139558	G7/8	30,201 1.189	14.0	9,03 0.356	30,0 1.181	85 3.346	140,97 5.550	150,0 5.906	22,0 0.866	22.00X18.00	28,25 1.112	4	В
T32-PN21B09-1-11-11R	10139559	G1	33,249 1.309	11.0	11,49 0.452	32,0 1.260	93 3.661	148,51 5.847	160,0 6.299	25,0 0.984	25.00X20.00	30,75 1.211	4	В

T32-R40NC-micro


- Substrate: HSS-PMCoating: TiAlN + TiNStandard: DIN371
- Thread tolerance class: 4H FHA = 40°
- For cutting data see page(s) 260

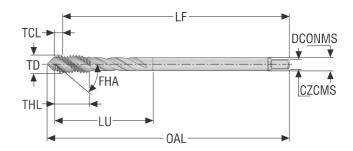
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N01C03-1X0.25-41R	10139129	M1	0,25	0,59 <i>0.023</i>	6,0 0.236	13 0.512	39,41 1.552	40,9 1.610	2,5 0.098	2.50X2.10	0,75 0.030	2	С
T32-R40N01C03-1.1X0.25-41R	10139130	M1.1	0,25	0,59 0.023	6,0 0.236	13 0.512	39,41 1.552	41,0 1.614	2,5 0.098	2.50X2.10	0,85 0.033	2	С
T32-R40N01C03-1.2X0.25-41R	10139131	M1.2	0,25	0,59 0.023	6,0 0.236	13 0.512	39,41 1.552	41,1 1.618	2,5 0.098	2.50X2.10	0,95 0.037	2	С
T32-R40N01C03-1.4X0.3-41R	10139132	M1.4	0,3	0,69 <i>0.027</i>	8,0 0.315	13 0.512	39,31 1.548	41,3 1.626	2,5 0.098	2.50X2.10	1,1 0.043	2	С

T32-R40NC-micro



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 FHA = 40°
 Fersulting data as a page(s)
- For cutting data see page(s) 260

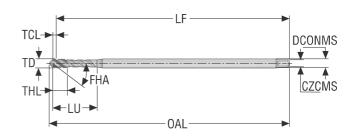
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N01C03-1.6X0.35-63R	10139133	M1.6	0,35	0,8 0.031	8,0 0.315	13 <i>0.512</i>	39,2 1.543	41,4 1.630	2,5 0.098	2.50X2.10	1,25 0.049	2	С
T32-R40N01C03-1.7X0.35-63R	10139134	M1.7	0,35	0,8 0.031	8,0 <i>0.315</i>	13 <i>0.512</i>	39,2 1.543	41,5 1.634	2,5 0.098	2.50X2.10	1,35 0.053	2	С
T32-R40N01C03-1.8X0.35-63R	10139135	M1.8	0,35	0,8 0.031	8,0 <i>0.315</i>	13 <i>0.512</i>	39,2 1.543	41,6 1.638	2,5 0.098	2.50X2.10	1,45 0.057	2	С
T32-R40N01C03-2X0.4-63R	10139136	M2	0,4	1,03 0.041	10,0 <i>0</i> .394	13 <i>0.512</i>	43,974 1.731	46,3 1.823	2,8 0.110	2.80X2.10	1,6 0.063	2	С
T32-R40N01C03-2.2X0.45-63R	10139137	M2.2	0,45	1,15 0.045	10,0 <i>0</i> .394	13 <i>0.512</i>	43,847 1.726	46,3 1.823	2,8 0.110	2.80X2.10	1,75 0.069	2	С
T32-R40N01C03-2.3X0.4-63R	10139138	M2.3	0,4	1,05 0.041	10,0 <i>0.394</i>	13 <i>0.512</i>	43,948 1.730	46,3 1.823	2,8 0.110	2.80X2.10	1,9 <i>0.075</i>	2	С
T32-R40N01C03-2.5X0.45-63R	10139139	M2.5	0,45	1,06 0.042	5,0 0.197	14 0.551	48,94 1.927	51,7 2.035	2,8 0.110	2.80X2.10	2,05 0.081	2	С
T32-R40N01C03-2.6X0.45-63R	10139140	M2.6	0,45	1,15 0.045	5,0 0.197	14 0.551	48,847 1.923	51,7 2.035	2,8 0.110	2.80X2.10	2,15 0.085	2	С



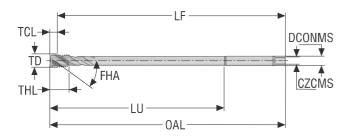
- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 FIA = 40°
 For cutting data as a page (s)
- For cutting data see page(s) 260

								- 1 01 0	diling data see	pago(0) 200			
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N01C03-3X0.5-63R	10139141	М3	0,5	1,2 0.047	5,0 0.197	18 <i>0.70</i> 9	54,8 2.157	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	С
T32-R40N01C03-3.5X0.6-63R	10139142	M3.5	0,6	1,36 <i>0.054</i>	6,0 0.236	20 0.787	54,64 2.151	57,4 2.260	4,0 0.157	4.00X3.00	2,9 0.114	3	С
T32-R40N01C03-4X0.7-63R	10139143	M4	0,7	1,54 0.061	7,0 0.276	21 0.827	61,46 2.420	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	С
T32-R40N01C03-5X0.8-63R	10139144	M5	0,8	1,9 <i>0.075</i>	8,0 <i>0.315</i>	25 0.984	68,1 2.681	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	С
T32-R40N01C03-6X1-63R	10139145	M6	1,0	2,28 0.090	10,0 <i>0.394</i>	30 1.181	77,72 3.060	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	3	С
T32-R40N01C03-7X1-63R	10139146	M7	1,0	2,28 0.090	10,0 <i>0.394</i>	30 1.181	77,72 3.060	82,9 3.264	7,0 0.276	7.00X5.50	6,0 0.236	3	С
T32-R40N01C03-8X1.25-63R	10139147	M8	1,25	3,11 <i>0.122</i>	13,0 <i>0.512</i>	35 1.378	86,89 3.421	91,7 3.610	8,0 0.315	8.00X6.20	6,8 0.268	3	С
T32-R40N01C03-9X1.25-63R	10139148	M9	1,25	3,11 <i>0.122</i>	13,0 0.512	35 1.378	86,89 3.421	91,7 3.610	9,0 <i>0.354</i>	9.00X7.00	7,8 0.307	3	С
T32-R40N01C03-10X1.5-63R	10139149	M10	1,5	3,76 0.148	15,0 <i>0.591</i>	39 1.535	96,24 3.789	101,8 <i>4.008</i>	10,0 <i>0.394</i>	10.00X8.00	8,5 0.335	3	С

- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 6H
 FHA = 40°
 For cutting data see page(s) 260


Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N01C06-3X0.5-63R	10139568	M3	0,5	1,17 0.046	5,0 0.197	36 1.417	54,83 2.159	57,2 2.252	2,2 0.087	2.20X1.80	2,5 0.098	3	С
T32-R40N01C06-4X0.7-63R	10139570	M4	0,7	1,72 0.068	8,0 0.315	43 1.693	61,28 2.413	64,6 2.543	2,8 0.110	2.80X2.10	3,3 0.130	3	С
T32-R40N01C06-5X0.8-63R	10139571	M5	0,8	1,9 <i>0.075</i>	10,0 <i>0.394</i>	49 1.929	68,1 2.681	72,0 2.835	3,5 0.138	3.50X2.70	4,2 0.165	3	С
T32-R40N01C06-6X1-63R	10139572	M6	1,0	2,28 0.090	12,0 <i>0.4</i> 72	59 2.323	77,72 3.060	82,4 3.244	4,5 0.177	4.50X3.40	5,0 0.197	3	С
Г32-R40N01C06-8X1.25-63R	10139574	M8	1,25	3,11 <i>0.122</i>	15,0 <i>0.591</i>	67 2.638	86,89 3.421	90,0 3.543	6,0 0.236	6.00X4.90	6,8 0.268	3	С
T32-R40N01C06-9X1.25-63R	10139575	M9	1,25	3,21 <i>0.126</i>	15,0 <i>0.591</i>	67 2.638	86,79 3.417	90,0 3.543	7,0 0.276	7.00X5.50	7,8 0.307	3	С
Г32-R40N01C06-10X1.5-63R	10139576	M10	1,5	3,76 0.148	17,0 <i>0.669</i>	77 3.031	96,24 3.789	100,0 3.937	7,0 0.276	7.00X5.50	8,5 0.335	3	С
T32-R40N01C06-12X1.75-63R	10139577	M12	1,75	4,41 0.174	18,0 <i>0.709</i>	83 3.268	105,59 <i>4.157</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,2 <i>0.402</i>	3	С
T32-R40N01C06-14X2-63R	10139578	M14	2,0	5,07 0.200	20,0 <i>0</i> .787	81 3.189	104,93 <i>4.131</i>	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	12,0 0.472	4	С
T32-R40N01C06-16X2-63R	10139579	M16	2,0	5,15 0.203	20,0 <i>0</i> .787	68 2.677	104,85 <i>4.128</i>	110,0 <i>4.331</i>	12,0 <i>0.4</i> 72	12.00X9.00	14,0 0.551	4	С
Г32-R40N01C06-18X2.5-63R	10139580	M18	2,5	6,31 0.248	25,0 0.984	81 3.189	118,69 <i>4.673</i>	125,0 4.921	14,0 0.551	14.00X11.00	15,5 0.610	4	С
Г32-R40N01C06-20X2.5-63R	10139581	M20	2,5	6,51 0.256	25,0 0.984	95 3.740	133,49 5.256	140,0 5.512	16,0 <i>0.630</i>	16.00X12.00	17,5 0.689	4	С
Г32-R40N01C06-22X2.5-63R	10139582	M22	2,5	6,51 0.256	25,0 0.984	93 3.661	133,49 5.256	140,0 5.512	18,0 0.709	18.00X14.50	19,5 <i>0.768</i>	4	С
T32-R40N01C06-24X3-63R	10139583	M24	3,0	7,81 0.307	30,0 1.181	113 <i>4.44</i> 9	152,19 5.992	160,0 6.299	18,0 <i>0.709</i>	18.00X14.50	21,0 0.827	4	С
T32-R40N01C06-27X3-63R	10139584	M27	3,0	7,81 0.307	30,0 1.181	97 3.819	152,19 5.992	160,0 6.299	20,0 0.787	20.00X16.00	24,0 0.945	4	С
Г32-R40N01C06-30X3.5-63R	10139585	M30	3,5	8,88 0.350	35,0 1.378	115 <i>4.528</i>	171,12 6.737	180,0 7.087	22,0 0.866	22.00X18.00	26,5 1.043	4	С
T32-R40N01C06-33X3.5-63R	10139586	M33	3,5	8,88 0.350	35,0 1.378	113 <i>4.44</i> 9	171,12 6.737	180,0 7.087	25,0 0.984	25.00X20.00	29,5 1.161	4	С
T32-R40N01C06-36X4-63R	10139587	M36	4,0	9,94 0.391	40,0 1.575	131 <i>5.157</i>	190,06 7.483	200,0 7.874	28,0 1.102	28.00X22.00	32,0 1.260	4	С
T32-R40N01C06-39X4-63R	10139588	M39	4,0	9,94 0.391	40,0 1.575	102 4.016	190,06 7.483	200,0 7.874	32,0 1.260	32.00X24.00	35,0 1.378	4	С
32-R40N01C06-42X4.5-63R	10139589	M42	4,5	11,01 <i>0.4</i> 33	45,0 1.772	102 4.016	188,99 7.441	200,0 7.874	32,0 1.260	32.00X24.00	37,5 1.476	5	С

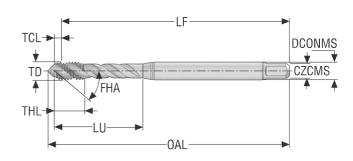
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N01C06-45X4.5-63R	10139590	M45	4,5	11,01 <i>0.4</i> 33	45,0 1.772	117 4.606	208,99 8.228	220,0 8.661	36,0 1.417	36.00X29.00	40,5 1.594	5	С
T32-R40N01C06-48X5-63R	10139591	M48	5,0	12,08 <i>0.4</i> 76	50,0 1.969	147 5.787	237,92 9.367	250,0 9.843	36,0 1.417	36.00X29.00	43,0 1.693	5	С
T32-R40N01C06-52X5-63R	10139592	M52	5,0	12,08 <i>0.4</i> 76	50,0 1.969	120 <i>4.724</i>	237,92 9.367	250,0 9.843	40,0 1.575	40.00X32.00	47,0 1.850	5	С



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371/EL
 Thread tolerance class: 6H
 FHA = 40°
 For cutting data see page(s) 260

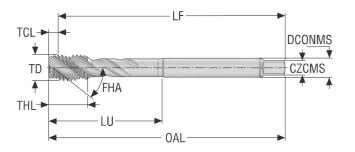
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N01C04-3X0.5-63R	10139179	М3	0,5	1,17 0.046	5,0 0.197	18 <i>0.70</i> 9	98,83 3.891	101,2 3.984	3,5 0.138	3.50X2.70	2,5 0.098	3	С
T32-R40N01C04-4X0.7-63R	10139180	M4	0,7	1,45 0.057	7,0 0.276	21 0.827	123,55 4.864	126,6 4.984	4,5 0.177	4.50X3.40	3,3 0.130	3	С
T32-R40N01C04-5X0.8-63R	10139181	M5	0,8	1,9 <i>0.075</i>	8,0 <i>0.315</i>	25 0.984	138,1 5.437	142,0 5.591	6,0 0.236	6.00X4.90	4,2 0.165	3	С
T32-R40N01C04-6X1-63R	10139182	M6	1,0	2,28 0.090	10,0 <i>0.394</i>	30 1.181	157,72 6.209	162,4 6.394	6,0 0.236	6.00X4.90	5,0 0.197	3	С

T32-R40NC



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376/EL
 Thread tolerance class: 6H
 FIA = 40°
 For cutting data as a page (s)
- For cutting data see page(s) 260

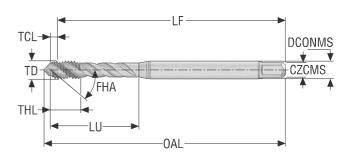
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N01C07-8X1.25-63R	10139183	M8	1,25	3,11 <i>0.122</i>	15,0 <i>0.591</i>	157 6.181	176,89 6.964	180,0 7.087	6,0 0.236	6.00X4.90	6,8 0.268	3	С
T32-R40N01C07-10X1.5-63R	10139185	M10	1,5	3,76 0.148	17,0 <i>0.669</i>	177 6.969	196,24 7.726	200,0 7.874	7,0 0.276	7.00X5.50	8,5 0.335	3	С
T32-R40N01C07-12X1.75-63R	10139186	M12	1,75	4,41 0.174	18,0 <i>0.709</i>	193 7.598	215,59 8.488	220,0 8.661	9,0 0.354	9.00X7.00	10,2 <i>0.402</i>	3	С
T32-R40N01C07-16X2-63R	10139187	M16	2,0	5,21 0.205	20,0 <i>0</i> .787	178 7.008	214,79 8.456	220,0 8.661	12,0 0.472	12.00X9.00	14,0 <i>0.551</i>	4	С



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6G
 FHA = 40°
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N01C03-3X0.5-61R	10139173	M3	0,5	1,2 0.047	5,0 0.197	18 0.709	54,8 2.157	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	С
T32-R40N01C03-4X0.7-61R	10139174	M4	0,7	1,54 0.061	7,0 0.276	21 0.827	61,46 2.420	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	С
T32-R40N01C03-5X0.8-61R	10139175	M5	0,8	1,9 <i>0.075</i>	8,0 0.315	25 0.984	68,1 2.681	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	С
T32-R40N01C03-6X1-61R	10139176	M6	1,0	2,28 0.090	10,0 <i>0.394</i>	30 1.181	77,72 3.060	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	3	С
T32-R40N01C03-8X1.25-61R	10139177	M8	1,25	3,11 <i>0.122</i>	13,0 <i>0.512</i>	35 1.378	86,89 3.421	91,7 3.610	8,0 0.315	8.00X6.20	6,8 0.268	3	С
T32-R40N01C03-10X1.5-61R	10139178	M10	1,5	3,76 0.148	15,0 <i>0.591</i>	39 1.535	96,24 3.789	101,8 <i>4.008</i>	10,0 <i>0.</i> 394	10.00X8.00	8,5 0.335	3	С

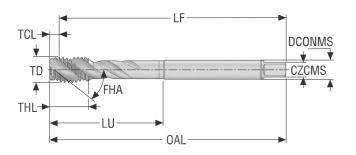
T32-R40NC


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 6G
 FHA = 40°
 For cutting data and page (1)
- For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N01C06-12X1.75-61R	10139649	M12	1,75	4,41 0.174	18,0 <i>0.709</i>	83 3.268	105,59 <i>4.157</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,2 <i>0.402</i>	3	С
T32-R40N01C06-16X2-61R	10139650	M16	2,0	5,15 0.203	20,0 <i>0.</i> 787	81 3.189	104,85 <i>4.128</i>	110,0 <i>4.331</i>	11,0 <i>0.433</i>	11.00X9.00	14,0 <i>0.551</i>	4	С
T32-R40N01C06-20X2.5-61R	10139651	M20	2,5	6,51 0.256	25,0 0.984	95 3.740	133,49 5.256	140,0 5.512	16,0 0.630	16.00X12.00	17,5 0.689	4	С

T32-R40NC

Blind holes - Metric coarse threads, left hand thread

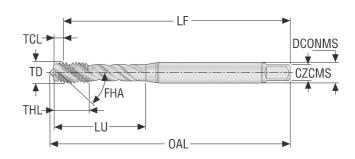


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 FHA = 40°
 For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-L40N01C03-3X0.5-63L	10139167	M3	0,5	1,2 0.047	5,0 0.197	18 0.709	54,8 2.157	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	С
T32-L40N01C03-4X0.7-63L	10139168	M4	0,7	1,54 0.061	7,0 0.276	21 0.827	61,46 2.420	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	С
T32-L40N01C03-5X0.8-63L	10139169	M5	0,8	1,9 <i>0.075</i>	8,0 0.315	25 0.984	68,1 2.681	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	С
T32-L40N01C03-6X1-63L	10139170	M6	1,0	2,28 0.090	10,0 <i>0.394</i>	30 1.181	77,72 3.060	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	3	С
T32-L40N01C03-8X1.25-63L	10139171	M8	1,25	3,11 <i>0.122</i>	13,0 <i>0.512</i>	35 1.378	86,89 3.421	91,7 3.610	8,0 0.315	8.00X6.20	6,8 0.268	3	С
T32-L40N01C03-10X1.5-63L	10139172	M10	1,5	3,76 0.148	15,0 <i>0.591</i>	39 1.535	96,24 3.789	101,8 <i>4.008</i>	10,0 <i>0.394</i>	10.00X8.00	8,5 0.335	3	С

T32-R40NC

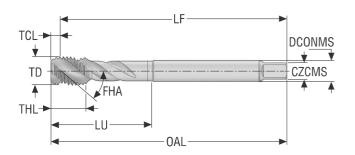
Blind holes - Metric coarse threads, left hand thread


- Substrate: HSSECoating: TiAlN + TiNStandard: DIN376
- Thread tolerance class: 6H FHA = 40°
- For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-L40N01C06-12X1.75-63L	10139645	M12	1,75	4,41 0.174	18,0 <i>0.709</i>	83 3.268	105,59 <i>4.157</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,2 <i>0.4</i> 02	3	С
T32-L40N01C06-16X2-63L	10139646	M16	2,0	5,15 0.203	20,0 <i>0</i> .787	68 2.677	104,85 <i>4.128</i>	110,0 <i>4.331</i>	12,0 0.472	12.00X9.00	14,0 <i>0.551</i>	4	С
T32-L40N01C06-20X2.5-63L	10139647	M20	2,5	6,51 0.256	25,0 0.984	95 3.740	133,49 5.256	140,0 5.512	16,0 0.630	16.00X12.00	17,5 0.689	4	С
T32-L40N01C06-24X3-63L	10139648	M24	3,0	7,81 0.307	30,0 1.181	113 4.449	152,19 5.992	160,0 6.299	18,0 <i>0.70</i> 9	18.00X14.50	21,0 0.827	4	С

T32-R40NC

Blind holes - MF threads



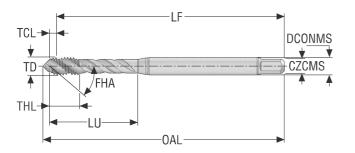
- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6H
 FHA = 40°
 Fersulting data as a page(s)
- For cutting data see page(s) 260

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N02C03-8X1-63R	10139150	MF8X1	1,0	2,58 0.102	13,0 <i>0.512</i>	35 1.378	87,42 3.442	91,7 3. <i>610</i>	8,0 <i>0.315</i>	8.00X6.20	7,0 0.276	3	С
T32-R40N02C03-10X1-63R	10139151	MF10X1	1,0	2,68 0.106	13,0 <i>0.512</i>	35 1.378	87,32 3.438	90,0 3.543	10,0 <i>0</i> .394	10.00X8.00	9,0 <i>0.354</i>	3	С
T32-R40N02C03-10X1.25-63R	10139152	MF10X1.25	1,25	3,21 0.126	15,0 <i>0.591</i>	39 1.535	96,79 3.811	101,8 <i>4.008</i>	10,0 <i>0.</i> 394	10.00X8.00	8,8 0.346	3	С

T32-R40NC

Blind holes - MF threads

- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN374
 Thread tolerance class: 6H
 FHA = 40°
 For cutting data see page(s)


								• For o	cutting data see	page(s) 260			
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	сzсмѕ	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N02C05-8X1-63R	10139593	MF8X1	1,0	2,58 0.102	10,0 <i>0.394</i>	67 2.638	87,42 3.442	90,0 3.543	6,0 <i>0.2</i> 36	6.00X4.90	7,0 0.276	3	С
T32-R40N02C05-10X0.75-63R	10139594	MF10X0.75	0,75	2,13 0.084	10,0 <i>0.394</i>	67 2.638	87,87 3.459	90,0 3.543	7,0 <i>0.</i> 276	7.00X5.50	9,2 <i>0.</i> 362	3	С
T32-R40N02C05-10X1-63R	10139595	MF10X1	1,0	2,68 0.106	13,0 <i>0.512</i>	67 2.638	87,32 3.438	90,0 3.543	7,0 0.276	7.00X5.50	9,0 <i>0.354</i>	3	С
T32-R40N02C05-10X1.25-63R	10139596	MF10X1.25	1,25	3,21 0.126	15,0 <i>0.591</i>	77 3.031	96,79 3.811	100,0 3.937	7,0 <i>0.2</i> 76	7.00X5.50	8,8 0.346	3	С
T32-R40N02C05-12X1-63R	10139597	MF12X1	1,0	2,79 0.110	10,0 <i>0.394</i>	73 2.874	97,21 3.827	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,0 <i>0.433</i>	3	С
T32-R40N02C05-12X1.25-63R	10139598	MF12X1.25	1,25	3,34 0.131	15,0 <i>0.591</i>	73 2.874	96,66 3.806	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,8 <i>0.425</i>	3	С
T32-R40N02C05-12X1.5-63R	10139599	MF12X1.5	1,5	3,87 0.152	15,0 <i>0.591</i>	73 2.874	96,13 3.785	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,5 <i>0.413</i>	3	С
T32-R40N02C05-14X1-63R	10139600	MF14X1	1,0	2,89 0.114	10,0 <i>0.394</i>	71 2.795	97,11 3.823	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	13,0 <i>0.512</i>	4	С
T32-R40N02C05-14X1.25-63R	10139601	MF14X1.25	1,25	3,44 0.135	15,0 <i>0.591</i>	71 2.795	96,56 3.802	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	12,8 <i>0.504</i>	4	С
T32-R40N02C05-14X1.5-63R	10139602	MF14X1.5	1,5	3,97 0.156	15,0 <i>0.591</i>	71 2.795	96,03 3.781	100,0 3.937	11,0 <i>0.433</i>	11.00X9.00	12,5 <i>0.4</i> 92	4	С
T32-R40N02C05-16X1-63R	10139603	MF16X1	1,0	2,79 0.110	10,0 <i>0.394</i>	58 2.283	97,21 3.827	100,0 3.937	12,0 <i>0.4</i> 72	12.00X9.00	15,0 <i>0.591</i>	4	С
T32-R40N02C05-16X1.5-63R	10139604	MF16X1.5	1,5	4,07 0.160	15,0 <i>0.591</i>	58 2.283	95,93 3.777	100,0 3.937	12,0 <i>0.4</i> 72	12.00X9.00	14,5 0.571	4	С
T32-R40N02C05-18X1.5-63R	10139605	MF18X1.5	1,5	4,17 0.164	17,0 <i>0.669</i>	66 2.598	105,83 <i>4.16</i> 7	110,0 <i>4.</i> 331	14,0 <i>0.551</i>	14.00X11.00	16,5 <i>0.650</i>	4	С
T32-R40N02C05-18X2-63R	10139606	MF18X2	2,0	5,25 0.207	20,0 <i>0.787</i>	81 3.189	119,75 <i>4.715</i>	125,0 4.921	14,0 <i>0.551</i>	14.00X11.00	16,0 <i>0.630</i>	4	С
T32-R40N02C05-20X1.5-63R	10139607	MF20X1.5	1,5	4,37 0.172	17,0 <i>0.669</i>	80 3.150	120,63 <i>4.74</i> 9	125,0 <i>4.</i> 921	16,0 <i>0.630</i>	16.00X12.00	18,5 <i>0.728</i>	4	С
T32-R40N02C05-20X2-63R	10139608	MF20X2	2,0	5,45 0.215	20,0 <i>0.787</i>	95 3.740	134,55 5.297	140,0 5.512	16,0 <i>0.630</i>	16.00X12.00	18,0 <i>0.709</i>	4	С
T32-R40N02C05-22X1.5-63R	10139609	MF22X1.5	1,5	4,37 0.172	17,0 <i>0</i> .669	78 3.071	120,63 <i>4.74</i> 9	125,0 <i>4.</i> 921	18,0 <i>0.70</i> 9	18.00X14.50	20,5 0.807	4	С
T32-R40N02C05-22X2-63R	10139610	MF22X2	2,0	5,45 0.215	20,0 <i>0</i> .787	93 3.661	134,55 5.297	140,0 5.512	18,0 <i>0.70</i> 9	18.00X14.50	20,0 <i>0.</i> 787	4	С
T32-R40N02C05-24X1.5-63R	10139611	MF24X1.5	1,5	4,39 0.173	20,0 <i>0.787</i>	93 3.661	135,61 5.339	140,0 5.512	18,0 <i>0.70</i> 9	18.00X14.50	22,5 0.886	4	С
T32-R40N02C05-24X2-63R	10139612	MF24X2	2,0	5,67 0.223	20,0 0.787	93 3.661	134,33 5.289	140,0 5.512	18,0 <i>0.70</i> 9	18.00X14.50	22,0 0.866	4	С

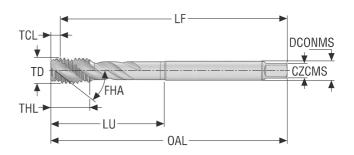
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N02C05-27X1.5-63R	10139613	MF27X1.5	1,5	4,59 0.181	20,0 0.787	77 3.031	135,41 5.331	140,0 5.512	20,0 0.787	20.00X16.00	25,5 1.004	4	С
T32-R40N02C05-27X2-63R	10139614	MF27X2	2,0	5,67 0.223	20,0 0.787	77 3.031	134,33 5.289	140,0 5.512	20,0 0.787	20.00X16.00	25,0 0.984	4	С
T32-R40N02C05-30X1.5-63R	10139615	MF30X1.5	1,5	4,19 0.165	22,0 0.866	85 3.346	145,81 <i>5.741</i>	150,0 5.906	22,0 0.866	22.00X18.00	28,5 1.122	4	С
T32-R40N02C05-30X2-63R	10139616	MF30X2	2,0	5,67 0.223	22,0 0.866	85 3.346	144,33 5.682	150,0 5.906	22,0 0.866	22.00X18.00	28,0 1.102	4	С

T32-R40NC

Blind holes - UNC threads

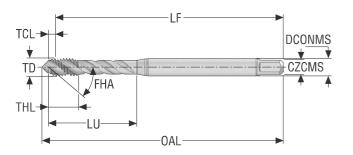
- Substrate: HSSECoating: TiAlN + TiNStandard: DIN371

- Thread tolerance class: 2B
 FHA = 40°
 For cutting data see page(s) 260


									• For cutt	ing data see	page(s) 260			
Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N08C03-4-40-21R	10139153	UNC4-40	2,845 0.112	40.0	1,45 0.057	5,0 0.197	18 <i>0.70</i> 9	54,55 2.148	56,0 2.205	3,5 0.138	3.50X2.70	2,35 0.093	3	С
T32-R40N08C03-5-40-21R	10139154	UNC5-40	3,175 0.125	40.0	1,5 0.059	7,0 0.276	18 0.709	54,5 2.146	57,2 2.252	3,5 0.138	3.50X2.70	2,65 0.104	3	С
T32-R40N08C03-6-32-21R	10139155	UNC6-32	3,505 <i>0.138</i>	32.0	1,92 0.076	6,0 0.236	20 0.787	54,08 2.129	57,4 2.260	4,0 0.157	4.00X3.00	2,85 0.112	3	С
T32-R40N08C03-8-32-21R	10139156	UNC8-32	4,166 <i>0.164</i>	32.0	1,85 0.073	7,0 0.276	21 0.827	61,15 2.407	64,6 2.543	4,5 0.177	4.50X3.40	3,5 0.138	3	С
T32-R40N08C03-10-24-21R	10139157	UNC10-24	4,826 0.190	24.0	2,49 0.098	8,0 <i>0.315</i>	25 0.984	67,51 2.658	72,0 2.835	6,0 0.236	6.00X4.90	3,9 0.154	3	С
T32-R40N08C03-12-24-21R	10139158	UNC12-24	5,486 0.216	24.0	2,43 0.096	10,0 0.394	30 1.181	77,57 3.054	82,2 3.236	6,0 0.236	6.00X4.90	4,5 0.177	3	С
T32-R40N08C03-1/4-20-21R	10139159	UNC1/4-20	6,35 0.250	20.0	2,9 0.114	13,0 0.512	32 1.260	77,1 3.035	82,4 3.244	7,0 0.276	7.00X5.50	5,1 0.201	3	С
T32-R40N08C03-5/16-18-21R	10139160	UNC5/16-18	7,937 0.312	18.0	3,54 0.139	13,0 0.512	35 1.378	86,46 3.404	90,0 3.543	8,0 <i>0.315</i>	8.00X6.20	6,6 0.260	3	С
T32-R40N08C03-3/8-16-21R	10139161	UNC3/8-16	9,525 <i>0</i> .375	16.0	3,99 0.157	15,0 0.591	39 1.535	96,01 3.780	100,0 3.937	10,0 <i>0.394</i>	10.00X8.00	8,0 0.315	3	С

T32-R40NC

Blind holes - UNC threads



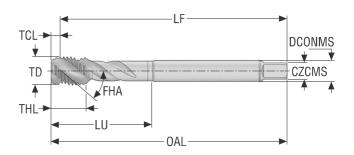
- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 2B
 FHA = 40°
 For cutting data see page(s) 260

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N08C06-7/16-14-21R	10139617	UNC7/16-14	11,112 <i>0.437</i>	14.0	4,6 0.181	15,0 0.591	76 2.992	95,4 3.756	100,0 3.937	8,0 0.315	8.00X6.20	9,3 <i>0.366</i>	3	С
T32-R40N08C06-1/2-13-21R	10139626	UNC1/2-13	12,7 0.500	13.0	4,94 0.194	18,0 0.709	83 3.268	105,06 <i>4.136</i>	110,0 <i>4.331</i>	9,0 0.354	9.00X7.00	10,7 <i>0.421</i>	4	С
T32-R40N08C06-9/16-12-21R	10139619	UNC9/16-12	14,287 <i>0.562</i>	12.0	5,37 0.211	20,0 0.787	81 3.189	104,63 <i>4.1</i> 19	110,0 <i>4.331</i>	11,0 0.433	11.00X9.00	12,3 <i>0.484</i>	4	С
T32-R40N08C06-5/8-11-21R	10139620	UNC5/8-11	15,875 <i>0</i> .625	11.0	5,81 0.229	22,0 0.866	68 2.677	104,19 <i>4.102</i>	110,0 <i>4.331</i>	12,0 0.472	12.00X9.00	13,5 <i>0.531</i>	4	С
T32-R40N08C06-3/4-10-21R	10139621	UNC3/4-10	19,05 <i>0.750</i>	10.0	6,78 0.267	25,0 0.984	81 3.189	118,22 <i>4.654</i>	125,0 4.921	14,0 0.551	14.00X11.00	16,5 <i>0.650</i>	4	С
T32-R40N08C06-7/8-9-21R	10139622	UNC7/8-9	22,225 0.875	9.0	7,27 0.286	30,0 1.181	93 3.661	132,73 5.226	140,0 5.512	18,0 0.709	18.00X14.50	19,5 <i>0.768</i>	4	С
T32-R40N08C06-1-8-21R	10139623	UNC1-8	25,4 1.000	8.0	8,32 0.328	30,0 1.181	97 3.819	151,68 <i>5</i> .972	160,0 6.299	20,0 0.787	20.00X16.00	22,25 0.876	4	С
T32-R40N08C06-1_1/8-7-21R	10139758	UNC1 1/8-7	28,575 1.125	7.0	9,17 0.361	37,0 1.457	115 4.528	170,83 6.726	180,0 7.087	22,0 0.866	22.00X18.00	25,0 0.984	4	С
T32-R40N08C06-1_1/4-7-21R	10139624	UNC1 1/4-7	31,75 1.250	7.0	9,3 0.366	37,0 1.457	115 <i>4.528</i>	170,7 6.720	180,0 7.087	22,0 0.866	22.00X18.00	28,0 1.102	4	С
T32-R40N08C06-1_3/8-6-21R	10139618	UNC1 3/8-6	34,925 1.375	6.0	10,5 0.413	40,0 1.575	131 5.157	189,5 7.461	200,0 7.874	28,0 1.102	28.00X22.00	30,75 1.211	4	С
T32-R40N08C06-1_1/2-6-21R	10139625	UNC1 1/2-6	38,1 1.500	6.0	10,63 <i>0.41</i> 9	40,0 1.575	131 5.157	189,37 7.456	200,0 7.874	28,0 1.102	28.00X22.00	34,0 1.339	4	С

T32-R40NC

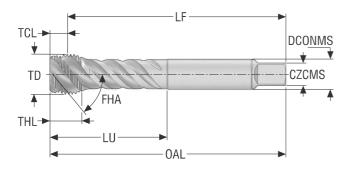
Blind holes - UNF threads

- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 2B
 FHA = 40°
 Fersulting data as a page(s)
- For cutting data see page(s) 260


Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N09C03-10-32-21R	10139162	UNF10-32	4,826 0.190	32.0	1,96 <i>0.077</i>	8,0 0.315	25 0.984	68,04 2.679	72,0 2.835	6,0 0.236	6.00X4.90	4,1 0.161	3	С
T32-R40N09C03-12-28-21R	10139163	UNF12-28	5,486 0.216	28.0	2,07 0.081	10,0 0.394	30 1.181	77,93 3.068	82,4 3.244	6,0 0.236	6.00X4.90	4,6 0.181	3	С
T32-R40N09C03-1/4-28-21R	10139164	UNF1/4-28	6,35 0.250	28.0	2,19 0.086	10,0 0.394	30 1.181	77,81 3.063	82,4 3.244	7,0 0.276	7.00X5.50	5,5 0.217	3	С
T32-R40N09C03-5/16-24-21R	10139165	UNF5/16-24	7,937 0.312	24.0	2,83 0.111	13,0 0.512	35 1.378	87,17 3.432	90,0 3.543	8,0 <i>0.315</i>	8.00X6.20	6,9 0.272	3	С
T32-R40N09C03-3/8-24-21R	10139166	UNF3/8-24	9,525 0.375	24.0	2,91 0.115	15,0 0.591	35 1.378	87,09 3.429	90,0 3.543	10,0 0.394	10.00X8.00	8,5 0.335	3	С

T32-R40NC

Blind holes - UNF threads

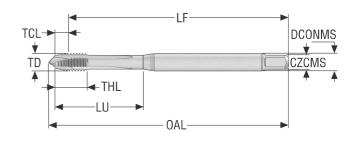

- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN374
 Thread tolerance class: 2B
 FHA = 40°
 For cutting data see page(s) 260

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N09C05-7/16-20-21R	10139627	UNF7/16-20	11,112 <i>0.437</i>	20.0	3,35 0.132	15,0 0.591	76 2.992	96,65 3.805	100,0 3.937	8,0 0.315	8.00X6.20	9,9 <i>0.390</i>	3	С
T32-R40N09C05-1/2-20-21R	10139636	UNF1/2-20	12,7 0.500	20.0	3,51 0.138	15,0 0.591	73 2.874	96,49 3.799	100,0 3.937	9,0 0.354	9.00X7.00	11,5 0.453	4	С
T32-R40N09C05-9/16-18-21R	10139629	UNF9/16-18	14,287 <i>0.</i> 562	18.0	3,77 0.148	15,0 0.591	71 2.795	96,23 3.789	100,0 3.937	11,0 0.433	11.00X9.00	13,0 <i>0.512</i>	4	С
T32-R40N09C05-5/8-18-21R	10139630	UNF5/8-18	15,875 <i>0.625</i>	18.0	3,86 0.152	15,0 0.591	58 2.283	96,14 3.785	100,0 3.937	12,0 0.472	12.00X9.00	14,5 0.571	4	С
T32-R40N09C05-3/4-16-21R	10139631	UNF3/4-16	19,05 <i>0.750</i>	16.0	4,45 0.175	17,0 0.669	66 2.598	105,55 <i>4.15</i> 6	110,0 <i>4.331</i>	14,0 0.551	14.00X11.00	17,5 <i>0.689</i>	4	С
T32-R40N09C05-7/8-14-21R	10139632	UNF7/8-14	22,225 0.875	14.0	5,15 0.203	17,0 0.669	78 3.071	119,85 <i>4.71</i> 9	125,0 <i>4.</i> 921	18,0 0.709	18.00X14.50	20,5 0.807	4	С
T32-R40N09C05-1-12-21R	10139633	UNF1-12	25,4 1.000	12.0	5,82 0.229	22,0 0.866	93 3.661	134,18 <i>5.283</i>	140,0 5.512	18,0 0.709	18.00X14.50	23,3 0.917	4	С
T32-R40N09C05-1_1/8-12-21R	10139759	UNF1 1/8-12	28,575 1.125	12.0	5,98 0.235	22,0 0.866	85 3.346	144,02 5.670	150,0 5.906	22,0 0.866	22.00X18.00	26,5 1.043	4	С
T32-R40N09C05-1_1/4-12-21R	10139634	UNF1 1/4-12	31,75 1.250	12.0	5,94 0.234	22,0 0.866	85 3.346	144,06 5.672	150,0 5.906	22,0 0.866	22.00X18.00	29,5 1.161	4	С
T32-R40N09C05-1_3/8-12-21R	10139628	UNF1 3/8-12	34,925 1.375	12.0	6,07 0.239	22,0 0.866	101 3.976	163,93 6.454	170,0 6.693	28,0 1.102	28.00X22.00	32,8 1.291	4	С
T32-R40N09C05-1_1/2-12-21R	10139635	UNF1 1/2-12	38,1 1.500	12.0	6,04 0.238	24,0 0.945	101 3.976	163,96 <i>6.455</i>	170,0 6.693	28,0 1.102	28.00X22.00	36,0 1.417	4	С

T32-R40NC

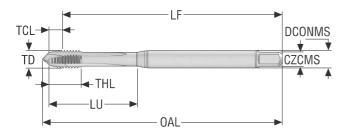
Blind holes - G threads

- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN5156
 Thread tolerance class: NORMAL
 FIA = 40°
 For culting data accounts (1) 200
- For cutting data see page(s) 260


									• 1 or cat	ing data see	page(5) 200			
Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T32-R40N21C09-1/8-28-11R	10139637	G1/8	9,728 0.383	28.0	2,67 0.105	10,0 0.394	67 2.638	87,33 3.438	90,0 3.543	7,0 0.276	7.00X5.50	8,8 0.346	3	С
T32-R40N21C09-1/4-19-11R	10139638	G1/4	13,157 <i>0.518</i>	19.0	3,72 0.146	14,0 0.551	71 2.795	96,28 3.791	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	11,8 0.465	3	С
T32-R40N21C09-3/8-19-11R	10139639	G3/8	16,662 <i>0.656</i>	19.0	3,92 0.154	15,0 0.591	58 2.283	96,08 3.783	100,0 3.937	12,0 0.472	12.00X9.00	15,25 0.600	4	С
T32-R40N21C09-1/2-14-11R	10139640	G1/2	20,955 0.825	14.0	5,28 0.208	17,0 0.669	80 3.150	119,72 <i>4.713</i>	125,0 4.921	16,0 0.630	16.00X12.00	19,0 <i>0.748</i>	4	С
T32-R40N21C09-5/8-14-11R	10139641	G5/8	22,911 0.902	14.0	5,21 0.205	20,0 0.787	78 3.071	119,79 <i>4.716</i>	125,0 <i>4.</i> 921	18,0 0.709	18.00X14.50	21,0 0.827	4	С
T32-R40N21C09-3/4-14-11R	10139642	G3/4	26,441 1.041	14.0	5,45 0.215	20,0 0.787	77 3.031	134,55 5.297	140,0 5.512	20,0 0.787	20.00X16.00	24,5 0.965	4	С
T32-R40N21C09-7/8-14-11R	10139643	G7/8	30,201 1.189	14.0	5,38 0.212	22,0 0.866	85 3.346	144,62 5.694	150,0 5.906	22,0 0.866	22.00X18.00	28,25 1.112	4	С
T32-R40N21C09-1-11-11R	10139644	G1	33,249 1.309	11.0	6,56 0.258	24,0 0.945	93 3.661	153,44 6.041	160,0 6.299	25,0 0.984	25.00X20.00	30,75 1.211	4	С

T34-PHB-micro

Through holes – Metric coarse threads



- Substrate: HSS-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 4H
 For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH01B03-1X0.25-41R	10139302	M1	0,25	1,13 0.044	6,0 0.236	13 0.512	38,87 1.530	40,9 1.610	2,5 0.098	2.50X2.10	0,75 0.030	2	В
T34-PH01B03-1.1X0.25-41R	10139303	M1.1	0,25	1,13 <i>0.044</i>	6,0 0.236	13 <i>0.512</i>	38,87 1.530	41,0 1.614	2,5 0.098	2.50X2.10	0,85 0.033	2	В
T34-PH01B03-1.2X0.25-41R	10139304	M1.2	0,25	1,13 <i>0.044</i>	6,0 0.236	13 <i>0.512</i>	38,87 1.530	41,1 1.618	2,5 0.098	2.50X2.10	0,95 0.037	2	В
T34-PH01B03-1.4X0.3-41R	10139305	M1.4	0,3	1,32 0.052	8,0 <i>0.315</i>	13 0.512	38,68 1.523	41,3 1.626	2,5 0.098	2.50X2.10	1,1 0.043	2	В

T34-PHB-micro

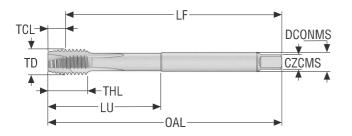
Through holes - Metric coarse threads

- Substrate: HSS-PMCoating: TiAlN + WC/CStandard: DIN371

- Thread tolerance class: 6H
 For cutting data see page(s) 262

										1 - 3 - (-)			
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH01B03-1.6X0.35-63R	10139306	M1.6	0,35	1,54 0.061	8,0 0.315	13 0.512	38,46 1.514	41,4 1.630	2,5 0.098	2.50X2.10	1,25 0.049	2	В
T34-PH01B03-1.7X0.35-63R	10139307	M1.7	0,35	1,54 0.061	8,0 0.315	13 0.512	38,46 1.514	41,5 1.634	2,5 0.098	2.50X2.10	1,35 0.053	2	В
T34-PH01B03-1.8X0.35-63R	10139308	M1.8	0,35	1,54 0.061	8,0 0.315	13 0.512	38,46 1.514	41,6 1.638	2,5 0.098	2.50X2.10	1,45 0.057	2	В
T34-PH01B03-2X0.4-63R	10139309	M2	0,4	1,89 <i>0.074</i>	10,0 <i>0.394</i>	13 0.512	43,11 1.697	46,3 1.823	2,8 0.110	2.80X2.10	1,6 0.063	2	В
T34-PH01B03-2.2X0.45-63R	10139310	M2.2	0,45	2,07 0.081	10,0 0.394	13 0.512	42,93 1.690	46,3 1.823	2,8 0.110	2.80X2.10	1,75 0.069	2	В
T34-PH01B03-2.3X0.4-63R	10139311	M2.3	0,4	1,89 <i>0.074</i>	10,0 0.394	13 0.512	43,11 1.697	46,3 1.823	2,8 0.110	2.80X2.10	1,9 <i>0.075</i>	2	В
T34-PH01B03-2.5X0.45-63R	10139312	M2.5	0,45	2,07 0.081	9,0 0.354	14 0.551	47,93 1.887	51,7 2.035	2,8 0.110	2.80X2.10	2,05 0.081	2	В
T34-PH01B03-2.6X0.45-63R	10139313	M2.6	0,45	2,07 0.081	9,0 <i>0.354</i>	14 0.551	47,93 1.887	51,7 2.035	2,8 0.110	2.80X2.10	2,15 0.085	2	В

Through holes – Metric coarse threads


TCL⊣ DCONMS <u>▼</u> TD ____ CZCMS **◆**THL -LU-OAL-

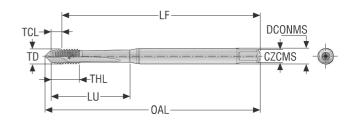
- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 262

r or cataling data doo pago(o) 20													
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH01B03-3X0.5-65R	10139314	МЗ	0,5	2,3 0.091	5,0 0.197	18 <i>0.70</i> 9	53,7 2.114	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	В
T34-PH01B03-3.5X0.6-65R	10139315	M3.5	0,6	2,67 0.105	6,0 0.236	20 0.787	53,33 2.100	57,4 2.260	4,0 0.157	4.00X3.00	2,9 0.114	3	В
T34-PH01B03-4X0.7-65R	10139316	M4	0,7	3,03 0.119	7,0 0.276	21 0.827	59,97 2.361	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	В
T34-PH01B03-4.5X0.75-65R	10139317	M4.5	0,75	3,36 0.132	7,5 0.295	25 0.984	66,64 2.624	71,8 2.827	6,0 0.236	6.00X4.90	3,8 0.150	3	В
T34-PH01B03-5X0.8-65R	10139318	M5	0,8	3,71 0.146	8,0 <i>0.315</i>	25 0.984	66,29 2.610	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	В
T34-PH01B03-6X1-65R	10139319	M6	1,0	4,5 0.177	10,0 <i>0.394</i>	30 1.181	75,5 2.972	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	3	В
T34-PH01B03-8X1.25-65R	10139320	M8	1,25	5,48 0.216	13,0 <i>0.512</i>	35 1.378	84,52 3.328	93,3 3.673	8,0 0.315	8.00X6.20	6,8 0.268	3	В
T34-PH01B03-10X1.5-65R	10139321	M10	1,5	6,9 0.272	15,0 0.591	39 1.535	93,1 3.665	101,8 <i>4.008</i>	10,0 <i>0.394</i>	10.00X8.00	8,5 0.335	3	В

T34-PHB

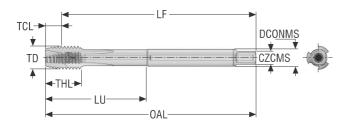
Through holes - Metric coarse threads

- Substrate: HSSE-PMCoating: TiAIN + WC/CStandard: DIN376


- Thread tolerance class: 6HX
 For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH01B06-12X1.75-65R	10139322	M12	1,75	8,11 0.319	18,0 <i>0.709</i>	83 3.268	101,89 <i>4.011</i>	110,0 <i>4.331</i>	9,0 0.354	9.00X7.00	10,2 0.402	3	В
T34-PH01B06-14X2-65R	10139323	M14	2,0	9,26 0.365	20,0 <i>0</i> .787	81 3.189	100,74 3.966	110,0 <i>4.331</i>	11,0 <i>0.433</i>	11.00X9.00	12,0 0.472	3	В
T34-PH01B06-16X2-65R	10139324	M16	2,0	9,36 0.369	20,0 <i>0</i> .787	68 2.677	100,64 3.962	110,0 <i>4.331</i>	12,0 0.472	12.00X9.00	14,0 0.551	3	В
T34-PH01B06-18X2.5-65R	10139325	M18	2,5	11,3 <i>0.445</i>	25,0 0.984	81 3.189	113,7 4.476	125,0 <i>4.</i> 921	14,0 0.551	14.00X11.00	15,5 0.610	4	В
T34-PH01B06-20X2.5-65R	10139326	M20	2,5	11,4 0.449	25,0 0.984	95 3.740	128,6 5.063	140,0 5.512	16,0 0.630	16.00X12.00	17,5 0.689	4	В
T34-PH01B06-22X2.5-65R	10139327	M22	2,5	11,4 0.449	25,0 0.984	93 3.661	128,6 5.063	140,0 5.512	18,0 0.709	18.00X14.50	19,5 <i>0.768</i>	4	В
T34-PH01B06-24X3-65R	10139328	M24	3,0	13,62 0.536	30,0 1.181	113 4.449	146,38 5.763	160,0 6.299	18,0 <i>0.709</i>	18.00X14.50	21,0 0.827	4	В
T34-PH01B06-27X3-65R	10139329	M27	3,0	13,82 0.544	30,0 1.181	97 3.819	146,18 5.755	160,0 6.299	20,0 0.787	20.00X16.00	24,0 0.945	4	В
T34-PH01B06-30X3.5-65R	10139330	M30	3,5	15,87 0.625	35,0 1.378	115 4.528	164,13 6.462	180,0 7.087	22,0 0.866	22.00X18.00	26,5 1.043	4	В
T34-PH01B06-33X3.5-65R	10139331	M33	3,5	15,87 0.625	35,0 1.378	113 <i>4.44</i> 9	164,13 6.462	180,0 7.087	25,0 0.984	25.00X20.00	29,5 1.161	4	В
T34-PH01B06-36X4-65R	10139332	M36	4,0	18,13 0.714	40,0 1.575	131 5.157	181,87 7.160	200,0 7.874	28,0 1.102	28.00X22.00	32,0 1.260	4	В

Through holes – Metric coarse threads

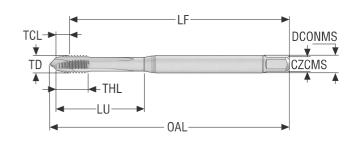


- Internal coolant
 Substrate: HSSE-PM
 Coating: TiAlN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 262

0 10(7													
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34B-PH01B03-5X0.8-65R	10139333	M5	0,8	3,71 0.146	8,0 0.315	25 0.984	66,29 2.610	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	В
T34B-PH01B03-6X1-65R	10139334	M6	1,0	4,5 0.177	10,0 <i>0.394</i>	30 1.181	75,5 2.972	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	3	В
T34B-PH01B03-8X1.25-65R	10139335	M8	1,25	5,48 0.216	13,0 <i>0.512</i>	35 1.378	84,52 3.328	93,3 3.673	8,0 0.315	8.00X6.20	6,8 0.268	3	В
T34B-PH01B03-10X1.5-65R	10139336	M10	1,5	6,9 0.272	15,0 <i>0.591</i>	39 1.535	93,1 3.665	100,0 3.937	10,0 <i>0</i> .394	10.00X8.00	8,5 0.335	3	В

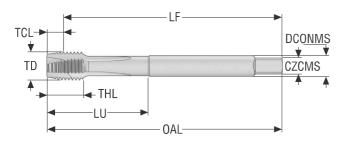
T34B-PHB

Through holes - Metric coarse threads



- Internal coolant
 Substrate: HSSE-PM
 Coating: TiAlN + WC/C
 Standard: DIN376
 Thread tolerance class: 6HX
 For cutting data see page(s) 262

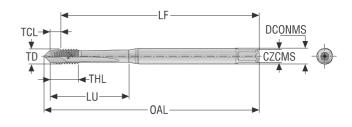
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34B-PH01B06-12X1.75-65R	10139337	M12	1,75	8,11 <i>0.319</i>	18,0 0.709	83 3.268	101,89 <i>4.011</i>	110,0 <i>4.331</i>	9,0 0.354	9.00X7.00	10,2 0.402	3	В
T34B-PH01B06-14X2-65R	10139338	M14	2,0	9,26 0.365	20,0 <i>0</i> .787	81 3.189	100,74 3.966	110,0 <i>4.331</i>	11,0 <i>0.433</i>	11.00X9.00	12,0 0.472	3	В
T34B-PH01B06-16X2-65R	10139339	M16	2,0	9,36 0.369	20,0 0.787	68 2.677	100,64 3.962	110,0 4.331	12,0 0.472	12.00X9.00	14,0 0.551	3	В



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 262

Designation	Item number	- TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH02B03-3X0.35-65R	10139340	MF3X0.35	0,35	1,6 0.063	5,0 0.197	18 <i>0.70</i> 9	54,4 2.142	57,2 2.252	3,5 0.138	3.50X2.70	2,65 0.104	3	В
T34-PH02B03-3.5X0.35-65R	10139341	MF3.5X0.35	0,35	1,6 0.063	5,0 0.197	20 0.787	54,4 2.142	57,4 2.260	4,0 0.157	4.00X3.00	3,15 0.124	3	В
T34-PH02B03-4X0.5-65R	10139342	MF4X0.5	0,5	2,3 0.091	7,0 0.276	21 0.827	60,7 2.390	64,6 2.543	4,5 0.177	4.50X3.40	3,5 0.138	3	В
T34-PH02B03-5X0.5-65R	10139343	MF5X0.5	0,5	2,3 0.091	8,0 <i>0.315</i>	25 0.984	67,7 2.665	72,0 2.835	6,0 0.236	6.00X4.90	4,5 0.177	3	В
T34-PH02B03-6X0.5-65R	10139344	MF6X0.5	0,5	2,34 0.092	10,0 <i>0.394</i>	30 1.181	77,66 3.057	82,4 3.244	6,0 0.236	6.00X4.90	5,5 0.217	3	В
T34-PH02B03-6X0.75-65R	10139345	MF6X0.75	0,75	3,4 0.134	10,0 <i>0.394</i>	30 1.181	76,6 3.016	82,4 3.244	6,0 0.236	6.00X4.90	5,2 0.205	3	В
T34-PH02B03-8X0.75-65R	10139346	MF8X0.75	0,75	3,4 0.134	10,0 <i>0</i> .394	30 1.181	76,6 3.016	83,6 3.291	8,0 0.315	8.00X6.20	7,2 0.283	3	В
T34-PH02B03-8X1-65R	10139347	MF8X1	1,0	4,45 0.175	13,0 <i>0.512</i>	35 1.378	85,55 3.368	93,3 3.673	8,0 0.315	8.00X6.20	7,0 0.276	3	В
T34-PH02B03-10X0.75-65R	10139348	MF10X0.75	0,75	3,8 0.150	13,0 <i>0.512</i>	35 1.378	86,2 3.394	91,8 3.614	10,0 <i>0.394</i>	10.00X8.00	9,2 0.362	3	В
T34-PH02B03-10X1-65R	10139349	MF10X1	1,0	5,25 0.207	13,0 <i>0.512</i>	35 1.378	84,75 3.337	91,8 3.614	10,0 <i>0.394</i>	10.00X8.00	9,0 <i>0.354</i>	3	В
T34-PH02B03-10X1.25-65R	10139350	MF10X1.25	1,25	6,28 0.247	15,0 <i>0.591</i>	39 1.535	93,72 3.690	101,8 <i>4.008</i>	10,0 <i>0.394</i>	10.00X8.00	8,8 0.346	3	В

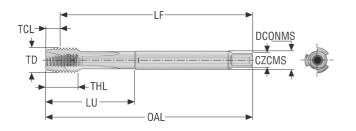
T34-PHB


- Substrate: HSSE-PMCoating: TiAlN + WC/CStandard: DIN374

- Thread tolerance class: 6HX
 For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	czcms	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH02B05-8X1-65R	10139351	MF8X1	1,0	4,75 0.187	10,0 <i>0.394</i>	35 1.378	85,25 3.356	90,0 3.543	6,0 0.236	6.00X4.90	7,0 0.276	3	В
T34-PH02B05-10X1-65R	10139352	MF10X1	1,0	4,85 0.191	10,0 <i>0.394</i>	35 1.378	85,15 3.352	90,0 3.543	7,0 0.276	7.00X5.50	9,0 <i>0.354</i>	3	В
T34-PH02B05-12X1-65R	10139353	MF12X1	1,0	4,98 0.196	10,0 <i>0.394</i>	73 2.874	95,02 3.741	100,0 3.937	9,0 0.354	9.00X7.00	11,0 <i>0.4</i> 33	3	В
T34-PH02B05-12X1.25-65R	10139354	MF12X1.25	1,25	7,07 0.278	15,0 <i>0.591</i>	73 2.874	92,93 3.659	100,0 3.937	9,0 0.354	9.00X7.00	10,8 <i>0.425</i>	3	В
T34-PH02B05-12X1.5-65R	10139355	MF12X1.5	1,5	6,03 0.237	15,0 <i>0.591</i>	73 2.874	93,97 3.700	100,0 3.937	9,0 0.354	9.00X7.00	10,5 <i>0.413</i>	3	В
T34-PH02B05-14X1.5-65R	10139356	MF14X1.5	1,5	7,17 0.282	15,0 <i>0.591</i>	71 2.795	92,83 3.655	100,0 3.937	11,0 <i>0.433</i>	11.00X9.00	12,5 0.492	3	В
T34-PH02B05-16X1.5-65R	10139357	MF16X1.5	1,5	7,27 0.286	15,0 <i>0.591</i>	58 2.283	92,73 3.651	100,0 3.937	12,0 0.472	12.00X9.00	14,5 0.571	3	В
T34-PH02B05-18X1.5-65R	10139358	MF18X1.5	1,5	7,17 0.282	17,0 <i>0</i> .669	66 2.598	102,83 4.048	110,0 <i>4.331</i>	14,0 0.551	14.00X11.00	16,5 <i>0.650</i>	4	В
T34-PH02B05-20X1.5-65R	10139359	MF20X1.5	1,5	7,27 0.286	17,0 <i>0</i> .669	80 3.150	117,73 <i>4.</i> 635	125,0 <i>4.</i> 921	16,0 <i>0.630</i>	16.00X12.00	18,5 <i>0.728</i>	4	В
T34-PH02B05-22X1.5-65R	10139360	MF22X1.5	1,5	7,27 0.286	17,0 <i>0</i> .669	78 3.071	117,73 <i>4.</i> 635	125,0 <i>4.</i> 921	18,0 <i>0.709</i>	18.00X14.50	20,5 0.807	4	В
T34-PH02B05-24X1.5-65R	10139361	MF24X1.5	1,5	7,41 0.292	20,0 <i>0</i> .787	93 3.661	132,59 5.220	140,0 5.512	18,0 <i>0.70</i> 9	18.00X14.50	22,5 0.886	4	В

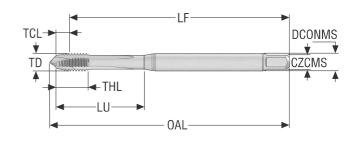
T34B-PHB



- Internal coolant
 Substrate: HSSE-PM
 Coating: TiAlN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 262

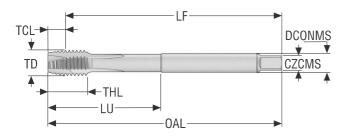
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34B-PH02B03-8X1-65R	10139362	MF8X1	1,0	4,45 0.175	13,0 <i>0.512</i>	35 1.378	85,55 3.368	93,4 3.677	8,0 0.315	8.00X6.20	7,0 0.276	3	В
T34B-PH02B03-10X1-65R	10139363	MF10X1	1,0	5,25 0.207	13,0 <i>0.512</i>	35 1.378	84,75 3.337	90,0 3.543	10,0 <i>0.394</i>	10.00X8.00	9,0 <i>0.354</i>	3	В

T34B-PHB



- Internal coolant
 Substrate: HSSE-PM
 Coating: TiAlN + WC/C
 Standard: DIN374
 Thread tolerance class: 6HX
 For cutting data see page(s) 262

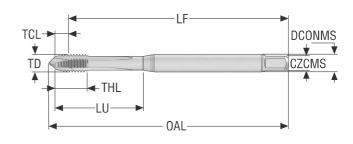
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34B-PH02B05-8X1-65R	10139364	MF8X1	1,0	4,75 0.187	10,0 0.394	35 1.378	85,25 3.356	90,0 3.543	6,0 0.236	6.00X4.90	7,0 0.276	3	В
T34B-PH02B05-10X1-65R	10139365	MF10X1	1,0	4,85 0.191	10,0 0.394	35 1.378	85,15 3.352	90,0 3.543	7,0 0.276	7.00X5.50	9,0 <i>0.354</i>	3	В
T34B-PH02B05-12X1.5-65R	10139366	MF12X1.5	1,5	7,07 0.278	15,0 0.591	73 2.874	92,93 3.659	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,5 <i>0.413</i>	3	В
T34B-PH02B05-14X1.5-65R	10139367	MF14X1.5	1,5	7,17 0.282	15,0 <i>0.591</i>	71 2.795	92,83 3.655	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	12,5 <i>0.4</i> 92	3	В
T34B-PH02B05-16X1.5-65R	10139368	MF16X1.5	1,5	7,27 0.286	15,0 0.591	58 2.283	92,73 3.651	100,0 3.937	12,0 0.472	12.00X9.00	14,5 0.571	3	В



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 2BX
 For cutting data see page(s) 262

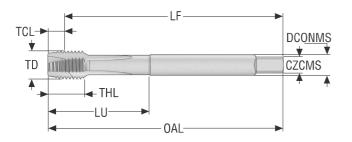
Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH08B03-4-40-22R	10139041	UNC4-40	2,845 0.112	40.0	2,83 0.111	5,0 0.197	18 <i>0.70</i> 9	53,17 2.093	56,0 2.205	3,5 0.138	3.50X2.70	2,35 0.093	3	В
T34-PH08B03-5-40-22R	10139042	UNC5-40	3,175 0.125	40.0	2,94 0.116	7,0 0.276	18 <i>0.70</i> 9	53,06 2.089	57,2 2.252	3,5 0.138	3.50X2.70	2,65 0.104	3	В
T34-PH08B03-6-32-22R	10139043	UNC6-32	3,505 <i>0.138</i>	32.0	3,74 0.147	6,0 0.236	20 0.787	52,26 2.057	57,4 2.260	4,0 0.157	4.00X3.00	2,85 0.112	3	В
T34-PH08B03-8-32-22R	10139044	UNC8-32	4,166 <i>0.164</i>	32.0	3,62 0.143	7,0 0.276	21 0.827	59,38 2.338	64,6 2.543	4,5 0.177	4.50X3.40	3,5 0.138	3	В
T34-PH08B03-10-24-22R	10139045	UNC10-24	4,826 0.190	24.0	4,86 0.191	8,0 0.315	25 0.984	65,14 2.565	72,0 2.835	6,0 0.236	6.00X4.90	3,9 <i>0.154</i>	3	В
T34-PH08B03-12-24-22R	10139046	UNC12-24	5,486 0.216	24.0	4,74 0.187	10,0 0.394	30 1.181	75,26 2.963	82,2 3.236	6,0 0.236	6.00X4.90	4,5 0.177	3	В
T34-PH08B03-1/4-20-22R	10139047	UNC1/4-20	6,35 0.250	20.0	5,65 0.222	13,0 0.512	32 1.260	74,35 2.927	82,4 3.244	7,0 0.276	7.00X5.50	5,1 0.201	3	В
T34-PH08B03-5/16-18-22R	10139048	UNC5/16-18	7,937 0.312	18.0	6,31 0.248	13,0 0.512	35 1.378	83,69 3.295	93,3 3.673	8,0 0.315	8.00X6.20	6,6 0.260	3	В
T34-PH08B03-3/8-16-22R	10139049	UNC3/8-16	9,525 0.375	16.0	7,37 0.290	15,0 0.591	39 1.535	92,63 3.647	100,0 3.937	10,0 <i>0.394</i>	10.00X8.00	8,0 <i>0.315</i>	3	В

T34-PHB



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 2BX
 For cutting data see page(s) 262

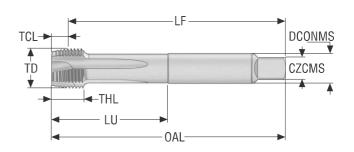
Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH08B06-7/16-14-22R	10139050	UNC7/16-14	11,112 <i>0.437</i>	14.0	8,36 0.329	15,0 0.591	76 2.992	91,64 3.608	100,0 3.937	8,0 <i>0.315</i>	8.00X6.20	9,3 <i>0.366</i>	3	В
T34-PH08B06-1/2-13-22R	10139051	UNC1/2-13	12,7 0.500	13.0	9,01 <i>0.</i> 355	18,0 0.709	83 3.268	100,99 3.976	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,7 <i>0.421</i>	3	В
T34-PH08B06-9/16-12-22R	10139052	UNC9/16-12	14,287 <i>0.562</i>	12.0	9,87 0.389	20,0 0.787	81 3.189	100,13 3.942	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	12,3 <i>0.484</i>	3	В
T34-PH08B06-5/8-11-22R	10139053	UNC5/8-11	15,875 <i>0.625</i>	11.0	10,62 <i>0.418</i>	22,0 0.866	68 2.677	99,38 3.913	110,0 <i>4.331</i>	12,0 0.472	12.00X9.00	13,5 <i>0.531</i>	3	В



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 2BX
 For cutting data see page(s) 262

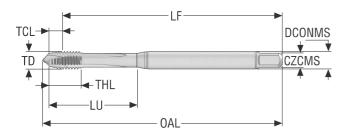
Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH09B03-4-48-22R	10139369	UNF4-48	2,845 0.112	48.0	2,48 0.098	5,0 0.197	18 <i>0.70</i> 9	53,52 2.107	57,2 2.252	3,5 0.138	3.50X2.70	2,4 0.094	3	В
T34-PH09B03-5-44-22R	10139370	UNF5-44	3,175 0.125	44.0	2,6 0.102	7,0 0.276	18 <i>0.70</i> 9	53,4 2.102	57,2 2.252	3,5 0.138	3.50X2.70	2,7 0.106	3	В
T34-PH09B03-6-40-22R	10139371	UNF6-40	3,505 <i>0.138</i>	40.0	3,05 0.120	6,0 0.236	20 0.787	52,95 2.085	57,4 2.260	4,0 0.157	4.00X3.00	2,95 0.116	3	В
T34-PH09B03-8-36-22R	10139372	UNF8-36	4,166 <i>0.164</i>	36.0	3,28 0.129	7,0 0.276	21 0.827	59,72 2.351	64,6 2.543	4,5 0.177	4.50X3.40	3,5 0.138	3	В
T34-PH09B03-10-32-22R	10139373	UNF10-32	4,826 0.190	32.0	3,5 0.138	8,0 0.315	25 0.984	66,5 2.618	72,0 2.835	6,0 0.236	6.00X4.90	4,1 0.161	3	В
T34-PH09B03-12-28-22R	10139374	UNF12-28	5,486 0.216	28.0	4,05 0.159	10,0 0.394	30 1.181	75,95 2.990	82,2 3.236	6,0 0.236	6.00X4.90	4,6 0.181	3	В
T34-PH09B03-1/4-28-22R	10139375	UNF1/4-28	6,35 0.250	28.0	3,94 0.155	10,0 0.394	30 1.181	76,06 2.994	82,4 3.244	7,0 0.276	7.00X5.50	5,5 0.217	3	В
T34-PH09B03-5/16-24-22R	10139376	UNF5/16-24	7,937 0.312	24.0	4,6 0.181	13,0 0.512	35 1.378	85,4 3.362	93,3 3.673	8,0 <i>0.315</i>	8.00X6.20	6,9 0.272	3	В
T34-PH09B03-3/8-24-22R	10139377	UNF3/8-24	9,525 0.375	24.0	4,98 0.196	15,0 0.591	35 1.378	85,02 3.347	90,0 3. <i>543</i>	10,0 <i>0.394</i>	10.00X8.00	8,5 0.335	3	В

T34-PHB



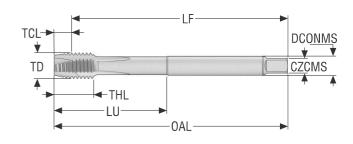
- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 2BX
 For cutting data see page(s) 262

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH09B05-7/16-20-22R	10139378	UNF7/16-20	11,112 <i>0.4</i> 37	20.0	5,95 0.234	15,0 0.591	76 2.992	94,05 3.703	100,0 3.937	8,0 <i>0.315</i>	8.00X6.20	9,9 0.390	3	В
T34-PH09B05-1/2-20-22R	10139379	UNF1/2-20	12,7 0.500	20.0	6,14 0.242	15,0 0.591	73 2.874	93,86 3.695	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,5 <i>0.45</i> 3	3	В
T34-PH09B05-9/16-18-22R	10139380	UNF9/16-18	14,287 <i>0.562</i>	18.0	6,8 0.268	15,0 0.591	71 2.795	93,2 3.669	100,0 3.937	11,0 0.433	11.00X9.00	13,0 0.512	3	В
T34-PH09B05-5/8-18-22R	10139381	UNF5/8-18	15,875 0.625	18.0	6,87	15,0 0.591	58 2 283	93,13 3,667	100,0	12,0 0.472	12.00X9.00	14,5 0.571	3	В



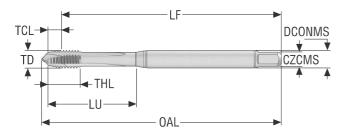
- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN5156
 Thread tolerance class: NORMAL-X
 For cutting data see page(s) 262

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	ТНСНТ
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH21B09-1/8-28-12R	10139401	G1/8	9,728 <i>0.383</i>	28.0	4,49 0.177	10,0 0.394	36 1.417	85,51 3.367	90,0 3. <i>543</i>	7,0 0.276	7.00X5.50	8,8 0.346	3	В
T34-PH21B09-1/4-19-12R	10139402	G1/4	13,157 <i>0.518</i>	19.0	6,85 0.270	14,0 0.551	71 2.795	93,15 3.667	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	11,8 0.465	3	В
T34-PH21B09-3/8-19-12R	10139403	G3/8	16,662 <i>0.656</i>	19.0	6,97 0.274	15,0 0.591	58 2.283	93,03 3.663	100,0 3.937	12,0 0.472	12.00X9.00	15,25 0.600	4	В
T34-PH21B09-1/2-14-12R	10139404	G1/2	20,955 0.825	14.0	9,0 0.354	17,0 0.669	80 3.150	116,0 <i>4.</i> 567	125,0 4.921	16,0 0.630	16.00X12.00	19,0 <i>0.748</i>	4	В
T34-PH21B09-5/8-14-12R	10139405	G5/8	22,911 0.902	14.0	9,4 0.370	20,0 0.787	78 3.071	115,6 <i>4.551</i>	125,0 4.921	18,0 <i>0.709</i>	18.00X14.50	21,0 0.827	4	В
T34-PH21B09-3/4-14-12R	10139406	G3/4	26,441 1.041	14.0	9,16 0.361	20,0 0.787	77 3.031	130,84 <i>5.151</i>	140,0 5.512	20,0 0.787	20.00X16.00	24,5 0.965	4	В
T34-PH21B09-7/8-14-12R	10139407	G7/8	30,201 1.189	14.0	9,03 0.356	22,0 0.866	85 3.346	140,97 5.550	150,0 5.906	22,0 0.866	22.00X18.00	28,25 1.112	4	В
T34-PH21B09-1-11-12R	10139408	G1	33,249 1.309	11.0	11,49 0.452	24,0 0.945	93 3.661	148,51 <i>5.847</i>	160,0 6.299	25,0 0.984	25.00X20.00	30,75 1.211	4	В



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6H mod.
 For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH04B03-2X0.4-64R	10139382	EGM2	0,4	2,07 0.081	9,0 <i>0.354</i>	14 0.551	47,93 1.887	51,7 2.035	2,8 0.110	2.80X2.10	2,1 0.083	2	В
T34-PH04B03-2.5X0.45-64R	10139383	EGM2.5	0,45	2,13 0.084	10,0 <i>0.394</i>	18 0.709	53,87 2.121	57,2 2.252	3,5 0.138	3.50X2.70	2,65 0.104	3	В
T34-PH04B03-3X0.5-64R	10139384	EGM3	0,5	2,03 0.080	12,0 <i>0.4</i> 72	21 0.827	60,97 2.400	64,6 2.543	4,5 0.177	4.50X3.40	3,15 0.124	3	В
T34-PH04B03-4X0.7-64R	10139385	EGM4	0,7	3,27 0.129	14,0 <i>0.551</i>	25 0.984	66,73 2.627	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	В
T34-PH04B03-5X0.8-64R	10139386	EGM5	0,8	3,72 0.146	18,0 <i>0.709</i>	30 1.181	76,28 3.003	82,4 3.244	6,0 0.236	6.00X4.90	5,25 0.207	3	В
T34-PH04B03-6X1-64R	10139387	EGM6	1,0	4,7 0.185	18,0 <i>0.709</i>	35 1.378	85,3 3.358	90,0 3.543	8,0 0.315	8.00X6.20	6,3 0.248	3	В
T34-PH04B03-8X1.25-64R	10139388	EGM8	1,25	5,8 0.228	20,0 0.787	39 1.535	94,2 3.709	100,0 3.937	10,0 <i>0</i> .394	10.00X8.00	8,4 0.331	3	В

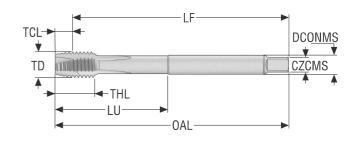


- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 6H mod.
 For cutting data see page(s) 262

3													
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH04B06-10X1.5-64R	10139409	EGM10	1,5	7,41 0.292	15,0 <i>0.591</i>	73 2.874	92,59 3.645	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,5 <i>0.413</i>	3	В
T34-PH04B06-12X1.75-64R	10139410	EGM12	1,75	8,29 0.326	20,0 <i>0.787</i>	81 3.189	101,71 <i>4.004</i>	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	12,5 <i>0.4</i> 92	4	В
T34-PH04B06-14X2-64R	10139411	EGM14	2,0	9,14 0.360	20,0 <i>0.787</i>	68 2.677	100,86 3.971	110,0 <i>4.331</i>	12,0 <i>0.4</i> 72	12.00X9.00	14,5 0.571	4	В
T34-PH04B06-16X2-64R	10139412	EGM16	2,0	9,14 0.360	20,0 <i>0.787</i>	81 3.189	115,86 <i>4.561</i>	125,0 4.921	14,0 0.551	14.00X11.00	16,5 <i>0.650</i>	4	В
T34-PH04B06-18X2.5-64R	10139413	EGM18	2,5	11,45 0.451	27,0 1.063	93 3.661	128,55 5.061	140,0 5.512	18,0 <i>0.709</i>	18.00X14.50	18,75 <i>0.738</i>	4	В
T34-PH04B06-20X2.5-64R	10139414	EGM20	2,5	11,45 0.451	30,0 1.181	113 4.449	148,55 5.848	160,0 6.299	18,0 <i>0.709</i>	18.00X14.50	20,75 0.817	4	В

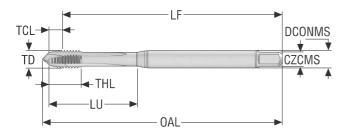
T34-PHB

Through holes - EGUNC threads


- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 2B
 For cutting data see page(s) 262

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH16B03-4-40-21R	10139389	EGUNC4-40	3,67 0.144	40.0	2,83 0.111	13,0 0.512	21 0.827	60,17 2.369	64,6 2.543	4,5 0.177	4.50X3.40	3,1 0.122	3	В
T34-PH16B03-6-32-21R	10139390	EGUNC6-32	4,536 <i>0.17</i> 9	32.0	3,75 0.148	14,0 0.551	25 0.984	66,25 2.608	71,8 2.827	6,0 0.236	6.00X4.90	3,8 0.150	3	В
T34-PH16B03-8-32-21R	10139391	EGUNC8-32	5,197 0.205	32.0	3,73 0.147	16,0 0.630	30 1.181	76,27 3.003	82,1 3.232	6,0 0.236	6.00X4.90	4,4 0.173	3	В
T34-PH16B03-10-24-21R	10139392	EGUNC10-24	6,2 0.244	24.0	3,5 0.138	17,0 0.669	30 1.181	76,5 3.012	82,4 3.244	7,0 0.276	7.00X5.50	5,2 0.205	3	В
T34-PH16B03-1/4-20-21R	10139393	EGUNC1/4-20	8,001 <i>0.315</i>	20.0	5,71 0.225	20,0 0.787	35 1.378	84,29 3.319	93,3 3.673	8,0 <i>0.315</i>	8.00X6.20	6,7 0.264	3	В
T34-PH16B03-5/16-18-21R	10139394	EGUNC5/16-18	9,771 0.385	18.0	6,61 0.260	22,0 0.866	39 1.535	93,39 3.677	100,0 3.937	10,0 <i>0.</i> 39 <i>4</i>	10.00X8.00	8,4 0.331	3	В

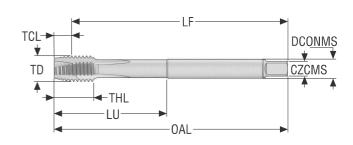
Through holes – EGUNC threads



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 2B
 For cutting data see page(s) 262

Tor cutting data coo pago(o)														
Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH16B06-3/8-16-21R	10139415	EGUNC3/8-16	11,587 <i>0.456</i>	16.0	7,6 0.299	15,0 0.591	73 2.874	92,4 3.638	100,0 3.937	9,0 0.354	9.00X7.00	10,0 <i>0.</i> 39 <i>4</i>	3	В
T34-PH16B06-7/16-14-21R	10139416	EGUNC7/16-14	13,47 0.530	14.0	8,6 0.339	18,0 0.709	81 3.189	101,4 3.992	110,0 4.331	11,0 0.433	11.00X9.00	11,6 0.457	3	В
T34-PH16B06-1/2-13-21R	10139417	EGUNC1/2-13	15,237 <i>0.600</i>	13.0	9,3 0.366	18,0 <i>0.70</i> 9	68 2.677	100,7 3.965	110,0 <i>4.331</i>	12,0 0.472	12.00X9.00	13,3 <i>0.524</i>	3	В
T34-PH16B06-9/16-12-21R	10139418	EGUNC9/16-12	17,038 <i>0.671</i>	12.0	9,7 0.382	20,0 0.787	68 2.677	100,3 3.949	110,0 <i>4.331</i>	12,0 0.472	12.00X9.00	14,9 <i>0.5</i> 87	4	В
T34-PH16B06-5/8-11-21R	10139419	EGUNC5/8-11	18,875 <i>0.743</i>	11.0	10,6 <i>0.417</i>	20,0 0.787	81 3.189	114,4 4.504	125,0 4.921	14,0 0.551	14.00X11.00	16,5 <i>0.650</i>	4	В
T34-PH16B06-3/4-10-21R	10139420	EGUNC3/4-10	22,349 0.880	10.0	11,8 0.465	25,0 0.984	93 3.661	128,2 5.047	140,0 5.512	18,0 0.709	18.00X14.50	19,75 0.778	4	В

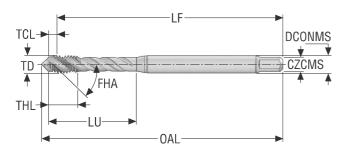
Through holes - EGUNF threads



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 2B
 For cutting data see page(s) 262

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH17B03-4-48-21R	10139395	EGUNF4-48	3,533 0.139	48.0	2,36 0.093	9,0 0.354	20 0.787	53,64 2.112	57,4 2.260	4,0 0.157	4.00X3.00	3,0 0.118	3	В
T34-PH17B03-6-40-21R	10139396	EGUNF6-40	4,331 0.171	40.0	2,75 0.108	10,0 0.394	25 0.984	67,25 2.648	71,8 2.827	6,0 0.236	6.00X4.90	3,7 0.146	3	В
T34-PH17B03-8-36-21R	10139397	EGUNF8-36	5,083 <i>0.200</i>	36.0	2,93 0.115	13,0 0.512	30 1.181	77,07 3.034	82,1 3.232	6,0 0.236	6.00X4.90	4,4 0.173	3	В
T34-PH17B03-10-32-21R	10139398	EGUNF10-32	5,857 0.231	32.0	3,5 0.138	13,0 0.512	30 1.181	76,5 3.012	82,4 3.244	6,0 0.236	6.00X4.90	5,1 0.201	3	В
T34-PH17B03-1/4-28-21R	10139399	EGUNF1/4-28	7,529 0.296	28.0	4,09 0.161	17,0 0.669	35 1.378	85,91 3.382	93,2 3.669	8,0 0.315	8.00X6.20	6,6 0.260	3	В
T34-PH17B03-5/16-24-21R	10139400	EGUNF5/16-24	9,312 0.367	24.0	5,1 0.201	18,0 0.709	35 1.378	84,97 3.345	90,0 3.543	10,0 0.394	10.00X8.00	8,25 0.325	3	В

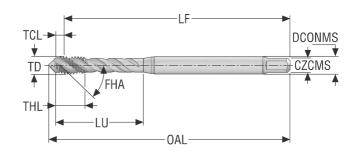
T34-PHB



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 2B
 For cutting data see page(s) 262

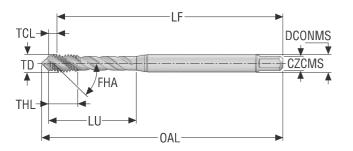
3														
Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-PH17B06-3/8-24-21R	10139421	EGUNF3/8-24	10,899 <i>0.42</i> 9	24.0	4,43 0.174	12,0 0.472	66 2.598	85,57 3.369	90,0 3.543	8,0 0.315	8.00X6.00	9,8 0.386	3	В
T34-PH17B06-7/16-20-21R	10139422	EGUNF7/16-20	12,763 0.502	20.0	6,2 0.244	15,0 0.591	73 2.874	93,8 3.693	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,5 0.453	3	В
T34-PH17B06-1/2-20-21R	10139423	EGUNF1/2-20	14,351 <i>0.565</i>	20.0	6,2 0.244	15,0 0.591	71 2.795	93,8 3.693	100,0 3.937	11,0 0.433	11.00X9.00	13,1 <i>0.516</i>	3	В
T34-PH17B06-9/16-18-21R	10139424	EGUNF9/16-18	16,121 <i>0.635</i>	18.0	6,9 0.272	15,0 0.591	58 2.283	93,1 3.665	100,0 3.937	12,0 0.472	12.00X9.00	14,7 0.579	4	В
T34-PH17B06-5/8-18-21R	10139425	EGUNF5/8-18	17,709 <i>0.</i> 697	18.0	6,9 0.272	15,0 0.591	66 2.598	103,1 <i>4.05</i> 9	110,0 <i>4.331</i>	14,0 0.551	14.00X11.00	16,25 0.640	4	В
T34-PH17B06-3/4-16-21R	10139426	EGUNF3/4-16	21,112 0.831	16.0	7,9 0.311	17,0 0.669	80 3.150	117,1 4.610	125,0 4.921	16,0 0.630	16.00X12.00	19,5 <i>0.768</i>	4	В

T34-R45HC-micro


- Substrate: HSS-PMCoating: TiAlN + WC/CStandard: DIN371
- Thread tolerance class: 4H FHA = 45°
- For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	сzсмѕ	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H01C03-1X0.25-41R	10138952	M1	0,25	0,59 <i>0.0</i> 23	6,0 0.236	13 0.512	39,41 1.552	40,9 1.610	2,5 0.098	2.50X2.10	0,75 0.030	2	С
T34-R45H01C03-1.1X0.25-41R	10138953	M1.1	0,25	0,59 0.023	6,0 0.236	13 0.512	39,41 1.552	41,0 1.614	2,5 0.098	2.50X2.10	0,85 0.033	2	С
T34-R45H01C03-1.2X0.25-41R	10138954	M1.2	0,25	0,59 0.023	6,0 0.236	13 0.512	39,41 1.552	41,1 1.618	2,5 0.098	2.50X2.10	0,95 0.037	2	С
T34-R45H01C03-1.4X0.3-41R	10138955	M1.4	0,3	0,69 <i>0.027</i>	8,0 0.315	13 0.512	39,31 1.548	41,3 1.626	2,5 0.098	2.50X2.10	1,1 0.043	2	С

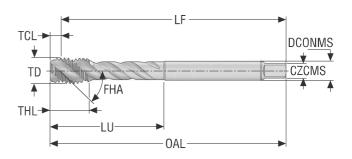
T34-R45HC-micro



- Substrate: HSS-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6H
 FHA = 45°
 Faceutified data con people.
- For cutting data see page(s) 262

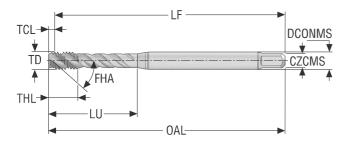
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H01C03-1.6X0.35-63R	10138956	M1.6	0,35	0,8 0.031	8,0 0.315	13 <i>0.512</i>	39,2 1.543	41,4 1.630	2,5 0.098	2.50X2.10	1,25 0.049	2	С
T34-R45H01C03-1.7X0.35-63R	10138957	M1.7	0,35	0,8 0.031	8,0 0.315	13 0.512	39,2 1.543	41,5 1.634	2,5 0.098	2.50X2.10	1,35 0.053	2	С
T34-R45H01C03-1.8X0.35-63R	10138958	M1.8	0,35	0,8 0.031	8,0 0.315	13 0.512	39,2 1.543	41,6 1.638	2,5 0.098	2.50X2.10	1,45 0.057	2	С
T34-R45H01C03-2X0.4-63R	10138959	M2	0,4	1,05 0.041	10,0 <i>0.394</i>	13 0.512	43,95 1.730	46,3 1.823	2,8 0.110	2.80X2.10	1,6 0.063	2	С
T34-R45H01C03-2.2X0.45-63R	10138960	M2.2	0,45	1,15 0.045	10,0 <i>0.394</i>	13 <i>0.512</i>	43,85 1.726	46,3 1.823	2,8 0.110	2.80X2.10	1,75 0.069	2	С
T34-R45H01C03-2.3X0.4-63R	10138961	M2.3	0,4	1,05 0.041	10,0 <i>0.394</i>	13 0.512	43,95 1.730	46,3 1.823	2,8 0.110	2.80X2.10	1,9 <i>0.075</i>	2	С
T34-R45H01C03-2.5X0.45-63R	10138962	M2.5	0,45	1,06 0.042	5,0 0.197	14 0.551	48,94 1.927	51,7 2.035	2,8 0.110	2.80X2.10	2,05 0.081	2	С
T34-R45H01C03-2.6X0.45-63R	10138963	M2.6	0,45	1,15 0.045	5,0 0.197	14 0.551	48,85 1.923	51,7 2.035	2,8 0.110	2.80X2.10	2,15 0.085	2	С

T34-R45HC


- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 FHA = 45°
 For switting data and page (a) (b)
- For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H01C03-3X0.5-65R	10138964	МЗ	0,5	1,2 0.047	5,0 0.197	18 0.709	54,8 2.157	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	С
T34-R45H01C03-3.5X0.6-65R	10138966	M3.5	0,6	1,31 0.052	6,0 0.236	20 0.787	54,69 2.153	57,4 2.260	4,0 0.157	4.00X3.00	2,9 0.114	3	С
T34-R45H01C03-4X0.7-65R	10138967	M4	0,7	1,82 0.072	7,0 0.276	21 0.827	61,18 2.409	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	С
T34-R45H01C03-4.5X0.75-65R	10138968	M4.5	0,75	1,82 0.072	7,5 0.295	25 0.984	68,18 2.684	71,8 2.827	6,0 0.236	6.00X4.90	3,8 0.150	3	С
T34-R45H01C03-5X0.8-65R	10138969	M5	0,8	2,01 <i>0.07</i> 9	8,0 0.315	25 0.984	67,99 2.677	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	С
T34-R45H01C03-6X1-65R	10138970	M6	1,0	2,32 0.091	10,0 <i>0.394</i>	30 1.181	77,68 3.058	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	3	С
T34-R45H01C03-8X1.25-65R	10138971	M8	1,25	3,16 <i>0.124</i>	13,0 <i>0.512</i>	35 1.378	86,84 3.419	91,7 3.610	8,0 0.315	8.00X6.20	6,8 0.268	3	С
T34-R45H01C03-10X1.5-65R	10138972	M10	1,5	3,81 <i>0.150</i>	15,0 <i>0.591</i>	39 1.535	96,19 3.787	101,8 <i>4.008</i>	10,0 <i>0.394</i>	10.00X8.00	8,5 0.335	3	С

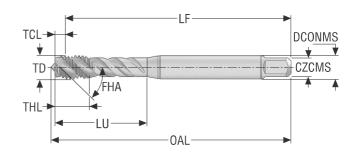
T34-R45HC



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 6HX
 FHA = 45°
 For cutting data see page(s) 262

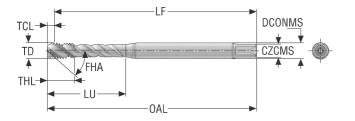
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H01C06-12X1.75-65R	10138973	M12	1,75	4,47 0.176	18,0 <i>0.709</i>	83 3.268	105,53 <i>4.155</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,2 <i>0.402</i>	3	С
T34-R45H01C06-14X2-65R	10138974	M14	2,0	5,11 0.201	20,0 <i>0.787</i>	81 3.189	104,89 <i>4.130</i>	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	12,0 <i>0.4</i> 72	4	С
T34-R45H01C06-16X2-65R	10138975	M16	2,0	5,21 0.205	20,0 0.787	68 2.677	104,79 <i>4.126</i>	110,0 <i>4.331</i>	12,0 <i>0.4</i> 72	12.00X9.00	14,0 0.551	4	С
T34-R45H01C06-18X2.5-65R	10138976	M18	2,5	6,28 0.247	25,0 0.984	81 3.189	118,72 4.674	125,0 4.921	14,0 <i>0.551</i>	14.00X11.00	15,5 0.610	4	С
T34-R45H01C06-20X2.5-65R	10138977	M20	2,5	6,28 0.247	25,0 0.984	95 3.740	133,72 5.265	140,0 5.512	16,0 <i>0.630</i>	16.00X12.00	17,5 <i>0.68</i> 9	4	С
T34-R45H01C06-22X2.5-65R	10138978	M22	2,5	6,28 0.247	25,0 0.984	93 3.661	133,72 5.265	140,0 5.512	18,0 <i>0.709</i>	18.00X14.50	19,5 0.768	4	С
T34-R45H01C06-24X3-65R	10138979	M24	3,0	7,48 0.294	30,0 1.181	113 <i>4.44</i> 9	152,52 6.005	160,0 6.299	18,0 <i>0.709</i>	18.00X14.50	21,0 0.827	4	С
T34-R45H01C06-27X3-65R	10138980	M27	3,0	7,68 0.302	30,0 1.181	97 3.819	152,32 5.997	160,0 6.299	20,0 0.787	20.00X16.00	24,0 0.945	4	С
T34-R45H01C06-30X3.5-65R	10138981	M30	3,5	8,75 0.344	35,0 1.378	115 <i>4.5</i> 28	171,25 6.742	180,0 7.087	22,0 0.866	22.00X18.00	26,5 1.043	4	С
T34-R45H01C06-33X3.5-65R	10138982	M33	3,5	8,75 0.344	35,0 1.378	113 <i>4.44</i> 9	171,25 6.742	180,0 7.087	25,0 0.984	25.00X20.00	29,5 1.161	4	С
T34-R45H01C06-36X4-65R	10138983	M36	4,0	10,02 <i>0.394</i>	40,0 1.575	131 <i>5.157</i>	189,98 <i>7.480</i>	200,0 7.874	28,0 1.102	28.00X22.00	32,0 1.260	4	С

T34-R45HE


- Internal coolant
 Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H01E03-3X0.5-65R	10138991	M3	0,5	0,81 0.032	5,0 0.197	18 0.709	55,19 2.173	57,2 2.252	3,5 0.138	3.50X2.70	2,5 0.098	3	Е
T34-R45H01E03-3.5X0.6-65R	10138992	M3.5	0,6	0,94 0.037	6,0 0.236	20 0.787	55,06 2.168	57,4 2.260	4,0 0.157	4.00X3.00	2,9 0.114	3	Е
T34-R45H01E03-4X0.7-65R	10138993	M4	0,7	1,18 <i>0.046</i>	7,0 0.276	21 0.827	61,82 2.434	64,6 2.543	4,5 0.177	4.50X3.40	3,3 0.130	3	E
T34-R45H01E03-4.5X0.75-65R	10138994	M4.5	0,75	1,18 <i>0.046</i>	7,5 0.295	25 0.984	68,82 2.709	71,8 2.827	6,0 <i>0</i> .236	6.00X4.90	3,8 0.150	3	Е
T34-R45H01E03-5X0.8-65R	10138995	M5	0,8	1,31 0.052	8,0 <i>0.315</i>	25 0.984	68,69 2.704	72,0 2.835	6,0 0.236	6.00X4.90	4,2 0.165	3	Е
T34-R45H01E03-6X1-65R	10138996	M6	1,0	1,57 0.062	10,0 <i>0.394</i>	30 1.181	78,43 3.088	82,4 3.244	6,0 0.236	6.00X4.90	5,0 <i>0.1</i> 97	3	Е
T34-R45H01E03-8X1.25-65R	10138997	M8	1,25	2,23 0.088	13,0 0.512	35 1.378	87,77 3.456	90,0 3.543	8,0 <i>0.315</i>	8.00X6.20	6,8 0.268	3	E
T34-R45H01E03-10X1.5-65R	10138998	M10	1,5	2,6 0.102	15,0 <i>0.591</i>	39 1.535	97,4 3.835	100,0 3.937	10,0 <i>0.394</i>	10.00X8.00	8,5 0.335	3	Е

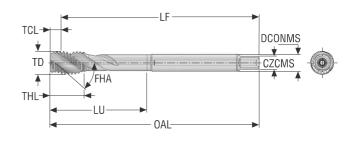
T34-R45HE



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 6HX
 FHA = 45°
 For switting data and page (a) (b)
- For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H01E06-12X1.75-65R	10138999	M12	1,75	3,18 0.125	18,0 <i>0.709</i>	83 3.268	106,82 <i>4.206</i>	110,0 <i>4.331</i>	9,0 0.354	9.00X7.00	10,2 <i>0.402</i>	3	Е
T34-R45H01E06-14X2-65R	10139000	M14	2,0	3,65 0.144	20,0 <i>0</i> .787	81 3.189	106,35 <i>4.187</i>	110,0 <i>4.331</i>	11,0 <i>0.433</i>	11.00X9.00	12,0 0.472	4	Е
T34-R45H01E06-16X2-65R	10139001	M16	2,0	3,75 0.148	20,0 <i>0</i> .787	68 2.677	106,25 4.183	110,0 4.331	12,0 0.472	12.00X9.00	14,0 0.551	4	Е

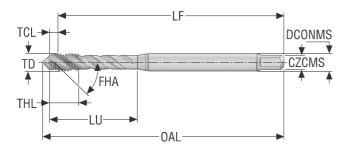
T34A-R45HC



- Internal coolant
 Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34A-R45H01C03-5X0.8-65R	10138984	M5	0,8	1,94 <i>0.076</i>	8,0 <i>0.315</i>	25 0.984	68,06 2.680	70,0 2.756	6,0 0.236	6.00X4.90	4,2 0.165	3	С
T34A-R45H01C03-6X1-65R	10138985	M6	1,0	2,32 0.091	10,0 <i>0</i> .394	30 1.181	77,68 3.058	80,0 3.150	6,0 0.236	6.00X4.90	5,0 0.197	3	С
T34A-R45H01C03-8X1.25-65R	10138986	M8	1,25	3,16 <i>0.124</i>	13,0 <i>0.512</i>	35 1.378	86,84 3.419	90,0 3.543	8,0 0.315	8.00X6.20	6,8 0.268	3	С
T34A-R45H01C05-10X1.5-65R	10138987	M10	1,5	3,81 <i>0.150</i>	17,0 <i>0.66</i> 9	39 1.535	96,19 3.787	100,0 3.937	10,0 <i>0.394</i>	10.00X8.00	8,5 0.335	3	С

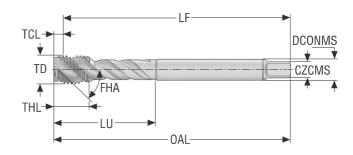
T34A-R45HC



- Internal coolant
 Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 6HX
 FHA = 45°
 For cutting data see page(s) 262

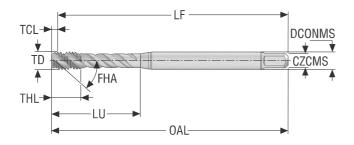
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34A-R45H01C06-12X1.75-65R	10138988	M12	1,75	4,47 0.176	18,0 <i>0.709</i>	83 3.268	105,53 <i>4.155</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,2 <i>0.402</i>	3	С
T34A-R45H01C06-14X2-65R	10138989	M14	2,0	5,11 0.201	20,0 0.787	81 3.189	104,89 <i>4.130</i>	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	12,0 <i>0.4</i> 72	4	С
T34A-R45H01C06-16X2-65R	10138990	M16	2,0	5,21 0.205	20,0 0.787	68 2.677	104,79 <i>4.126</i>	110,0 <i>4.331</i>	12,0 <i>0.4</i> 72	12.00X9.00	14,0 0.551	4	С

T34-R45HC


- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 FHA = 45°
 For switting data and page (a) (b)
- For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H02C03-3X0.35-65R	10139002	MF3X0.35	0,35	0,7 0.028	5,0 0.197	18 <i>0.70</i> 9	55,3 2.177	57,2 2.252	3,5 0.138	3.50X2.70	2,65 0.104	3	С
T34-R45H02C03-3.5X0.35-65R	10139003	MF3.5X0.35	0,35	0,69 <i>0.027</i>	5,0 0.197	20 0.787	55,31 2.178	57,4 2.260	4,0 0.157	4.00X3.00	3,15 <i>0.124</i>	3	С
T34-R45H02C03-4X0.5-65R	10139004	MF4X0.5	0,5	1,31 0.052	7,0 0.276	21 0.827	61,69 2.429	64,6 2.543	4,5 0.177	4.50X3.40	3,5 0.138	3	С
T34-R45H02C03-5X0.5-65R	10139005	MF5X0.5	0,5	1,2 0.047	8,0 0.315	25 0.984	68,8 2.709	72,0 2.835	6,0 0.236	6.00X4.90	4,5 0.177	3	С
T34-R45H02C03-6X0.5-65R	10139006	MF6X0.5	0,5	1,22 0.048	10,0 <i>0.394</i>	30 1.181	78,78 3.102	82,4 3.244	6,0 0.236	6.00X4.90	5,5 0.217	3	С
T34-R45H02C03-6X0.75-65R	10139007	MF6X0.75	0,75	1,77 0.070	10,0 <i>0.394</i>	30 1.181	78,23 3.080	82,4 3.244	6,0 0.236	6.00X4.90	5,2 0.205	3	С
T34-R45H02C03-8X0.75-65R	10139008	MF8X0.75	0,75	2,07 0.081	10,0 <i>0.394</i>	30 1.181	77,93 3.068	81,7 3.217	8,0 0.315	8.00X6.20	7,2 0.283	3	С
T34-R45H02C03-8X1-65R	10139009	MF8X1	1,0	2,62 0.103	13,0 0.512	35 1.378	87,38 3.440	91,7 3.610	8,0 0.315	8.00X6.20	7,0 0.276	3	С
T34-R45H02C03-10X0.75-65R	10139011	MF10X0.75	0,75	2,17 0.085	13,0 <i>0.512</i>	35 1.378	87,83 3.458	91,8 3.614	10,0 <i>0.394</i>	10.00X8.00	9,2 0.362	3	С
T34-R45H02C03-10X1-65R	10139012	MF10X1	1,0	2,72 0.107	13,0 <i>0.512</i>	35 1.378	87,28 3.436	91,8 3.614	10,0 <i>0.394</i>	10.00X8.00	9,0 <i>0.354</i>	3	С
T34-R45H02C03-10X1.25-65R	10139013	MF10X1.25	1,25	3,26 0.128	15,0 0.591	39 1.535	96,74 3.809	101,8 <i>4.008</i>	10,0 <i>0.394</i>	10.00X8.00	8,8 0.346	3	С

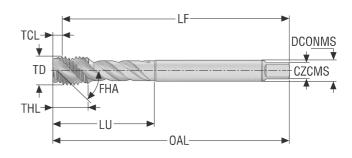
T34-R45HC



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN374
 Thread tolerance class: 6HX
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H02C05-8X1-65R	10139014	MF8X1	1,0	2,62 0.103	10,0 <i>0.394</i>	35 1.378	87,38 3.440	90,0 3.543	6,0 0.236	6.00X4.90	7,0 0.276	3	С
T34-R45H02C05-10X1-65R	10139015	MF10X1	1,0	2,62 0.103	10,0 <i>0.394</i>	35 1.378	87,38 3.440	90,0 3.543	7,0 0.276	7.00X5.50	9,0 <i>0.354</i>	3	С
T34-R45H02C05-12X1-65R	10139016	MF12X1	1,0	2,83 0.111	10,0 <i>0.394</i>	73 2.874	97,17 3.826	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,0 <i>0.4</i> 33	3	С
T34-R45H02C05-12X1.25-65R	10139017	MF12X1.25	1,25	3,38 0.133	15,0 0.591	73 2.874	96,62 3.804	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,8 <i>0.425</i>	3	С
T34-R45H02C05-12X1.5-65R	10139018	MF12X1.5	1,5	3,93 <i>0.155</i>	15,0 <i>0.591</i>	73 2.874	96,07 3.782	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,5 <i>0.413</i>	3	С
T34-R45H02C05-14X1.5-65R	10139019	MF14X1.5	1,5	4,03 0.159	15,0 <i>0.591</i>	71 2.795	95,97 3.778	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	12,5 0.492	4	С
T34-R45H02C05-16X1.5-65R	10139020	MF16X1.5	1,5	4,13 0.163	15,0 <i>0.591</i>	58 2.283	95,87 3.774	100,0 3.937	12,0 <i>0.4</i> 72	12.00X9.00	14,5 0.571	4	С
T34-R45H02C05-18X1.5-65R	10139021	MF18X1.5	1,5	4,13 0.163	17,0 <i>0.669</i>	66 2.598	105,87 <i>4.168</i>	110,0 <i>4.331</i>	14,0 0.551	14.00X11.00	16,5 0.650	4	С
T34-R45H02C05-20X1.5-65R	10139022	MF20X1.5	1,5	4,13 0.163	17,0 <i>0.669</i>	80 3.150	120,87 <i>4.75</i> 9	125,0 4.921	16,0 0.630	16.00X12.00	18,5 0.728	4	С
T34-R45H02C05-22X1.5-65R	10139023	MF22X1.5	1,5	4,13 0.163	17,0 <i>0.669</i>	78 3.071	120,87 <i>4.</i> 759	125,0 4.921	18,0 <i>0.709</i>	18.00X14.50	20,5 0.807	4	С
T34-R45H02C05-24X1.5-65R	10139024	MF24X1.5	1,5	4,25 0.167	20,0 <i>0.787</i>	93 3.661	135,75 5.344	140,0 5.512	18,0 0.709	18.00X14.50	22,5 0.886	4	С

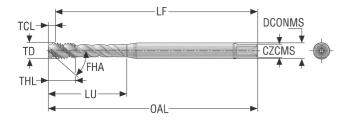
T34-R45HE



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 FHA = 45°
 For switting data and page (a) (b)
- For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H02E03-8X1-65R	10139032	MF8X1	1,0	1,87 0.074	13,0 0.512	35 1.378	88,13 3.470	90,0 3.543	8,0 0.315	8.00X6.20	7,0 0.276	3	Е
T34-R45H02E03-10X1-65R	10139033	MF10X1	1,0	1,97 <i>0.078</i>	13,0 0.512	35 1.378	88,03 3.466	90,0 3.543	10,0 <i>0</i> .39 <i>4</i>	10.00X8.00	9,0 0.354	3	Е

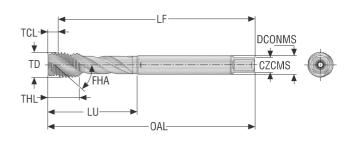
T34-R45HE



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN374
 Thread tolerance class: 6HX
 FHA = 45°
 For switting data and page (a) (b)
- For cutting data see page(s) 262

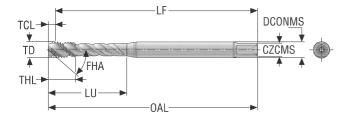
			B.: 1	T01				0.11	2001110	070110	DUDD 6		TUQUE
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H02E05-8X1-65R	10139034	MF8X1	1,0	1,87 0.074	10,0 <i>0.394</i>	35 1.378	88,13 3.470	90,0 3. <i>543</i>	6,0 <i>0.236</i>	6.00X4.90	7,0 0.276	3	Е
T34-R45H02E05-10X1-65R	10139035	MF10X1	1,0	1,87 0.074	10,0 <i>0.394</i>	35 1.378	88,13 3.470	90,0 3.543	7,0 0.276	7.00X5.50	9,0 <i>0.354</i>	3	Е
T34-R45H02E05-12X1.5-65R	10139036	MF12X1.5	1,5	2,81 0.111	15,0 0.591	73 2.874	97,19 3.826	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,5 <i>0.413</i>	3	Е
T34-R45H02E05-14X1.5-65R	10139037	MF14X1.5	1,5	3,01 <i>0.119</i>	15,0 <i>0.591</i>	71 2.795	96,99 3.819	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	12,5 0.492	4	Е
T34-R45H02E05-16X1.5-65R	10139038	MF16X1.5	1,5	3,01 <i>0.119</i>	15,0 0.591	58 2.283	96,99 3.819	100,0 3.937	12,0 <i>0.4</i> 72	12.00X9.00	14,5 0.571	4	Е

T34A-R45HC


- Internal coolant
 Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm <i>Inch</i>	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34A-R45H02C03-8X1-65R	10139025	MF8X1	1,0	2,62 0.103	13,0 <i>0.512</i>	35 1.378	87,38 3.440	90,0 3.543	8,0 0.315	8.00X6.20	7,0 0.276	3	С
T34A-R45H02C03-10X1-65R	10139026	MF10X1	1,0	2,72 0.107	13,0 0.512	35 1.378	87,28 3.436	90,0 3.543	10,0 <i>0.394</i>	10.00X8.00	9,0 0.354	3	С

T34A-R45HC

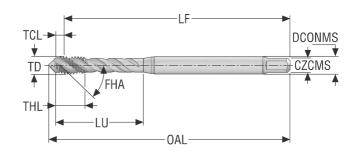


- Internal coolant
 Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN374
 Thread tolerance class: 6HX
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34A-R45H02C05-8X1-65R	10139027	MF8X1	1,0	2,62 0.103	10,0 <i>0.394</i>	35 1.378	87,38 3.440	90,0 3.543	6,0 0.236	6.00X4.90	7,0 0.276	3	С
T34A-R45H02C05-10X1-65R	10139028	MF10X1	1,0	2,62 0.103	10,0 <i>0.394</i>	35 1.378	87,38 3.440	90,0 3.543	7,0 0.276	7.00X5.50	9,0 <i>0.354</i>	3	С
T34A-R45H02C05-12X1.5-65R	10139029	MF12X1.5	1,5	3,93 0.155	15,0 <i>0.591</i>	73 2.874	96,07 3.782	100,0 3.937	9,0 0.354	9.00X7.00	10,5 <i>0.413</i>	3	С
T34A-R45H02C05-14X1.5-65R	10139030	MF14X1.5	1,5	4,03 <i>0.15</i> 9	15,0 <i>0.591</i>	71 2.795	95,97 3.778	100,0 3.937	11,0 <i>0.433</i>	11.00X9.00	12,5 0.492	4	С
T34A-R45H02C05-16X1.5-65R	10139031	MF16X1.5	1,5	4,13 0.163	15,0 0.591	58 2.283	95,87 3.774	100,0 3.937	12,0 0.472	12.00X9.00	14,5 0.571	4	С

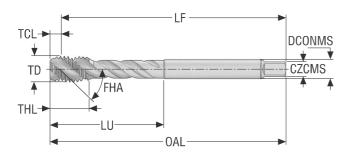
T34A-R45HE

- Internal coolant
 Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6HX
 FHA = 45°
 For cutting data see page(s) 262


Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm <i>Inch</i>	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34A-R45H02E03-8X1-65R	10139039	MF8X1	1,0	1,87 0.074	13,0 0.512	35 1.378	88,13 3.470	90,0 3.543	8,0 0.315	8.00X6.20	7,0 0.276	3	Е
T34A-R45H02E03-10X1-65R	10139040	MF10X1	1,0	1,97 0.078	13,0 0.512	35 1.378	88,03 3.466	90,0 3.543	10,0 <i>0.</i> 39 <i>4</i>	10.00X8.00	9,0 <i>0.354</i>	3	E

T34-R45HC

Blind holes - UNC threads



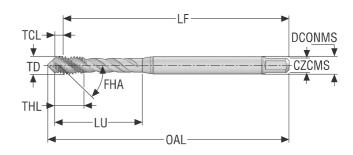
- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 2BX
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H08C03-4-40-22R	10139054	UNC4-40	2,845 0.112	40.0	1,48 0.058	5,0 0.197	18 <i>0.</i> 709	54,52 2.146	56,0 2.205	3,5 0.138	3.50X2.70	2,35 0.093	3	С
T34-R45H08C03-5-40-22R	10139055	UNC5-40	3,175 0.125	40.0	1,53 0.060	7,0 0.276	18 <i>0.</i> 709	54,47 2.144	57,2 2.252	3,5 0.138	3.50X2.70	2,65 0.104	3	С
T34-R45H08C03-6-32-22R	10139056	UNC6-32	3,505 <i>0.138</i>	32.0	1,95 0.077	6,0 0.236	20 0.787	54,05 2.128	57,4 2.260	4,0 0.157	4.00X3.00	2,85 0.112	3	С
T34-R45H08C03-8-32-22R	10139057	UNC8-32	4,166 <i>0.164</i>	32.0	1,89 <i>0.074</i>	7,0 0.276	21 0.827	61,11 2.406	64,6 2.543	4,5 0.177	4.50X3.40	3,5 0.138	3	С
T34-R45H08C03-10-24-22R	10139058	UNC10-24	4,826 0.190	24.0	2,53 0.100	8,0 0.315	25 0.984	67,47 2.656	72,0 2.835	6,0 0.236	6.00X4.90	3,9 <i>0.154</i>	3	С
T34-R45H08C03-12-24-22R	10139059	UNC12-24	5,486 0.216	24.0	2,47 0.097	10,0 0.394	30 1.181	77,53 3.052	82,2 3.236	6,0 0.236	6.00X4.90	4,5 0.177	3	С
T34-R45H08C03-1/4-20-22R	10139060	UNC1/4-20	6,35 0.250	20.0	2,94 0.116	13,0 0.512	32 1.260	77,06 3.034	82,4 3.244	7,0 0.276	7.00X5.50	5,1 <i>0.201</i>	3	С
T34-R45H08C03-5/16-18-22R	10139061	UNC5/16-18	7,937 0.312	18.0	3,59 0.141	13,0 0.512	35 1.378	86,41 3.402	90,0 3.543	8,0 <i>0.315</i>	8.00X6.20	6,6 0.260	3	С
T34-R45H08C03-3/8-16-22R	10139062	UNC3/8-16	9,525 0.375	16.0	4,03 0.159	15,0 0.591	39 1.535	95,97 3.778	100,0 3.937	10,0 0.394	10.00X8.00	8,0 0.315	3	С

T34-R45HC

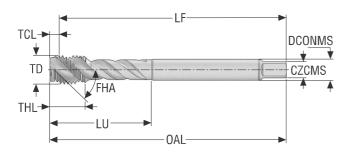
Blind holes - UNC threads

- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 2BX
 FHA = 45°
 For switting data ago page(a) (a)
- For cutting data see page(s) 262


Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H08C06-7/16-14-22R	10139063	UNC7/16-14	11,112 <i>0.4</i> 37	14.0	4,65 0.183	15,0 0.591	76 2.992	95,35 3.754	100,0 3.937	8,0 <i>0.315</i>	8.00X6.20	9,3 0.366	3	С
T34-R45H08C06-1/2-13-22R	10139064	UNC1/2-13	12,7 0.500	13.0	4,99 0.196	18,0 0.709	83 3.268	105,01 <i>4.134</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	10,7 0.421	4	С
T34-R45H08C06-9/16-12-22R	10139065	UNC9/16-12	14,287 0.562	12.0	5,43 0.214	20,0 0.787	81 3.189	104,57 <i>4.117</i>	110,0 <i>4.331</i>	11,0 0.433	11.00X9.00	12,3 0.484	4	С
T34-R45H08C06-5/8-11-22R	10139066	UNC5/8-11	15,875 <i>0.625</i>	11.0	5,87 0.231	22,0 0.866	68 2.677	104,13 <i>4.100</i>	110,0 4.331	12,0 0.472	12.00X9.00	13,5 0.531	4	С

T34-R45HC

Blind holes – UNF threads



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 2BX
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H09C03-4-48-22R	10139067	UNF4-48	2,845 0.112	48.0	1,29 0.051	5,0 0.197	18 0.709	54,71 2.154	57,2 2.252	3,5 0.138	3.50X2.70	2,4 0.094	3	С
T34-R45H09C03-5-44-22R	10139068	UNF5-44	3,175 <i>0.125</i>	44.0	1,35 0.053	7,0 0.276	18 0.709	54,65 2.152	57,2 2.252	3,5 0.138	3.50X2.70	2,7 0.106	3	С
T34-R45H09C03-6-40-22R	10139073	UNF6-40	3,505 <i>0.138</i>	40.0	1,59 0.063	6,0 0.236	20 0.787	54,41 2.142	57,4 2.260	4,0 0.157	4.00X3.00	2,95 0.116	3	С
T34-R45H09C03-8-36-22R	10139074	UNF8-36	4,166 <i>0.164</i>	36.0	1,71 0.067	7,0 0.276	21 0.827	61,29 2.413	64,6 2.543	4,5 0.177	4.50X3.40	3,5 0.138	3	С
T34-R45H09C03-10-32-22R	10139075	UNF10-32	4,826 <i>0.190</i>	32.0	2,0 0.079	8,0 0.315	25 0.984	68,0 2.677	72,0 2.835	6,0 0.236	6.00X4.90	4,1 0.161	3	С
T34-R45H09C03-12-28-22R	10139076	UNF12-28	5,486 0.216	28.0	2,11 0.083	10,0 0.394	30 1.181	77,89 3.067	82,2 3.236	6,0 0.236	6.00X4.90	4,6 0.181	3	С
T34-R45H09C03-1/4-28-22R	10139077	UNF1/4-28	6,35 0.250	28.0	2,23 0.088	10,0 0.394	30 1.181	77,77 3.062	82,4 3.244	7,0 0.276	7.00X5.50	5,5 0.217	3	С
T34-R45H09C03-5/16-24-22R	10139078	UNF5/16-24	7,937 0.312	24.0	2,87 0.113	13,0 0.512	35 1.378	87,13 3.430	90,0 3.543	8,0 0.315	8.00X6.20	6,9 0.272	3	С
T34-R45H09C03-3/8-24-22R	10139079	UNF3/8-24	9,525 <i>0</i> .375	24.0	2,96 0.117	15,0 0.591	35 1.378	87,04 3.427	90,0 3.543	10,0 0.394	10.00X8.00	8,5 0.335	3	С

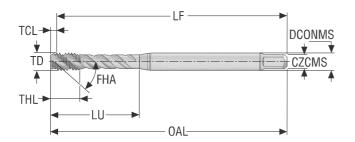
T34-R45HC

- Substrate: HSSE-PMCoating: TiAlN + WC/CStandard: DIN374
- Thread tolerance class: 2BX FHA = 45°
- For cutting data see page(s) 262

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H09C05-7/16-20-22R	10139080	UNF7/16-20	11,112 <i>0.437</i>	20.0	3,39 <i>0.133</i>	15,0 0.591	76 2.992	96,61 3.804	100,0 3.937	8,0 0.315	8.00X6.20	9,9 0.390	3	С
T34-R45H09C05-1/2-20-22R	10139081	UNF1/2-20	12,7 0.500	20.0	3,56 0.140	15,0 0.591	73 2.874	96,44 3.797	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,5 0.453	4	С
T34-R45H09C05-9/16-18-22R	10139082	UNF9/16-18	14,287 0.562	18.0	3,86 0.152	15,0 0.591	71 2.795	96,14 3.785	100,0 3.937	11,0 0.433	11.00X9.00	13,0 0.512	4	С
T34-R45H09C05-5/8-18-22R	10139083	UNF5/8-18	15,875 0.625	18.0	3,91 <i>0.154</i>	15,0 0.591	58 2.283	96,09 3.783	100,0 3.937	12,0 0.472	12.00X9.00	14,5 0.571	4	С

T34-R45HC

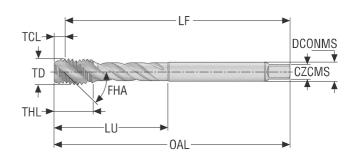
Blind holes - G threads


TCL→ **DCONMS *** TD CZCMS THL⊣

- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN5156
 Thread tolerance class: NORMAL-X
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H21C09-1/8-28-12R	10139084	G1/8	9,728 0.383	28.0	2,43 0.096	10,0 0.394	36 1.417	87,57 3.448	90,0 3.543	7,0 0.276	7.00X5.50	8,8 0.346	3	С
T34-R45H21C09-1/4-19-12R	10139085	G1/4	13,157 <i>0.518</i>	19.0	3,66 0.144	14,0 0.551	71 2.795	96,34 3.793	100,0 3.937	11,0 0.433	11.00X9.00	11,8 <i>0.465</i>	3	С
T34-R45H21C09-3/8-19-12R	10139086	G3/8	16,662 <i>0.656</i>	19.0	3,67 0.144	15,0 0.591	58 2.283	96,33 3.793	100,0 3.937	12,0 0.472	12.00X9.00	15,25 0.600	4	С
T34-R45H21C09-1/2-14-12R	10139087	G1/2	20,955 0.825	14.0	4,93 0.194	17,0 0.669	80 3.150	120,07 <i>4.</i> 727	125,0 4.921	16,0 0.630	16.00X12.00	19,0 <i>0.748</i>	4	С
T34-R45H21C09-5/8-14-12R	10139088	G5/8	22,911 <i>0</i> .902	14.0	5,06 0.199	20,0 0.787	78 3.071	119,94 <i>4.</i> 722	125,0 4.921	18,0 0.709	18.00X14.50	21,0 0.827	4	С
T34-R45H21C09-3/4-14-12R	10139089	G3/4	26,441 1.041	14.0	5,05 0.199	20,0 0.787	73 2.874	134,95 5.313	140,0 5.512	20,0 0.787	20.00X16.00	24,5 0.965	4	С
T34-R45H21C09-7/8-14-12R	10139090	G7/8	30,201 1.189	14.0	4,98 0.196	22,0 0.866	85 3.346	145,02 <i>5.70</i> 9	150,0 5.906	22,0 0.866	22.00X18.00	28,25 1.112	4	С
T34-R45H21C09-1-11-12R	10139091	G1	33,249 1.309	11.0	6,56 0.258	24,0 0.945	93 3.661	153,44 <i>6.041</i>	160,0 6.299	25,0 0.984	25.00X20.00	30,75 1.211	4	С

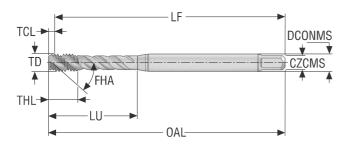
T34-R45HE



- Substrate: HSSE-PM
 Coating: TIAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 6H mod.
 FIA = 45°
 For cutting data ass area (1) 200
- For cutting data see page(s) 262

									atting data see	page(e) ===			
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H04E03-2X0.4-64R	10139092	EGM2	0,4	0,73 0.029	5,0 0.197	14 <i>0.551</i>	49,27 1.940	51,7 2.035	2,8 0.110	2.80X2.10	2,1 0.083	2	Е
T34-R45H04E03-2.5X0.45-64R	10139093	EGM2.5	0,45	0,75 0.030	5,0 0.197	18 0.709	55,25 2.175	57,2 2.252	3,5 0.138	3.50X2.70	2,65 0.104	3	Е
T34-R45H04E03-3X0.5-64R	10139094	EGM3	0,5	0,83 0.033	5,0 0.197	21 0.827	62,17 2.448	63,0 2.480	4,5 0.177	4.50X3.40	3,15 0.124	3	Е
T34-R45H04E03-4X0.7-64R	10139095	EGM4	0,7	1,15 0.045	8,0 0.315	25 0.984	68,85 2.711	70,0 2.756	6,0 0.236	6.00X4.90	4,2 0.165	3	Е
T34-R45H04E03-5X0.8-64R	10139096	EGM5	0,8	1,19 <i>0.047</i>	10,0 <i>0.394</i>	30 1.181	78,81 3.103	80,0 3.150	6,0 0.236	6.00X4.90	5,25 0.207	3	Е
T34-R45H04E03-6X1-64R	10139097	EGM6	1,0	1,81 0.071	10,0 <i>0.394</i>	35 1.378	88,19 3.472	90,0 3.543	8,0 <i>0.315</i>	8.00X6.20	6,3 0.248	3	Е
T34-R45H04E03-8X1.25-64R	10139098	EGM8	1,25	2,2 0.087	13,0 <i>0.512</i>	39 1.535	97,8 3.850	100,0 3.937	10,0 <i>0.394</i>	10.00X8.00	8,4 0.331	3	Е

T34-R45HE



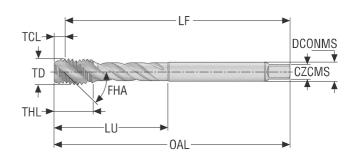
- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 6H mod.
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H04E06-10X1.5-64R	10139111	EGM10	1,5	2,83 0.111	15,0 0.591	73 2.874	97,17 3.826	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,5 <i>0.413</i>	3	Е
T34-R45H04E06-12X1.75-64R	10139112	EGM12	1,75	3,21 <i>0.126</i>	20,0 <i>0.787</i>	81 3.189	106,79 <i>4.204</i>	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	12,5 <i>0.4</i> 92	4	Е
T34-R45H04E06-14X2-64R	10139113	EGM14	2,0	3,67 0.144	20,0 0.787	68 2.677	106,33 <i>4.186</i>	110,0 <i>4.331</i>	12,0 <i>0.4</i> 72	12.00X9.00	14,5 0.571	4	Е
T34-R45H04E06-16X2-64R	10139114	EGM16	2,0	3,67 0.144	20,0 0.787	81 3.189	121,33 <i>4.777</i>	125,0 4.921	14,0 0.551	14.00X11.00	16,5 <i>0.650</i>	4	Е
T34-R45H04E06-18X2.5-64R	10139115	EGM18	2,5	4,45 0.175	27,0 1.063	93 3.661	135,55 5.337	140,0 5.512	18,0 <i>0.70</i> 9	18.00X14.50	18,75 <i>0.7</i> 38	4	Е
T34-R45H04E06-20X2.5-64R	10139116	EGM20	2,5	4,55 0.179	30,0 1.181	113 <i>4.44</i> 9	155,45 6.120	160,0 6.299	18,0 <i>0.70</i> 9	18.00X14.50	20,75 0.817	4	Е

T34-R45HE

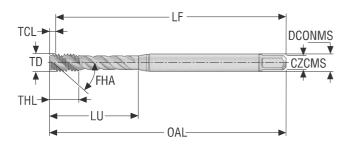
Blind holes - EGUNC threads

- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 2B
 FHA = 45°
 Fersulting data as a page(s)
- For cutting data see page(s) 262


Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H16E03-4-40-21R	10139099	EGUNC4-40	3,67 0.144	40.0	1,0 0.039	7,0 0.276	21 0.827	62,0 2.441	63,0 2.480	4,5 0.177	4.50X3.40	3,1 <i>0.122</i>	3	Е
T34-R45H16E03-6-32-21R	10139100	EGUNC6-32	4,536 0.179	32.0	1,32 0.052	8,0 0.315	25 0.984	68,68 2.704	70,0 2.756	6,0 0.236	6.00X4.90	3,8 0.150	3	Е
T34-R45H16E03-8-32-21R	10139101	EGUNC8-32	5,197 0.205	32.0	1,32 0.052	10,0 0.394	30 1.181	78,68 3.098	80,0 3.150	6,0 0.236	6.00X4.90	4,4 0.173	3	Е
T34-R45H16E03-10-24-21R	10139102	EGUNC10-24	6,2 0.244	24.0	1,64 0.065	12,0 0.472	30 1.181	78,36 3.085	80,0 3.150	7,0 0.276	7.00X5.50	5,2 0.205	3	Е
T34-R45H16E03-1/4-20-21R	10139103	EGUNC1/4-20	8,001 <i>0.315</i>	20.0	2,29 0.090	15,0 0.591	35 1.378	87,71 3.453	90,0 3.543	8,0 <i>0.315</i>	8.00X6.20	6,7 0.264	3	Е
T34-R45H16E03-5/16-18-21R	10139104	EGUNC5/16-18	9,771 0.385	18.0	2,5 0.098	18,0 0.709	39 1.535	97,5 3.839	100,0 3.937	10,0 0.394	10.00X8	8,4 0.331	3	Е

T34-R45HE

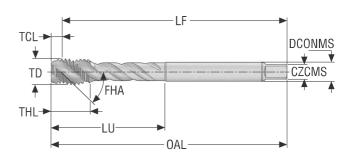
Blind holes - EGUNC threads



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 2B
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H16E06-3/8-16-21R	10139117	EGUNC3/8-16	11,587 <i>0.456</i>	16.0	2,99 0.118	15,0 0.591	73 2.874	97,01 3.819	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	10,0 <i>0.394</i>	3	Е
T34-R45H16E06-7/16-14-21R	10139118	EGUNC7/16-14	13,47 0.530	14.0	3,3 0.130	18,0 0.709	81 3.189	106,7 4.201	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	11,6 0.457	3	Е
T34-R45H16E06-1/2-13-21R	10139119	EGUNC1/2-13	15,237 0.600	13.0	3,74 0.147	18,0 0.709	68 2.677	106,26 <i>4.183</i>	110,0 <i>4.331</i>	12,0 0.472	12.00X9.00	13,3 <i>0.524</i>	3	Е
T34-R45H16E06-9/16-12-21R	10139120	EGUNC9/16-12	17,038 <i>0.671</i>	12.0	3,6 0.142	20,0 0.787	68 2.677	106,4 4.189	110,0 4.331	12,0 0.472	12.00X9.00	14,9 <i>0.587</i>	4	Е
T34-R45H16E06-5/8-11-21R	10139121	EGUNC5/8-11	18,875 <i>0.743</i>	11.0	4,3 0.169	20,0 0.787	81 3.189	120,7 <i>4</i> .752	125,0 4.921	14,0 <i>0.551</i>	14.00X11.00	16,5 <i>0.650</i>	4	Е
T34-R45H16E06-3/4-10-21R	10139122	EGUNC3/4-10	22,349 0.880	10.0	4,8 0.189	25,0 0.984	93 3.661	135,2 5.323	140,0 5.512	18,0 <i>0.709</i>	18.00X14.50	19,75 0.778	4	Е

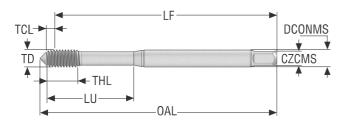
T34-R45HE



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN371
 Thread tolerance class: 2B
 FIA = 45°
 For cutting data ago page (s)
- For cutting data see page(s) 262"

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	сzсмѕ	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T34-R45H17E03-4-48-21R	10139105	EGUNF4-48	3,533 0.139	48.0	0,83 0.033	6,0 0.236	20 0.787	55,17 2.172	56,0 2.205	4,0 0.157	4.00X3.00	3,0 0.118	3	Е
T34-R45H17E03-6-40-21R	10139106	EGUNF6-40	4,331 0.171	40.0	1,12 0.044	7,0 0.276	25 0.984	68,88 2.712	70,0 2.756	6,0 0.236	6.00X4.90	3,7 0.146	3	Е
T34-R45H17E03-8-36-21R	10139107	EGUNF8-36	5,083 0.200	36.0	1,32 0.052	9,0 0.354	30 1.181	78,68 3.098	80,0 3.150	6,0 0.236	6.00X4.90	4,4 0.173	3	E
T34-R45H17E03-10-32-21R	10139108	EGUNF10-32	5,857 0.231	32.0	1,23 0.048	9,0 0.354	30 1.181	78,77 3.101	80,0 3. <i>150</i>	6,0 0.236	6.00X4.90	5,1 0.201	3	Е
T34-R45H17E03-1/4-28-21R	10139109	EGUNF1/4-28	7,529 0.296	28.0	1,74 0.069	10,0 0.394	35 1.378	88,26 3.475	90,0 3.543	8,0 0.315	8.00X6.20	6,6 0.260	3	E
T34-R45H17E03-5/16-24-21R	10139110	EGUNF5/16-24	9,312 0.367	24.0	2,52 0.099	12,0 0.472	35 1.378	87,48 3.444	90,0 3.543	10,0 <i>0.394</i>	10.00X8.00	8,25 0.325	3	Е

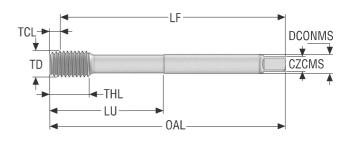
T34-R45HE



- Substrate: HSSE-PM
 Coating: TiAIN + WC/C
 Standard: DIN376
 Thread tolerance class: 2B
 FHA = 45°
 For cutting data see page(s) 262

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
Designation	item number	TUZ	mm	TPI	mm	mm	mm	mm	mm	mm	CZCIVIS	mm	NOP	THOM
			Inch	171	Inch	Inch	Inch	Inch	Inch	Inch		Inch		
T34-R45H17E06-3/8-24-21R	10139123	EGUNF3/8-24	10,899 <i>0.42</i> 9	24.0	2,0 0.079	12,0 0.472	66 2.598	88,0 3.465	90,0 3. <i>543</i>	8,0 0.315	8.00X6.00	9,8 0.386	3	Е
T34-R45H17E06-7/16-20-21R	10139124	EGUNF7/16-20	12,763 0.502	20.0	2,5 0.098	15,0 0.591	73 2.874	97,5 3.839	100,0 3.937	9,0 0.354	9.00X7.00	11,5 0.453	3	Е
T34-R45H17E06-1/2-20-21R	10139125	EGUNF1/2-20	14,351 <i>0.565</i>	20.0	2,5 0.098	15,0 0.591	71 2.795	97,5 3.839	100,0 3.937	11,0 0.433	11.00X9.00	13,1 <i>0.516</i>	3	Е
T34-R45H17E06-9/16-18-21R	10139126	EGUNF9/16-18	16,121 <i>0.635</i>	18.0	2,58 0.102	15,0 0.591	58 2.283	97,42 3.835	100,0 3.937	12,0 0.472	12.00X9.00	14,7 0.579	4	Е
T34-R45H17E06-5/8-18-21R	10139127	EGUNF5/8-18	17,709 <i>0.6</i> 97	18.0	2,7 0.106	15,0 0.591	66 2.598	107,3 4.224	110,0 4.331	14,0 <i>0.551</i>	14.00X11.00	16,25 0.640	4	Е
T34-R45H17E06-3/4-16-21R	10139128	EGUNF3/4-16	21,112 <i>0.831</i>	16.0	3,0 <i>0.118</i>	17,0 0.669	80 3.150	122,0 4.803	125,0 4.921	16,0 0.630	16.00X12.00	19,5 <i>0.768</i>	4	Е

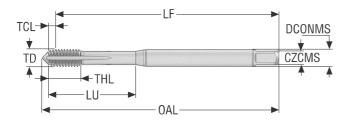
Blind and through holes - Metric coarse threads



- Substrate: HSSE-PM
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
Designation	item number	TUZ	mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	CZCW3	mm Inch	NOF	ПОП
T33-FN01C03-2X0.4-65R	10139189	M2	0,4	1,02 <i>0.040</i>	8,0 <i>0.315</i>	8 0.315	43,98 1.731	46,3 1.823	2,8 0.110	2.80X2.10	1,85 0.073	0	С
T33-FN01C03-2.5X0.45-65R	10139190	M2.5	0,45	1,1 0.043	9,0 <i>0.354</i>	9 0.354	48,9 1.925	51,7 2.035	2,8 0.110	2.80X2.10	2,33 0.092	0	С
T33-FN01C03-3X0.5-65R	10139191	M3	0,5	1,2 0.047	10,0 <i>0.394</i>	18 <i>0.709</i>	54,8 2.157	57,2 2.252	3,5 0.138	3.50X2.70	2,8 0.110	0	С
T33-FN01C03-4X0.7-65R	10139192	M4	0,7	1,6 0.063	7,0 0.276	21 0.827	61,4 2.417	64,6 2.543	4,5 0.177	4.50X3.40	3,7 0.146	0	С
T33-FN01C03-5X0.8-65R	10139193	M5	0,8	2,1 0.083	8,0 <i>0.315</i>	25 0.984	67,9 2.673	72,0 2.835	6,0 0.236	6.00X4.90	4,65 0.183	0	С
T33-FN01C03-6X1-65R	10139195	M6	1,0	2,3 0.091	10,0 <i>0.394</i>	30 1.181	77,7 3.059	82,4 3.244	6,0 0.236	6.00X4.90	5,6 0.220	0	С
T33-FN01C03-8X1.25-65R	10139196	M8	1,25	3,1 <i>0.122</i>	13,0 <i>0.512</i>	35 1.378	86,9 3.421	93,3 3.673	8,0 0.315	8.00X6.20	7,45 0.293	0	С
T33-FN01C03-10X1.5-65R	10139197	M10	1,5	3,5 0.138	15,0 <i>0.591</i>	39 1.535	96,5 3.799	101,8 <i>4.008</i>	10,0 <i>0.394</i>	10.00X8.00	9,35 0.368	0	С

Blind and through holes - Metric coarse threads

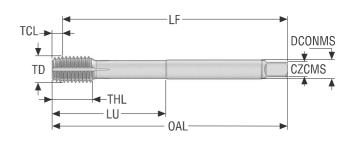


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
Designation	item number	TUZ	mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	CZCINIS	mm Inch	NOP	THEHT
T33-FN01C06-12X1.75-65R	10139198	M12	1,75	3,7 0.146	18,0 <i>0.709</i>	83 3.268	106,3 <i>4.185</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	11,25 0.443	0	С
T33-FN01C06-14X2-65R	10139199	M14	2,0	4,6 0.181	20,0 <i>0.787</i>	81 3.189	105,4 <i>4.150</i>	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	13,1 <i>0.516</i>	0	С
T33-FN01C06-16X2-65R	10139200	M16	2,0	4,6 0.181	20,0 <i>0.787</i>	81 3.189	105,4 <i>4.150</i>	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	15,1 <i>0.594</i>	0	С
T33-FN01C06-18X2.5-65R	10139201	M18	2,5	5,76 0.227	25,0 0.984	81 3.189	119,24 <i>4</i> .694	125,0 4.921	14,0 0.551	14.00X11.00	16,85 <i>0.663</i>	0	С
T33-FN01C06-20X2.5-65R	10139202	M20	2,5	5,8 0.228	25,0 0.984	95 3.740	134,2 5.283	140,0 5.512	16,0 <i>0.630</i>	16.00X12.00	18,85 <i>0.742</i>	0	С

T33-FSNC

Blind and through holes - Metric coarse threads


- Substrate: HSSE-PM
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN01C03-2X0.4-65R	10139204	M2	0,4	1,02 <i>0.040</i>	8,0 0.315	8 0.315	43,98 1.731	46,3 1.823	2,8 0.110	2.80X2.10	1,85 0.073	3	С
T33-FSN01C03-2.5X0.45-65R	10139205	M2.5	0,45	1,1 0.043	9,0 <i>0.354</i>	9 0.354	48,9 1.925	51,7 2.035	2,8 0.110	2.80X2.10	2,33 0.092	3	С
T33-FSN01C03-3X0.5-65R	10139206	МЗ	0,5	1,2 0.047	10,0 <i>0.394</i>	18 0.709	54,8 2.157	57,2 2.252	3,5 0.138	3.50X2.70	2,8 0.110	3	С
T33-FSN01C03-4X0.7-65R	10139207	M4	0,7	1,6 0.063	7,0 0.276	21 0.827	61,4 2.417	64,6 2.543	4,5 0.177	4.50X3.40	3,7 0.146	5	С
T33-FSN01C03-5X0.8-65R	10139208	M5	0,8	2,1 0.083	8,0 0.315	25 0.984	67,9 2.673	72,0 2.835	6,0 0.236	6.00X4.90	4,65 0.183	5	С
T33-FSN01C03-6X1-65R	10139209	M6	1,0	2,3 0.091	10,0 <i>0.394</i>	30 1.181	77,7 3.059	82,4 3.244	6,0 0.236	6.00X4.90	5,6 0.220	5	С
T33-FSN01C03-8X1.25-65R	10139210	M8	1,25	3,1 <i>0.122</i>	13,0 0.512	35 1.378	86,9 3.421	93,3 3.673	8,0 0.315	8.00X6.20	7,45 0.293	5	С
T33-FSN01C03-10X1.5-65R	10139211	M10	1,5	3,5 0.138	15,0 <i>0.591</i>	39 1.535	96,5 3.799	101,8 <i>4.008</i>	10,0 <i>0.</i> 39 <i>4</i>	10.00X8.00	9,35 <i>0.</i> 368	5	С

Blind and through holes- Metric coarse threads

- Substrate: HSSECoating: TiAlN + TiNStandard: DIN376

- Thread tolerance class: 6HX
 For cutting data see page(s) 264

T33-FSN01C06-20X2.5-65R

10139216

M20

2,5

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN01C06-12X1.75-65R	10139212	M12	1,75	3,9 <i>0.154</i>	18,0 <i>0.709</i>	83 3.268	106,1 <i>4.177</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	11,25 0.443	5	С
T33-FSN01C06-14X2-65R	10139213	M14	2,0	4,77 0.188	20,0 <i>0.787</i>	81 3.189	105,23 <i>4.14</i> 3	110,0 <i>4.</i> 331	11,0 <i>0.4</i> 33	11.00X9.00	13,1 <i>0.516</i>	6	С
T33-FSN01C06-16X2-65R	10139214	M16	2,0	4,6 0.181	20,0 <i>0</i> .787	81 3.189	105,4 <i>4.150</i>	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	15,1 <i>0.594</i>	6	С
T33-FSN01C06-18X2.5-65R	10139215	M18	2,5	5,76 0.227	25,0 0.984	81 3.189	119,24 <i>4</i> .694	125,0 4.921	14,0 <i>0.551</i>	14.00X11.00	16,85 0.663	6	С

95 3.740

25,0 0.984

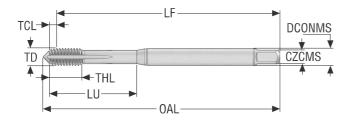
5,47 0.215

140,0 5.512

16,0 *0.630*

18,85 *0.742*

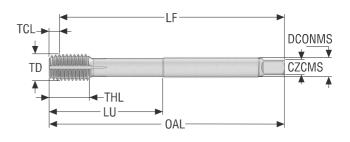
6


С

16.00X12.00

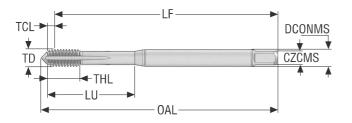
134,53 5.296

Blind and through holes - Metric coarse threads, 6GX


- Substrate: HSSE-PM
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6GX
 For cutting data see page(s) 264

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN01C03-3X0.5-62R	10139258	M3	0,5	1,2 0.047	10,0 <i>0.394</i>	18 0.709	54,8 2.157	57,2 2.252	3,5 0.138	3.50X2.70	2,8 0.110	3	С
T33-FSN01C03-4X0.7-62R	10139259	M4	0,7	1,7 0.067	7,0 0.276	21 0.827	61,3 2.413	64,6 2.543	4,5 0.177	4.50X3.40	3,7 0.146	5	С
T33-FSN01C03-5X0.8-62R	10139260	M5	0,8	2,2 0.087	8,0 <i>0.315</i>	25 0.984	67,8 2.669	72,0 2.835	6,0 0.236	6.00X4.90	4,65 0.183	5	С
T33-FSN01C03-6X1-62R	10139261	M6	1,0	2,3 0.091	10,0 <i>0.394</i>	30 1.181	77,7 3.059	82,4 3.244	6,0 0.236	6.00X4.90	5,6 0.220	5	С
T33-FSN01C03-8X1.25-62R	10139262	M8	1,25	3,2 0.126	13,0 <i>0.512</i>	35 1.378	86,8 3.417	93,3 3.673	8,0 0.315	8.00X6.20	7,45 0.293	5	С
T33-FSN01C03-10X1.5-62R	10139263	M10	1,5	4,4 0.173	15,0 <i>0.591</i>	39 1.535	95,6 3.764	101,8 <i>4.008</i>	10,0 <i>0.394</i>	10.00X8.00	9,35 0.368	5	С

Blind and through holes - Metric coarse threads, 6GX

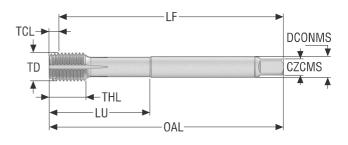


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 6GX
 For cutting data see page(s) 264

To cutting data see page(s) 20	, ·												
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN01C06-12X1.75-62R	10139264	M12	1,75	3,9 0.154	18,0 <i>0.709</i>	83 3.268	106,1 <i>4.177</i>	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	11,25 0.443	5	С
T33-FSN01C06-14X2-62R	10139265	M14	2,0	4,77 0.188	20,0 <i>0</i> .787	81 3.189	105,23 <i>4.14</i> 3	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	13,1 <i>0.516</i>	6	С
T33-FSN01C06-16X2-62R	10139266	M16	2,0	5,88 0.231	20,0 <i>0</i> .787	81 3.189	104,12 <i>4.0</i> 99	110,0 <i>4.331</i>	11,0 <i>0.4</i> 33	11.00X9.00	15,1 <i>0.594</i>	6	С
T33-FSN01C06-18X2.5-62R	10139267	M18	2,5	5,47 0.215	25,0 0.984	81 3.189	119,53 <i>4.706</i>	125,0 4.921	14,0 0.551	14.00X11.00	16,85 <i>0.663</i>	6	С
T33-FSN01C06-20X2.5-62R	10139268	M20	2,5	6,68 0.263	25,0 0.984	95 3.740	133,32 5.249	140,0 5.512	16,0 <i>0.630</i>	16.00X12.00	18,85 <i>0.742</i>	6	С

T33-FSNC

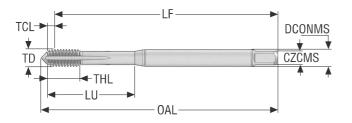
Blind and through holes - MF threads


- Substrate: HSSE-PM
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN02C03-4X0.5-65R	10139217	MF4X0.5	0,5	1,4 0.055	7,0 0.276	21 0.827	61,6 2.425	64,6 2.543	4,5 0.177	4.50X3.40	3,8 0.150	5	С
T33-FSN02C03-5X0.5-65R	10139218	MF5X0.5	0,5	1,2 0.047	8,0 <i>0.315</i>	25 0.984	68,8 2.709	72,0 2.835	6,0 0.236	6.00X4.90	4,8 0.189	5	С
T33-FSN02C03-6X0.5-65R	10139219	MF6X0.5	0,5	1,35 0.053	10,0 <i>0.394</i>	30 1.181	78,65 3.096	82,4 3.244	6,0 0.236	6.00X4.90	5,8 0.228	5	С
T33-FSN02C03-6X0.75-65R	10139220	MF6X0.75	0,75	1,8 0.071	10,0 <i>0.394</i>	30 1.181	78,2 3.079	82,4 3.244	6,0 0.236	6.00X4.90	5,7 0.224	5	С
T33-FSN02C03-8X1-65R	10139221	MF8X1	1,0	2,25 0.089	13,0 <i>0.512</i>	35 1.378	87,75 3.455	93,3 3.673	8,0 <i>0.315</i>	8.00X6.20	7,6 0.299	5	С
T33-FSN02C03-10X1-65R	10139222	MF10X1	1,0	2,9 0.114	13,0 0.512	35 1.378	87,1 3.429	91,8 3. <i>614</i>	10,0 <i>0.394</i>	10.00X8.00	9,6 0.378	5	С
T33-FSN02C03-10X1.25-65R	10139223	MF10X1.25	1,25	3,1 <i>0.122</i>	15,0 0.591	39 1.535	96,9 3.815	101,8 <i>4.008</i>	10,0 <i>0</i> .394	10.00X8.00	9,45 0.372	5	С

T33-FSNC

Blind and through holes – MF threads

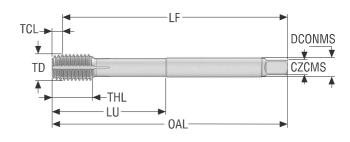


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN374
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN02C05-12X1-65R	10139224	MF12X1	1,0	3,27 0.129	10,0 <i>0.394</i>	73 2.874	96,73 3.808	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,6 <i>0.457</i>	5	С
T33-FSN02C05-12X1.25-65R	10139225	MF12X1.25	1,25	3,96 <i>0.156</i>	15,0 <i>0.591</i>	73 2.874	96,04 3.781	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,45 0.451	5	С
T33-FSN02C05-12X1.5-65R	10139226	MF12X1.5	1,5	4,15 0.163	15,0 <i>0.591</i>	73 2.874	95,85 3.774	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,35 0.447	5	С
T33-FSN02C05-16X1.5-65R	10139227	MF16X1.5	1,5	4,33 0.170	15,0 <i>0.591</i>	71 2.795	95,67 3.767	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	15,35 0.604	6	С
T33-FSN02C05-18X1.5-65R	10139228	MF18X1.5	1,5	4,4 0.173	17,0 <i>0.66</i> 9	66 2.598	105,6 <i>4.157</i>	110,0 <i>4.331</i>	14,0 0.551	14.00X11.00	17,35 0.683	6	С
T33-FSN02C05-20X1.5-65R	10139229	MF20X1.5	1,5	4,6 0.181	17,0 <i>0.669</i>	80 3.150	120,4 4.740	125,0 4.921	16,0 <i>0.630</i>	16.00X12.00	19,35 <i>0.762</i>	6	С

T33-FSNC

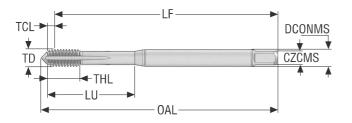
Blind and through holes – UNC threads



- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 2BX
 For cutting data see page(s) 264

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN08C03-5-40-22R	10139230	UNC5-40	3,175 0.125	40.0	1,6 0.063	7,0 0.276	18 <i>0.70</i> 9	54,4 2.142	57,2 2.252	3,5 0.138	3.50X2.70	2,9 0.114	3	С
T33-FSN08C03-6-32-22R	10139231	UNC6-32	3,505 0.138	32.0	1,8 0.071	6,0 0.236	20 0.787	54,2 2.134	57,4 2.260	4,0 0.157	4.00X3.00	3,15 <i>0.124</i>	3	С
T33-FSN08C03-8-32-22R	10139232	UNC8-32	4,166 <i>0.164</i>	32.0	2,0 0.079	7,0 0.276	21 0.827	61,0 2.402	64,6 2.543	4,5 0.177	4.50X3.40	3,8 0.150	5	С
T33-FSN08C03-10-24-22R	10139233	UNC10-24	4,826 0.190	24.0	2,7 0.106	8,0 0.315	25 0.984	67,3 2.650	72,0 2.835	6,0 0.236	6.00X4.90	4,35 0.171	5	С
T33-FSN08C03-12-24-22R	10139234	UNC12-24	5,486 0.216	24.0	2,7 0.106	10,0 0.394	30 1.181	77,3 3.043	82,4 3.244	6,0 0.236	6.00X4.90	5,0 0.197	5	С
T33-FSN08C03-1/4-20-22R	10139235	UNC1/4-20	6,35 0.250	20.0	3,9 0.154	13,0 0.512	30 1.181	76,1 2.996	80,0 3.150	7,0 0.276	7.00X5.50	5,75 0.226	5	С
T33-FSN08C03-5/16-18-22R	10139236	UNC5/16-18	7,937 0.312	18.0	3,6 0.142	13,0 0.512	35 1.378	86,4 3.402	93,3 3.673	8,2 0.323	8.20X6.20	7,3 0.287	5	С
T33-FSN08C03-3/8-16-22R	10139237	UNC3/8-16	9,525 0.375	16.0	4,74 0.187	15,0 0.591	39 1.535	95,26 3.750	100,0 3.937	10,0 0.394	10.00X8.00	8,8 0.346	5	С

Blind and through holes- UNC threads

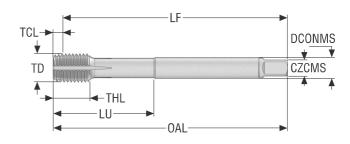


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN376
 Thread tolerance class: 2BX
 For cutting data see page(s) 264

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN08C06-7/16-14-22R	10139238	UNC7/16-14	11,112 <i>0.437</i>	14.0	5,4 0.213	15,0 0.591	76 2.992	94,6 3.724	100,0 3.937	8,0 0.315	8.00X6.20	10,25 0.404	5	С
T33-FSN08C06-1/2-13-22R	10139239	UNC1/2-13	12,7 0.500	13.0	5,8 0.228	18,0 0.709	83 3.268	104,2 4.102	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	11,8 0.465	5	С
T33-FSN08C06-5/8-11-22R	10139240	UNC5/8-11	15,875 <i>0.625</i>	11.0	6,8 0.268	20,0 0.787	81 3.189	103,2 4.063	110,0 <i>4.331</i>	11,0 0.433	11.00X9.00	14,8 <i>0.5</i> 83	6	С

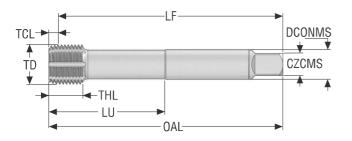
T33-FSNC

Blind and through holes - UNF threads


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN371
 Thread tolerance class: 2BX
 For cutting data see page(s) 264

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN09C03-5-44-22R	10139241	UNF5-44	3,175 0.125	44.0	1,4 0.055	7,0 0.276	18 <i>0.70</i> 9	54,6 2.150	57,2 2.252	3,5 0.138	3.50X2.70	2,92 0.115	3	С
T33-FSN09C03-6-40-22R	10139242	UNF6-40	3,505 0.138	40.0	1,6 0.063	6,0 0.236	20 0.787	54,4 2.142	57,4 2.260	4,0 0.157	4.00X3.00	3,22 0.127	3	С
T33-FSN09C03-8-36-22R	10139243	UNF8-36	4,166 <i>0.164</i>	36.0	1,8 0.071	7,0 0.276	21 0.827	61,2 2.409	64,6 2.543	4,5 0.177	4.50X3.40	3,85 0.152	5	С
T33-FSN09C03-10-32-22R	10139244	UNF10-32	4,826 0.190	32.0	1,9 0.075	8,0 0.315	25 0.984	68,1 2.681	72,0 2.835	6,0 0.236	6.00X4.90	4,45 0.175	5	С
T33-FSN09C03-12-28-22R	10139245	UNF12-28	5,486 0.216	28.0	1,9 0.075	10,0 0.394	30 1.181	78,1 3.075	82,4 3.244	6,0 0.236	6.00X4.90	5,1 0.201	5	С
T33-FSN09C03-1/4-28-22R	10139246	UNF1/4-28	6,35 0.250	28.0	2,23 0.088	10,0 0.394	30 1.181	77,77 3.062	82,4 3.244	7,0 0.276	7.00X5.50	5,95 0.234	5	С
T33-FSN09C03-5/16-24-22R	10139247	UNF5/16-24	7,937 0.312	24.0	2,6 0.102	13,0 0.512	35 1.378	87,4 3.441	93,3 3.673	8,0 <i>0.315</i>	8.00X6.20	7,45 0.293	5	С
T33-FSN09C03-3/8-24-22R	10139248	UNF3/8-24	9,525 0.375	24.0	3,5 0.138	15,0 0.591	35 1.378	86,5 3.406	90,0 3.543	10,0 0.394	10.00X8.00	9,05 0.356	5	С

Blind and through holes – UNF threads

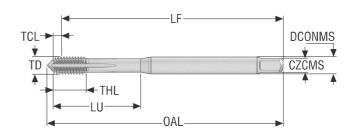


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN374
 Thread tolerance class: 2BX
 For cutting data see page(s) 264

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN09C05-7/16-20-22R	10139249	UNF7/16-20	11,112 <i>0.437</i>	20.0	3,8 0.150	15,0 0.591	76 2.992	96,2 3.787	100,0 3.937	8,0 0.315	8.00X6.20	10,55 0.415	5	С
T33-FSN09C05-1/2-20-22R	10139250	UNF1/2-20	12,7 0.500	20.0	3,8 0.150	15,0 0.591	83 3.268	106,2 4.181	110,0 <i>4.331</i>	9,0 <i>0.354</i>	9.00X7.00	12,15 0.478	5	С
T33-FSN09C05-5/8-18-22R	10139251	UNF5/8-18	15,875 <i>0.625</i>	18.0	4,7 0.185	15,0 0.591	68 2.677	105,3 4.146	110,0 <i>4.331</i>	12,0 0.472	12.00X9.00	15,25 0.600	6	С

T33-FSNC

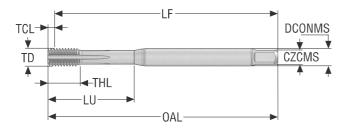
Blind and through holes - G threads


- Substrate: HSSE
 Coating: TiAIN + TiN
 Standard: DIN5156
 Thread tolerance class: NORMAL-X
 For cutting data see page(s) 264

Designation	Item number	TDZ	TD	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm Inch	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSN21C09-1/8-28-12R	10139252	G1/8	9,728 0.383	28.0	2,6 0.102	10,0 0.394	67 2.638	87,4 3.441	90,0 3.543	7,0 0.276	7.00X5.50	9,25 0.364	5	С
T33-FSN21C09-1/4-19-12R	10139253	G1/4	13,157 <i>0.518</i>	19.0	3,7 0.146	14,0 0.551	71 2.795	96,3 3.791	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	12,55 0.494	6	С
T33-FSN21C09-3/8-19-12R	10139254	G3/8	16,662 <i>0.656</i>	19.0	3,85 0.152	15,0 0.591	71 2.795	96,15 3.785	100,0 3.937	11,0 <i>0.4</i> 33	11.00X9.00	16,05 <i>0.6</i> 32	7	С
T33-FSN21C09-1/2-14-12R	10139255	G1/2	20,955 0.825	14.0	5,1 0.201	17,0 0.669	80 3.150	119,9 <i>4.720</i>	125,0 4.921	16,0 0.630	16.00X12.00	20,1 0.791	7	С
T33-FSN21C09-5/8-14-12R	10139256	G5/8	22,911 0.902	14.0	5,1 0.201	20,0 0.787	78 3.071	119,9 <i>4.720</i>	125,0 4.921	18,0 0.709	18.00X14.50	22,05 0.868	7	С
T33-FSN21C09-3/4-14-12R	10139257	G3/4	26,441 1.041	14.0	5,1 0.201	22,0 0.866	73 2.874	134,9 5.311	140,0 5.512	20,0 0.787	20.00X16.00	25,6 1.008	7	С

T33-FSCC

Blind and through holes – Metric coarse threads

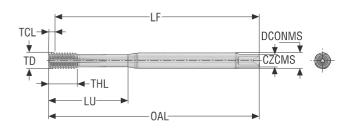


- Substrate: HSSE-PM
 Coating: TiN + TiCN
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

r or cataling data doo page(o) 2													
Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSC01C03-3X0.5-65R	10139282	M3	0,5	1,2 0.047	10,0 <i>0.394</i>	18 <i>0.709</i>	54,8 2.157	57,2 2.252	3,5 0.138	3.50X2.70	2,8 0.110	3	С
T33-FSC01C03-4X0.7-65R	10139283	M4	0,7	1,6 0.063	7,0 0.276	21 0.827	61,4 2.417	64,6 2.543	4,5 0.177	4.50X3.40	3,7 0.146	5	С
T33-FSC01C03-5X0.8-65R	10139284	M5	0,8	2,1 0.083	8,0 <i>0.315</i>	25 0.984	67,9 2.673	72,0 2.835	6,0 0.236	6.00X4.90	4,65 0.183	5	С
T33-FSC01C03-6X1-65R	10139285	M6	1,0	2,3 0.091	10,0 <i>0</i> .394	30 1.181	77,7 3.059	82,4 3.244	6,0 0.236	6.00X4.90	5,6 0.220	5	С
T33-FSC01C03-8X1.25-65R	10139286	M8	1,25	3,1 <i>0.122</i>	13,0 <i>0.512</i>	35 1.378	86,9 3.421	93,3 3.673	8,0 0.315	8.00X6.20	7,45 0.293	5	С
T33-FSC01C03-10X1.5-65R	10139287	M10	1,5	3,5 0.138	15,0 0.591	39 1.535	96,5 3.799	101,8 <i>4.008</i>	10,0 <i>0.</i> 394	10.00X8.00	9,35 0.368	5	С

T33-FSCE

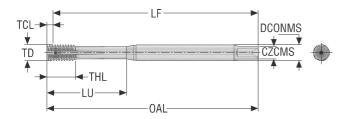
Blind and through holes - Metric coarse threads


- Substrate: HSSE-PM
 Coating: TiN + TiCN
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSC01E03-3X0.5-65R	10139288	M3	0,5	1,2 0.047	10,0 <i>0.</i> 39 <i>4</i>	18 <i>0.70</i> 9	54,8 2.157	57,2 2.252	3,5 0.138	3.50X2.70	2,8 0.110	3	Е
T33-FSC01E03-4X0.7-65R	10139289	M4	0,7	1,6 0.063	7,0 0.276	21 0.827	61,4 2.417	63,0 2.480	4,5 0.177	4.50X3.40	3,7 0.146	5	Е
T33-FSC01E03-5X0.8-65R	10139290	M5	0,8	1,5 <i>0.059</i>	8,0 0.315	25 0.984	68,5 2.697	70,0 2.756	6,0 0,236	6.00X4.90	4,65 0.183	5	Е

T33A-FSCE

Blind holes - Metric coarse threads

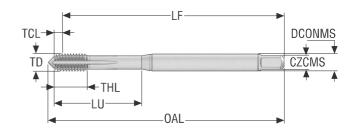


- Internal coolant
 Substrate: HSSE-PM
 Coating: TIN + TICN
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33A-FSC01E03-5X0.8-65R	10139294	M5	0,8	1,7 0.067	8,0 0.315	25 0.984	68,3 2.689	70,0 2.756	6,0 0.236	6.00X4.90	4,65 0.183	5	Е
T33A-FSC01E03-6X1-65R	10139295	M6	1,0	1,95 0.077	10,0 <i>0.394</i>	30 1.181	78,05 3.073	80,0 3.150	6,0 0.236	6.00X4.90	5,6 0.220	5	Е
T33A-FSC01E03-8X1.25-65R	10139296	M8	1,25	2,55 0.100	13,0 0.512	35 1.378	87,45 3.443	90,0 3.543	8,0 0.315	8.00X6.20	7,45 0.293	5	E
T33A-FSC01E03-10X1.5-65R	10139297	M10	1,5	2,84 0.112	15,0 <i>0.591</i>	39 1.535	97,16 3.825	100,0 3.937	10,0 <i>0.</i> 39 <i>4</i>	10.00X8.00	9,35 <i>0.368</i>	5	Е

T33B-FSCE

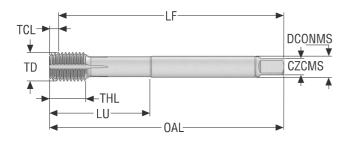
Through holes - Metric coarse threads


- Internal coolant
 Substrate: HSSE-PM
 Coating: TiN + TiCN
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	тнснт
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33B-FSC01E03-5X0.8-65R	10139298	M5	0,8	1,57 0.062	8,0 0.315	25 0.984	68,43 2.694	70,0 2.756	6,0 0.236	6.00X4.90	4,65 0.183	5	Е
T33B-FSC01E03-6X1-65R	10139299	M6	1,0	1,95 0.077	10,0 <i>0.394</i>	30 1.181	78,05 3.073	80,0 3.150	6,0 0.236	6.00X4.90	5,6 0.220	5	Е
T33B-FSC01E03-8X1.25-65R	10139300	M8	1,25	2,42 0.095	13,0 0.512	35 1.378	87,58 3.448	90,0 3.543	8,0 0.315	8.00X6.20	7,45 0.293	5	E
T33B-FSC01E03-10X1.5-65R	10139301	M10	1,5	2,84 0.112	15,0 0.591	39 1.535	97,16 3.825	100,0 3.937	10,0 <i>0.394</i>	10.00X8.00	9,35 0.368	5	Е

T33-FSCC

Blind and through holes – MF threads

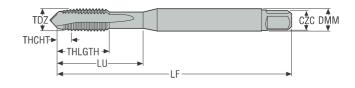


- Substrate: HSSE-PM
 Coating: TiN + TiCN
 Standard: DIN371
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

Designation	Item number	TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSC02C03-4X0.5-65R	10139269	MF4X0.5	0,5	1,4 0.055	7,0 0.276	21 0.827	61,6 2.425	64,6 2.543	4,5 0.177	4.50X3.40	3,8 0.150	5	С
T33-FSC02C03-5X0.5-65R	10139270	MF5X0.5	0,5	1,2 0.047	8,0 <i>0.315</i>	25 0.984	68,8 2.709	72,0 2.835	6,0 0.236	6.00X4.90	4,8 0.189	5	С
T33-FSC02C03-6X0.5-65R	10139271	MF6X0.5	0,5	1,35 0.053	10,0 <i>0.394</i>	30 1.181	78,65 3.096	82,4 3.244	6,0 0.236	6.00X4.90	5,8 0.228	5	С
T33-FSC02C03-6X0.75-65R	10139272	MF6X0.75	0,75	1,8 0.071	10,0 <i>0.394</i>	30 1.181	78,2 3.079	82,4 3.244	6,0 0.236	6.00X4.90	5,7 0.224	5	С
T33-FSC02C03-8X1-65R	10139273	MF8X1	1,0	2,25 0.089	13,0 <i>0.512</i>	35 1.378	87,75 3.455	93,3 3.673	8,0 0.315	8.00X6.20	7,6 0.299	5	С
T33-FSC02C03-10X1-65R	10139274	MF10X1	1,0	2,9 0.114	13,0 <i>0.512</i>	35 1.378	87,1 3.429	91,8 3. <i>614</i>	10,0 <i>0.394</i>	10.00X8.00	9,6 0.378	5	С
T33-FSC02C03-10X1.25-65R	10139275	MF10X1.25	1,25	4,0 0.157	15,0 0.591	39 1.535	96,0 3.780	101,8 <i>4.008</i>	10,0 <i>0</i> .394	10.00X8.00	9,45 0.372	5	С

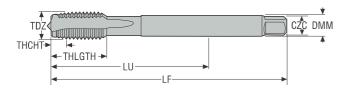
T33-FSCC

Blind and through holes - MF threads



- Substrate: HSSE
 Coating: TiN + TiCN
 Standard: DIN374
 Thread tolerance class: 6HX
 For cutting data see page(s) 264

Designation	Item number	· TDZ	Pitch	TCL	THL	LU	LF	OAL	DCONMS	CZCMS	PHDR Ø	NOF	THCHT
			mm	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		mm Inch		
T33-FSC02C05-12X1-65R	10139276	MF12X1	1,0	3,27 0.129	10,0 <i>0.394</i>	73 2.874	96,73 3.808	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,6 <i>0.457</i>	5	С
T33-FSC02C05-12X1.25-65R	10139277	MF12X1.25	1,25	3,96 <i>0.156</i>	15,0 <i>0.591</i>	73 2.874	96,04 3.781	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,45 0.451	5	С
T33-FSC02C05-12X1.5-65R	10139278	MF12X1.5	1,5	4,2 0.165	15,0 <i>0.591</i>	73 2.874	95,8 3.772	100,0 3.937	9,0 <i>0.354</i>	9.00X7.00	11,35 <i>0.447</i>	5	С
T33-FSC02C05-16X1.5-65R	10139279	MF16X1.5	1,5	4,33 0.170	15,0 <i>0.591</i>	71 2.795	95,67 3.767	100,0 3.937	11,0 0.433	11.00X9.00	15,35 0.604	5	С
T33-FSC02C05-18X1.5-65R	10139280	MF18X1.5	1,5	4,4 0.173	17,0 <i>0.669</i>	66 2.598	105,6 <i>4.15</i> 7	110,0 <i>4.331</i>	14,0 0.551	14.00X11.00	17,35 0.683	5	С
T33-FSC02C05-20X1.5-65R	10139281	MF20X1.5	1,5	4,6 0.181	17,0 <i>0</i> .669	80 3.150	120,4 4.740	125,0 <i>4.</i> 921	16,0 0.630	16.00X12.00	19,35 0.762	5	С

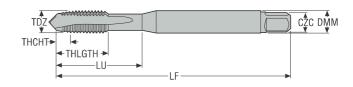


- For cutting data see page(s) 268Coating: TiAINSubstrate: HSS-E-PM

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M3X0.50ISO6H-TB-P001	02999886	M3	0,5	-	4,5 0.177	12,0 <i>0.472</i>	12,0 <i>0.4</i> 72	61,625 2.426	2,5 0.098	4.50X3.40	3	SECO-DIN	6H	В
MTP-M4X0.70ISO6H-TB-P001	02999887	M4	0,7	-	6,0 0.236	13,0 <i>0.512</i>	13,0 0.512	68,075 2.680	3,4 0.134	6.00X4.90	3	SECO-DIN	6H	В
MTP-M5X0.80ISO6H-TB-P001	02999888	M5	0,8	-	6,0 0.236	15,0 <i>0.591</i>	15,0 0.591	76,3 3.004	4,3 0.169	6.00X4.90	3	SECO-DIN	6H	В
MTP-M6X1.00ISO6H-TB-P001	02999889	M6	1,0	-	8,0 0.315	18,0 <i>0.70</i> 9	18,0 <i>0.709</i>	85,375 3.361	5,1 0.201	8.00X6.20	3	SECO-DIN	6H	В
MTP-M8X1.25ISO6H-TB-P001	02999890	M8	1,25	-	10,0 <i>0.394</i>	20,0 0.787	20,0 0.787	94,21875 3.709	6,8 0.268	10.00X8.00	3	SECO-DIN	6H	В
MTP-M10X1.50ISO6H-TB-P001	02999891	M10	1,5	-	10,0 0.394	39,0 1.535	20,0 <i>0.787</i>	95,875 3.775	8,6 0.339	10.00X8.00	3	SECO-DIN	6H	В

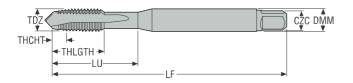
Through holes

SECO I



- For cutting data see page(s) 268Coating: TiAINSubstrate: HSS-E-PM

Designation	Item number	TDZ	Pit	:ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M12X1.75ISO6H-TB-P002	02999892	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	105,1875 <i>4.141</i>	10,4 0.409	9.00X7.00	4	DIN376	6H	В
MTP-M14X2.00ISO6H-TB-P002	02999893	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	104,5 <i>4.114</i>	12,1 0.476	11.00X9.00	4	DIN376	6H	В
MTP-M16X2.00ISO6H-TB-P002	02999894	M16	2,0	-	12,0 <i>0.4</i> 72	68,0 2.677	25,0 0.984	104,5 <i>4.114</i>	14,1 0.555	12.00X9.00	4	DIN376	6H	В
MTP-M18X2.50ISO6H-TB-P002	02999895	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	112,63 <i>4.434</i>	15,7 0.618	14.00X11.00	4	DIN376	6H	В
MTP-M20X2.50ISO6H-TB-P002	02999896	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	30,0 1.181	133,125 5.241	17,7 0.697	16.00X12.00	4	DIN376	6H	В


- For cutting data see page(s) 268Coating: AlTiN-basedSubstrate: HSS-E-PM

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M1X0.25ISO5HX-TB-P003	02999897	M1	0,25	-	2,5 0.098	20,0 <i>0.787</i>	5,0 0.197	38,87 1.530	0,75 0.030	2.50X2.10	2	DIN371	5HX	В
MTP-M1.2X0.25ISO5HX-TB-P003	02999898	M1.2	0,25	-	2,5 0.098	20,0 0.787	5,0 0.197	38,87 1.530	0,95 0.037	2.50X2.10	2	DIN371	5HX	В
MTP-M1.4X0.30ISO5HX-TB-P003	02999899	M1.4	0,3	-	2,5 0.098	20,0 0.787	6,5 0.256	38,65 1.522	1,1 0.043	2.50X2.10	2	DIN371	5HX	В
MTP-M1.6X0.35ISO6HX-TB-P003	02999900	M1.6	0,35	-	2,5 0.098	12,5 0.492	7,0 0.276	38,42 1.513	1,3 0.051	2.50X2.10	2	DIN371	6HX	В
MTP-M1.8X0.35ISO6HX-TB-P003	02999901	M1.8	0,35	-	2,5 0.098	20,0 <i>0.787</i>	7,0 0.276	38,42 1.513	1,5 0.059	2.50X2.10	2	DIN371	6HX	В
MTP-M2X0.40ISO6HX-TB-P003	02999902	M2	0,4	-	2,8 0.110	9,0 <i>0.354</i>	6,0 0.236	43,2 1.701	1,6 0.063	2.80X2.10	2	DIN371	6HX	В
MTP-M2.2X0.45ISO6HX-TB-P003	02999903	M2.2	0,45	-	2,8 0.110	12,0 0.472	7,0 0.276	42,97 1.692	1,8 0.071	2.80X2.10	2	DIN371	6HX	В
MTP-M2.3X0.40ISO6HX-TB-P003	02999904	M2.3	0,4	-	2,8 0.110	12,0 0.472	7,0 0.276	43,2 1.701	1,9 0.075	2.80X2.10	2	DIN371	6HX	В
MTP-M2.5X0.45ISO6HX-TB-P003	02999905	M2.5	0,45	-	2,8 0.110	12,5 0.492	8,0 0.315	47,97 1.889	2,1 0.083	2.80X2.10	2	DIN371	6HX	В
MTP-M2.6X0.45ISO6HX-TB-P003	02999906	M2.6	0,45	-	2,8 0.110	12,5 0.492	8,0 0.315	47,97 1.889	2,15 0.085	2.80X2.10	2	DIN371	6HX	В
MTP-M3X0.50ISO6HX-TB-P003	02999907	M3	0,5	-	3,5 0.138	18,0 <i>0.709</i>	8,9 0.350	53,6875 2.114	2,5 0.098	3.50X2.70	3	DIN371	6HX	В
MTP-M3.5X0.60ISO6HX-TB-P003	02999908	M3.5	0,6	-	4,0 0.157	20,0 0.787	10,8 0.425	53,225 2.095	2,9 0.114	4.00X3.00	3	DIN371	6HX	В
MTP-M4X0.70ISO6HX-TB-P003	02999909	M4	0,7	-	4,5 0.177	21,0 0.827	11,7 0.461	59,7625 2.353	3,4 0.134	4.50X3.40	3	DIN371	6HX	В
MTP-M5X0.80ISO6HX-TB-P003	02999910	M5	0,8	-	6,0 0.236	25,0 0.984	12,6 0.496	66,3 2.610	4,3 0.169	6.00X4.90	3	DIN371	6HX	В
MTP-M6X1.00ISO6HX-TB-P003	02999911	M6	1,0	-	6,0 0.236	30,0 1.181	14,5 0.571	75,375 2.968	5,1 0.201	6.00X4.90	3	DIN371	6HX	В
MTP-M7X1.00ISO6HX-TB-P003	02999912	M7	1,0	-	7,0 0.276	30,0 1.181	14,5 0.571	78,275 3.082	6,1 0.240	7.00X5.50	3	DIN371	6HX	В
MTP-M8X1.25ISO6HX-TB-P003	02999913	M8	1,25	-	8,0 0.315	35,0 1.378	17,4 0.685	84,21875 3.316	6,8 0.268	8.00X6.20	3	DIN371	6HX	В
MTP-M10X1.50ISO6HX-TB-P003	02999914	M10	1,5	-	10,0 0.394	39,0 1.535	19,2 0.756	93,0625 3.664	8,6 0.339	10.00X8.00	3	DIN371	6HX	В

MTP-M10X1.50ISO6HX-TB-P003-A

MTP-P003-A

Through holes

02999934

M10

1,5

- For cutting data see page(s) 268Coating: AlTiN-basedSubstrate: HSS-E-PM

- Internal coolant

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M4X0.70ISO6HX-TB-P003-A	02999929	M4	0,7	-	4,5 0.177	21,0 0.827	11,7 <i>0.461</i>	59,73 2.352	3,4 0.134	4.50X3.40	3	DIN371	6HX	В
MTP-M5X0.80ISO6HX-TB-P003-A	02999930	M5	0,8	-	6,0 0.236	25,0 0.984	12,6 0.496	66,35 2.612	4,3 0.169	6.00X4.90	3	DIN371	6HX	В
MTP-M6X1.00ISO6HX-TB-P003-A	02999931	M6	1,0	-	6,0 0.236	30,0 1.181	14,5 0.571	75,51 2.973	5,1 0.201	6.00X4.90	3	DIN371	6HX	В
MTP-M7X1.00ISO6HX-TB-P003-A	02999932	M7	1,0	-	7,0 0.276	30,0 1.181	14,5 0.571	75,51 2.973	6,1 0.240	7.00X5.50	3	DIN371	6HX	В
MTP-M8X1.25ISO6HX-TB-P003-A	02999933	M8	1,25	-	8,0 0.315	35,0 1.378	17,4 0.685	84,48 3.326	6,8 0.268	8.00X6.20	3	DIN371	6HX	В

39,0

1.535

93,46 3.680

8,6

0.339

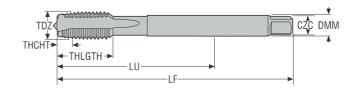
10.00X8.00

3

DIN371

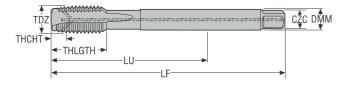
6HX

В


19,2

0.756

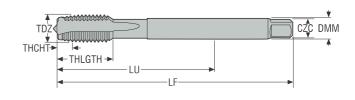
10,0 *0.*39*4*



- For cutting data see page(s) 268Coating: AITiN-basedSubstrate: HSS-E-PM

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M4X0.70ISO6HX-TB-P004	02999915	M4	0,7	-	2,8 0.110	43,0 1.693	12,0 0.472	59,7625 2.353	3,4 0.134	2.80X2.10	3	DIN376	6HX	В
MTP-M5X0.80ISO6HX-TB-P004	02999916	M5	0,8	-	3,5 0.138	49,0 1.929	13,2 0.520	66,3 2.610	4,3 0.169	3.50X2.70	3	DIN376	6HX	В
MTP-M6X1.00ISO6HX-TB-P004	02999917	M6	1,0	-	4,5 0.177	59,0 2.323	15,1 0.594	75,375 2.968	5,1 0.201	4.50X3.40	3	DIN376	6HX	В
MTP-M8X1.25ISO6HX-TB-P004	02999918	M8	1,25	-	6,0 0.236	67,0 2.638	18,0 0.709	84,21875 3.316	6,8 0.268	6.00X4.90	3	DIN376	6HX	В
MTP-M10X1.50ISO6HX-TB-P004	02999919	M10	1,5	-	7,0 0.276	77,0 3.031	19,8 <i>0.780</i>	93,0625 3.664	8,6 0.339	7.00X5.50	3	DIN376	6HX	В
MTP-M12X1.75ISO6HX-TB-P004	02999920	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	101,90625 4.012	10,4 0.409	9.00X7.00	4	DIN376	6HX	В
MTP-M14X2.00ISO6HX-TB-P004	02999921	M14	2,0	-	11,0 <i>0.433</i>	81,0 3.189	25,0 0.984	100,75 3.967	12,1 0.476	11.00X9.00	4	DIN376	6HX	В
MTP-M16X2.00ISO6HX-TB-P004	02999922	M16	2,0	-	12,0 <i>0.472</i>	68,0 2.677	25,0 0.984	100,75 3.967	14,1 0.555	12.00X9.00	4	DIN376	6HX	В
MTP-M18X2.50ISO6HX-TB-P004	02999923	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	114,46 <i>4.506</i>	15,7 0.618	14.00X11.00	4	DIN376	6HX	В
MTP-M20X2.50ISO6HX-TB-P004	02999924	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	30,0 1.181	128,4375 5.057	17,7 0.697	16.00X12.00	4	DIN376	6HX	В
MTP-M22X2.50ISO6HX-TB-P004	02999925	M22	2,5	-	18,0 <i>0.709</i>	93,0 3.661	34,0 1.339	129,36 5.093	19,7 0.776	18.00X14.50	4	DIN376	6HX	В
MTP-M24X3.00ISO6HX-TB-P004	02999926	M24	3,0	-	18,0 <i>0.709</i>	113,0 4.449	38,0 1.496	146,125 5.753	21,0 0.827	18.00X14.50	4	DIN376	6HX	В
MTP-M27X3.00ISO6HX-TB-P004	02999927	M27	3,0	-	20,0 <i>0.787</i>	97,0 3.819	38,0 1.496	147,37 5.802	24,0 0.945	20.00X16.00	4	DIN376	6HX	В
MTP-M30X3.50ISO6HX-TB-P004	02999928	M30	3,5	-	22,0 0.866	115,0 <i>4.5</i> 28	45,0 1.772	165,42 6.513	26,5 1.043	22.00X18.00	4	DIN376	6HX	В

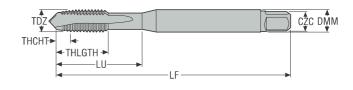
MTP-P004-A



- For cutting data see page(s) 268
 Coating: AlTiN-based
 Substrate: HSS-E-PM
 Internal coolant

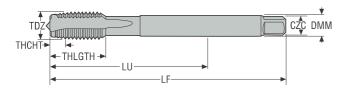
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	ТНСНТ
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M12X1.75ISO6HX-TB-P004-A	02999935	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	101,90625 <i>4.012</i>	10,4 0.409	9.00X7.00	4	DIN376	6HX	В
MTP-M14X2.00ISO6HX-TB-P004-A	02999936	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	101,41 3.993	12,1 0.476	11.00X9.00	4	DIN376	6HX	В
MTP-M16X2.00ISO6HX-TB-P004-A	02999937	M16	2,0	-	12,0 <i>0.472</i>	68,0 2.677	25,0 0.984	100,75 3.967	14,1 0.555	12.00X9.00	4	DIN376	6HX	В
MTP-M18X2.50ISO6HX-TB-P004-A	02999938	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	114,46 <i>4.506</i>	15,7 0.618	14.00X11.00	4	DIN376	6HX	В
MTP-M20X2.50ISO6HX-TB-P004-A	02999939	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	30,0 1.181	129,46 5.097	17,7 0.697	16.00X12.00	4	DIN376	6HX	В
MTP-M22X2.50ISO6HX-TB-P004-A	02999940	M22	2,5	-	18,0 <i>0.70</i> 9	93,0 3.661	34,0 1.339	129,36 5.093	19,7 0.776	18.00X14.50	4	DIN376	6HX	В
MTP-M24X3.00ISO6HX-TB-P004-A	02999941	M24	3,0	-	18,0 <i>0.70</i> 9	113,0 <i>4.44</i> 9	38,0 1.496	146,125 5.753	21,0 0.827	18.00X14.50	4	DIN376	6HX	В
MTP-M27X3.00ISO6HX-TB-P004-A	02999942	M27	3,0	-	20,0 0.787	97,0 3.819	38,0 1.496	147,37 5.802	24,0 0.945	20.00X16.00	4	DIN376	6HX	В
MTP-M30X3.50ISO6HX-TB-P004-A	02999943	M30	3,5	_	22,0 0.866	115,0 <i>4.5</i> 28	45,0 1.772	165,42 6.513	26,5 1.043	22.00X18.00	4	DIN376	6HX	В

- For cutting data see page(s) 268Coating: AlTiN-basedSubstrate: HSS-E-PM


Designation	Item number	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M4X0.50ISO6HX-TB-P011	02999944	MF4X0.5	0,5	-	2,8 0.110	43,0 1.693	12,0 0.472	60,6875 2.389	3,5 0.138	2.80X2.10	3	DIN374	6HX	В
MTP-M5X0.50ISO6HX-TB-P011	02999945	MF5X0.5	0,5	-	3,5 0.138	49,0 1.929	13,0 0.512	67,57 2.660	4,5 0.177	3.50X2.70	3	DIN374	6HX	В
MTP-M6X0.75ISO6HX-TB-P011	02999946	MF6X0.75	0,75	-	4,5 0.177	59,0 2.323	15,0 0.591	76,5 3.012	5,3 0.209	4.50X3.40	3	DIN374	6HX	В
MTP-M8X0.75ISO6HX-TB-P011	02999947	MF8X0.75	0,75	-	6,0 0.236	57,0 2.244	15,0 0.591	76,43 3.009	7,3 0.287	6.00X4.90	3	DIN374	6HX	В
MTP-M8X1.00ISO6HX-TB-P011	02999948	MF8X1.0	1,0	-	6,0 0.236	67,0 2.638	18,0 <i>0.70</i> 9	85,375 3.361	7,1 0.280	6.00X4.90	3	DIN374	6HX	В
MTP-M10X0.75ISO6HX-TB-P011	02999949	MF10X0.75	0,75	-	7,0 0.276	67,0 2.638	17,6 0.693	86,42 3.402	9,3 <i>0.</i> 366	7.00X5.50	3	DIN374	6HX	В
MTP-M10X1.00ISO6HX-TB-P011	02999950	MF10X1.0	1,0	-	7,0 0.276	67,0 2.638	17,6 0.693	85,375 3.361	9,1 <i>0.358</i>	7.00X5.50	3	DIN374	6HX	В
MTP-M10X1.25ISO6HX-TB-P011	02999951	MF10X1.25	1,25	-	7,0 0.276	77,0 3.031	19,8 0.780	98,51875 3.879	8,8 0.346	7.00X5.50	3	DIN374	6HX	В
MTP-M12X1.00ISO6HX-TB-P011	02999952	MF12X1.0	1,0	-	9,0 <i>0.354</i>	73,0 2.874	21,0 0.827	95,36 3.754	11,1 0.437	9.00X7.00	4	DIN374	6HX	В
MTP-M12X1.25ISO6HX-TB-P011	02999953	MF12X1.25	1,25	-	9,0 <i>0.354</i>	73,0 2.874	21,0 0.827	94,21875 3.709	10,8 <i>0.425</i>	9.00X7.00	4	DIN374	6HX	В
MTP-M12X1.50ISO6HX-TB-P011	02999954	MF12X1.5	1,5	-	9,0 <i>0.354</i>	73,0 2.874	21,0 0.827	93,37 3.676	10,6 <i>0.417</i>	9.00X7.00	4	DIN374	6HX	В
MTP-M14X1.00ISO6HX-TB-P011	02999955	MF14X1.0	1,0	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 0.827	95,35 3.754	13,1 <i>0.516</i>	11.00X9.00	4	DIN374	6HX	В
MTP-M14X1.25ISO6HX-TB-P011	02999956	MF14X1.25	1,25	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 0.827	94,33 3.714	12,8 <i>0.504</i>	11.00X9.00	4	DIN374	6HX	В
MTP-M14X1.50ISO6HX-TB-P011	02999957	MF14X1.5	1,5	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 0.827	93,0625 3.664	12,6 <i>0.4</i> 96	11.00X9.00	4	DIN374	6HX	В
MTP-M16X1.00ISO6HX-TB-P011	02999958	MF16X1.0	1,0	-	12,0 0.472	58,0 2.283	21,0 0.827	95,35 3.754	15,1 0.594	12.00X9.00	4	DIN374	6HX	В
MTP-M16X1.50ISO6HX-TB-P011	02999959	MF16X1.5	1,5	-	12,0 <i>0.472</i>	58,0 2.283	21,0 0.827	93,0625 3.664	14,6 0.575	12.00X9.00	4	DIN374	6HX	В
MTP-M18X1.00ISO6HX-TB-P011	02999960	MF18X1.0	1,0	-	14,0 <i>0.551</i>	66,0 2.598	24,0 0.945	105,35 4.148	17,1 0.673	14.00X11.00	4	DIN374	6HX	В
MTP-M18X1.50ISO6HX-TB-P011	02999961	MF18X1.5	1,5	-	14,0 <i>0.551</i>	66,0 2.598	24,0 0.945	103,35 4.069	16,6 0.654	14.00X11.00	4	DIN374	6HX	В
MTP-M20X1.00ISO6HX-TB-P011	02999962	MF20X1.0	1,0	_	16,0 0.630	80,0 3. <i>150</i>	24,0 0.945	120,24 <i>4</i> .734	19,1 <i>0.752</i>	16.00X12.00	4	DIN374	6HX	В
MTP-M20X1.50ISO6HX-TB-P011	02999963	MF20X1.5	1,5	-	16,0 <i>0.630</i>	80,0 3.150	24,0 0.945	118,25 <i>4.656</i>	18,6 0.732	16.00X12.00	4	DIN374	6HX	В
MTP-M22X1.50ISO6HX-TB-P011	02999964	MF22X1.5	1,5	_	18,0 <i>0.709</i>	78,0 3.071	25,0 0.984	118,25 4.656	20,5 0.807	18.00X14.50	4	DIN374	6HX	В
MTP-M24X1.50ISO6HX-TB-P011	02999965	MF24X1.5	1,5	-	18,0 <i>0.70</i> 9	93,0 3.661	28,0 1.102	133,23 5.245	22,5 0.886	18.00X14.50	4	DIN374	6HX	В

Designation	Item number	TDZ	Pi	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M24X2.00ISO6HX-TB-P011	02999966	MF24X2.0	2,0	-	18,0 <i>0.709</i>	93,0 3.661	28,0 1.102	131,28 5.169	22,0 0.866	18.00X14.50	4	DIN374	6HX	В
MTP-M25X1.50ISO6HX-TB-P011	02999967	MF25X1.5	1,5	-	18,0 0.709	93,0 3.661	28,0 1.102	133,23 5.245	23,5 0.925	18.00X14.50	4	DIN374	6HX	В
MTP-M26X1.50ISO6HX-TB-P011	02999968	MF26X1.5	1,5	-	18,0 <i>0.709</i>	93,0 3.661	28,0 1.102	133,23 5.245	24,5 0.965	18.00X14.50	4	DIN374	6HX	В
MTP-M27X1.50ISO6HX-TB-P011	02999969	MF27X1.5	1,5	-	20,0 0.787	77,0 3.031	28,0 1.102	133,22 5.245	25,5 1.004	20.00X16.00	4	DIN374	6HX	В
MTP-M27X2.00ISO6HX-TB-P011	02999970	MF27X2.0	2,0	-	20,0 0.787	77,0 3.031	28,0 1.102	131,28 5.169	25,0 0.984	20.00X16.00	4	DIN374	6HX	В
MTP-M28X1.50ISO6HX-TB-P011	02999971	MF28X1.5	1,5	-	20,0 0.787	77,0 3.031	28,0 1.102	133,22 5.245	26,5 1.043	20.00X16.00	4	DIN374	6HX	В
MTP-M30X1.50ISO6HX-TB-P011	02999972	MF30X1.5	1,5	-	22,0 0.866	85,0 3.346	28,0 1.102	143,22 5.639	28,5 1.122	22.00X18.00	4	DIN374	6HX	В
MTP-M30X2.00ISO6HX-TB-P011	02999973	MF30X2.0	2,0	-	22,0 0.866	85,0 3.346	28,0 1.102	141,27 5.562	28,0 1.102	22.00X18.00	4	DIN374	6HX	В

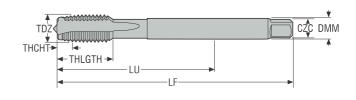
MTP-M003-A



- For cutting data see page(s) 270
 Coating: TiCN
 Substrate: HSS-E
 Internal coolant

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M4X0.70ISO6H-TB-M003-A	03000094	M4	0,7	-	4,5 0.177	21,0 0.827	11,7 0.461	59,82 2.355	3,4 0.134	4.50X3.40	3	DIN371	6H	В
MTP-M5X0.80ISO6H-TB-M003-A	03000095	M5	0,8	-	6,0 0.236	25,0 0.984	12,6 0.496	66,4 2.614	4,3 0.169	6.00X4.90	3	DIN371	6H	В
MTP-M6X1.00ISO6H-TB-M003-A	03000096	M6	1,0	-	6,0 0.236	30,0 1.181	14,5 0.571	75,375 2.968	5,1 0.201	6.00X4.90	3	DIN371	6H	В
MTP-M8X1.25ISO6H-TB-M003-A	03000097	M8	1,25	-	8,0 0.315	35,0 1.378	17,4 0.685	84,21875 3.316	6,8 0.268	8.00X6.20	3	DIN371	6H	В
MTP-M10X1.50ISO6H-TB-M003-A	03000098	M10	1,5	-	10,0 <i>0</i> .39 <i>4</i>	39,0 1.535	19,2 0.756	93,0625 3.664	8,6 0.339	10.00X8.00	3	DIN371	6H	В

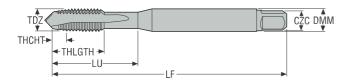
MTP-M004



- For cutting data see page(s) 270
 Coating: TiCN
 Substrate: HSS-E
 Internal coolant

Designation	Item number	TDZ	Pit	:ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M12X1.75ISO6H-TB-M004	03000087	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	101,90625 <i>4.012</i>	10,4 0.409	9.00X7.00	4	DIN376	6H	В
MTP-M14X2.00ISO6H-TB-M004	03000088	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	100,75 3.967	12,1 0.476	11.00X9.00	4	DIN376	6H	В
MTP-M16X2.00ISO6H-TB-M004	03000090	M16	2,0	-	12,0 <i>0.472</i>	68,0 2.677	25,0 0.984	100,75 3.967	14,1 0.555	12.00X9.00	4	DIN376	6H	В
MTP-M18X2.50ISO6H-TB-M004	03000091	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	113,4375 <i>4.466</i>	15,7 0.618	14.00X11.00	4	DIN376	6H	В
MTP-M20X2.50ISO6H-TB-M004	03000092	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	30,0 1.181	128,4375 5.057	17,7 0.697	16.00X12.00	4	DIN376	6H	В

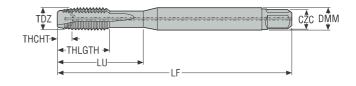
MTP-M004-A



- For cutting data see page(s) 270
 Coating: TiCN
 Substrate: HSS-E
 Internal coolant

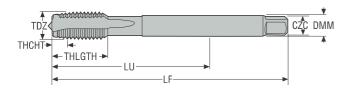
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M12X1.75ISO6H-TB-M004-A	03000099	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	101,90625 <i>4.012</i>	10,4 0.409	9.00X7.00	4	DIN376	6H	В
MTP-M14X2.00ISO6H-TB-M004-A	03000100	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	101,14 3.982	12,1 0.476	11.00X9.00	4	DIN376	6H	В
MTP-M16X2.00ISO6H-TB-M004-A	03000101	M16	2,0	-	12,0 <i>0.4</i> 72	68,0 2.677	25,0 0.984	101,05 3.978	14,1 0.555	12.00X9.00	4	DIN376	6H	В
MTP-M18X2.50ISO6H-TB-M004-A	03000102	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	114,15 <i>4.4</i> 94	15,7 0.618	14.00X11.00	4	DIN376	6H	В
MTP-M20X2.50ISO6H-TB-M004-A	03000103	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	30,0 1.181	129,15 5.085	17,7 0.697	16.00X12.00	4	DIN376	6H	В
MTP-M22X2.50ISO6H-TB-M004-A	03000104	M22	2,5	-	18,0 <i>0.70</i> 9	93,0 3.661	34,0 1.339	129,53 <i>5.100</i>	19,7 <i>0.776</i>	18.00X14.50	4	DIN376	6H	В
MTP-M24X3.00ISO6H-TB-M004-A	03000105	M24	3,0	-	18,0 <i>0.70</i> 9	113,0 <i>4.44</i> 9	38,0 1.496	147,58 <i>5.810</i>	21,0 0.827	18.00X14.50	4	DIN376	6H	В

MTP-N001


- For cutting data see page(s) 272Coating: BRIGHTSubstrate: HSS-E

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M3X0.50ISO6H-TB-N001	03000136	M3	0,5	-	3,5 0.138	16,0 <i>0.630</i>	9,0 <i>0.354</i>	54,625 2.151	2,5 0.098	3.50X2.70	2	DIN371	6H	В
MTP-M4X0.70ISO6H-TB-N001	03000137	M4	0,7	-	4,5 0.177	19,0 <i>0.748</i>	12,0 0.472	59,85 2.356	3,4 0.134	4.50X3.40	2	DIN371	6H	В
MTP-M5X0.80ISO6H-TB-N001	03000138	M5	8,0	-	6,0 0.236	23,0 0.906	13,0 0.512	66,4 2.614	4,3 0.169	6.00X4.90	2	DIN371	6H	В
MTP-M6X1.00ISO6H-TB-N001	03000139	M6	1,0	-	6,0 <i>0</i> .236	27,0 1.063	15,0 0.591	75,375 2.968	5,1 0.201	6.00X4.90	3	DIN371	6H	В
MTP-M8X1.25ISO6H-TB-N001	03000140	M8	1,25	-	8,0 <i>0.315</i>	28,0 1.102	18,0 0.709	84,21875 3.316	6,8 0.268	8.00X6.20	3	DIN371	6H	В
MTP-M10X1.50ISO6H-TB-N001	03000141	M10	1,5	-	10,0 <i>0.394</i>	30,0 1.181	20,0 0.787	93,25 3.671	8,6 0.339	10.00X8.00	3	DIN371	6H	В

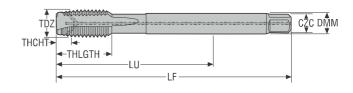
MTP-N001-A



- For cutting data see page(s) 272
 Coating: BRIGHT
 Substrate: HSS-PM
 Internal coolant

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M4X0.70ISO6H-TB-N001-A	03000145	M4	0,7	-	4,5 0.177	19,0 <i>0.74</i> 8	12,0 <i>0.472</i>	59,85 2.356	3,4 0.134	4.50X3.40	2	DIN371	6H	В
MTP-M5X0.80ISO6H-TB-N001-A	03000146	M5	0,8	-	6,0 0.236	23,0 0.906	13,0 <i>0.512</i>	66,4 2.614	4,3 0.169	6.00X4.90	2	DIN371	6H	В
MTP-M6X1.00ISO6H-TB-N001-A	03000147	M6	1,0	-	6,0 0.236	27,0 1.063	15,0 <i>0.591</i>	75,5 2.972	5,1 0.201	6.00X4.90	3	DIN371	6H	В
MTP-M8X1.25ISO6H-TB-N001-A	03000148	M8	1,25	-	8,0 <i>0.315</i>	28,0 1.102	18,0 0.709	84,37 3.322	6,8 0.268	8.00X6.20	3	DIN371	6H	В
MTP-M10X1.50ISO6H-TB-N001-A	03000149	M10	1,5	-	10,0 <i>0.394</i>	30,0 1.181	20,0 0.787	93,25 3.671	8,6 0.339	10.00X8.00	3	DIN371	6H	В

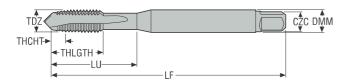
MTP-N002



- For cutting data see page(s) 272Coating: BRIGHTSubstrate: HSS-E

Designation	ltem number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M12X1.75ISO6H-TB-N002	03000142	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	102,1 4.020	10,4 0.409	9.00X7.00	3	DIN376	6H	В
MTP-M14X2.00ISO6H-TB-N002	03000143	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	101,0 3.976	12,1 0.476	11.00X9.00	4	DIN376	6H	В
MTP-M16X2.00ISO6H-TB-N002	03000144	M16	2,0	-	12,0 0.472	68,0 2.677	25,0 0.984	101,0 3.976	14,1 0.555	12.00X9.00	4	DIN376	6H	В

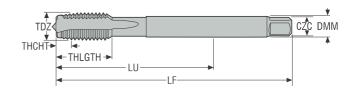
MTP-N002-A



- For cutting data see page(s) 272
 Coating: BRIGHT
 Substrate: HSS-PM
 Internal coolant

Designation	Item number	TDZ	Pite	ch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M12X1.75ISO6H-TB-N002-A	03000150	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	102,1 <i>4.020</i>	10,4 <i>0.409</i>	9.00X7.00	3	DIN376	6H	В
MTP-M14X2.00ISO6H-TB-N002-A	03000151	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	101,0 3.976	12,1 0.476	11.00X9.00	4	DIN376	6H	В
MTP-M16X2.00ISO6H-TB-N002-A	03000152	M16	2,0	-	12,0 0.472	68,0 2.677	25,0 0.984	101,0 3.976	14,1 0.555	12.00X9.00	4	DIN376	6H	В

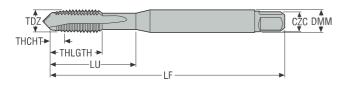
MTP-S001



- For cutting data see page(s) 278Coating: AICrNSubstrate: HSS-E-PM

									Oubstrate					
Designation	Item number	TDZ	Pite	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M2X0.40ISO6HX-TB-S001	10001159	M2	0,4	-	2,8 0.110	8,0 <i>0.315</i>	8,0 <i>0.315</i>	43,2 1.701	1,6 <i>0.06</i> 3	2.80X2.10	2	DIN371	6HX	В
MTP-M2.5X0.45ISO6HX-TB-S001	10001161	M2.5	0,45	-	2,8 0.110	9,0 0.354	9,0 <i>0.354</i>	47,97 1.889	2,1 0.083	2.80X2.10	2	DIN371	6HX	В
MTP-M3X0.50ISO6HX-TB-S001	10001162	M3	0,5	-	3,5 0.138	10,0 <i>0.394</i>	10,0 0.394	53,75 2.116	2,5 0.098	3.50X2.70	2	DIN371	6HX	В
MTP-M3.5X0.60ISO6HX-TB-S001	10001163	M3.5	0,6	-	4,0 0.157	12,0 0.472	12,0 0.472	53,3 2.098	2,9 0.114	4.00X3.00	3	DIN371	6HX	В
MTP-M4X0.70ISO6HX-TB-S001	10001164	M4	0,7	-	4,5 0.177	13,0 <i>0.512</i>	13,0 0.512	59,85 2.356	3,4 0.134	4.50X3.40	3	DIN371	6HX	В
MTP-M5X0.80ISO6HX-TB-S001	10001165	M5	0,8	-	6,0 0.236	16,0 0.630	16,0 0.630	66,4 2.614	4,3 0.169	6.00X4.90	3	DIN371	6HX	В
MTP-M6X1.00ISO6HX-TB-S001	10001166	M6	1,0	-	6,0 <i>0.236</i>	23,0 0.906	15,0 0.591	75,5 2.972	5,1 0.201	6.00X4.90	3	DIN371	6HX	В
MTP-M8X1.25ISO6HX-TB-S001	10001167	M8	1,25	-	8,0 <i>0.315</i>	29,5 1.161	18,0 0.709	84,37 3.322	6,8 0.268	8.00X6.20	3	DIN371	6HX	В
MTP-M10X1.50ISO6HX-TB-S001	10001168	M10	1,5	-	10,0 <i>0.</i> 394	33,5 1.319	20,0 0.787	93,25 3.671	8,6 0.339	10.00X8.00	3	DIN371	6HX	В

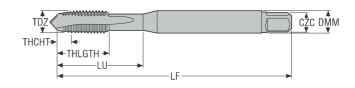
MTP-S002



- For cutting data see page(s) 278Coating: AICrNSubstrate: HSS-E-PM

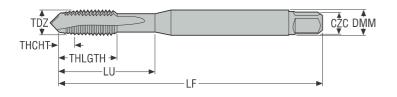
Designation	Item number	TDZ	Pito	:h	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M12X1.75ISO6HX-TB-S002	10001169	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	102,12 4.020	10,4 <i>0.40</i> 9	9.00X7.00	4	DIN376	6HX	В
MTP-M16X2.00ISO6HX-TB-S002	10001170	M16	2,0	-	12,0 <i>0.4</i> 72	68,0 2.677	25,0 0.984	101,0 3.976	14,1 0.555	12.00X9.00	4	DIN376	6HX	В
MTP-M20X2.50ISO6HX-TB-S002	10001171	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	30,0 1.181	128,75 5.069	17,7 0.697	16.00X12.00	4	DIN376	6HX	В

MTP-S011


- For cutting data see page(s) 278Coating: AlCrNSubstrate: HSS-E-PM

									• Substiat	e: HSS-E-PM				
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M6X0.75ISO6HX-TB-S011	10001176	MF6X0.75	0,75	-	6,0 0.236	23,0 0.906	15,0 <i>0.591</i>	76,62 3.017	5,25 0.207	6.00X4.90	3	DIN371	6HX	В
MTP-M8X0.750ISO6HX-TB-S011	10001177	MF8X0.75	0,75	-	8,0 <i>0.315</i>	29,5 1.161	18,0 <i>0.709</i>	86,62 3.410	7,25 0.285	8.00X6.20	3	DIN371	6HX	В
MTP-M8X1.00ISO6HX-TB-S011	10001178	MF8X1	1,0	-	8,0 0.315	29,5 1.161	18,0 <i>0.709</i>	85,5 3.366	7,0 0.276	8.00X6.20	3	DIN371	6HX	В
MTP-M10X1.00ISO6HX-TB-S011	10001179	MF10X1	1,0	-	10,0 <i>0.394</i>	33,5 1.319	20,0 <i>0.787</i>	95,5 3.760	9,0 <i>0.354</i>	10.00X8.00	3	DIN371	6HX	В
MTP-M12X1.00ISO6HX-TB-S011	10001180	MF12X1	1,0	-	9,0 <i>0.354</i>	73,0 2.874	21,0 0.827	95,5 3.760	11,0 <i>0.433</i>	9.00X7.00	4	DIN374	6HX	В
MTP-M12X1.50ISO6HX-TB-S011	10001181	MF12X1.5	1,5	-	9,0 <i>0.354</i>	73,0 2.874	21,0 0.827	93,25 3.671	10,5 <i>0.413</i>	9.00X7.00	4	DIN374	6HX	В
MTP-M14X1.50ISO6HX-TB-S011	10001182	MF14X1.5	1,5	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 0.827	93,25 3.671	12,5 <i>0.4</i> 92	11.00X9.00	4	DIN374	6HX	В

MTP-S012

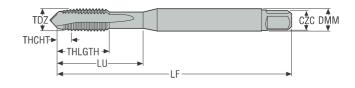


- For cutting data see page(s) 278Coating: AICrNSubstrate: HSS-E-PM

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-MJ4X0.70ISO4H-TB-S012	10001172	MJ4X0.7	0,7	-	4,5 0.177	13,0 <i>0.512</i>	13,0 0.512	59,85 2.356	3,4 0.134	4.50X3.40	3	DIN371	4H	В
MTP-MJ5X0.80ISO4H-TB-S012	10001173	MJ5X0.8	0,8	-	6,0 0.236	16,0 <i>0.630</i>	16,0 0.630	66,4 2.614	4,3 0.169	6.00X4.90	3	DIN371	4H	В
MTP-MJ6X1.00ISO4H-TB-S012	10001174	MJ6X1	1,0	-	6,0 0.236	23,0 0.906	15,0 0.591	75,5 2.972	5,1 0.201	6.00X4.90	3	DIN371	4H	В
MTP-MJ8X1.25ISO4H-TB-S012	10001175	MJ8X1.25	1,25	-	8,0 0.315	29,5 1.161	18,0 <i>0.709</i>	84,37 3.322	6,9 0.272	8.00X6.20	3	DIN371	4H	В

SECO!

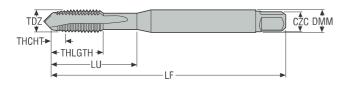
MTP-S013



- For cutting data see page(s) 278Substrate: HSS-E-PM

Designation	ltem number	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm inch	mm inch	mm inch	mm inch	mm inch					
MTP-EGM4X0.7ISO4H-TB-S013 MTP-STIM4X0.7ISO4H-TB-S013	10001218	EGM4	0,7	-	6,0 0.236	16 0.630	16,0 0.630	66,9 2.632	4,2 0.165	6.00X4.90	3	DIN40435	4H	В
MTP-EGM5X0.8ISO4H-TB-S013 MTP-STIM5X0.8ISO4H-TB-S013	10001219	EGM5	0,8	-	6,0 0.236	23 0.906	15,0 <i>0.5</i> 91	76,4 3.008	5,3 0.207	6.00X4.90	3	DIN40435	4H	В
MTP-EGM6X1.0ISO4H-TB-S013 MTP-STIM6X1.0ISO4H-TB-S013	10001220	EGM6	1,0	-	8,0 <i>0.315</i>	35 1.378	18,0 <i>0.70</i> 9	85,5 3.366	6,3 <i>0.248</i>	8.00X6.20	3	DIN40435	4H	В
MTP-EGM8X1.25ISO4H-TB-S013 MTP-STIM8X1.25ISO4H-TB-S013	10001221	EGM8	1,25	-	10,0 <i>0.394</i>	34 1.319	20,0 <i>0.787</i>	94,4 3.715	8,4 0.331	10.00X8.00	3	DIN40435	4H	В

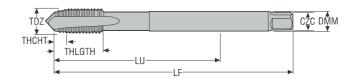
MTP-S042



- For cutting data see page(s) 278Coating: AICrNSubstrate: HSS-E-PM

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-10-32UNJF3B-TB-S042	10001183	UNJF10-32	-	32.0	6,0 0.236	16,0 0.630	16,0 0.630	66,43 2.615	4,15 0.163	6.00X4.90	3	DIN2184-1	3B	В
MTP-1/4-28UNJF3B-TB-S042	10001184	UNJF1/4-28	-	28.0	7,0 0.276	25,0 0.984	15,0 0.591	75,92 2.989	5,6 0.220	7.00X5.50	3	DIN2184-1	3B	В
MTP-5/16-24UNJF3B-TB-S042	10001186	UNJF5/16-24	-	24.0	8,0 <i>0.315</i>	29,5 1.161	18,0 0.709	85,24 3.356	7,0 0.276	8.00X6.20	3	DIN2184-1	3B	В
MTP-3/8-24UNJF3B-TB-S042	10001185	UNJF3/8-24	-	24.0	10,0 <i>0.394</i>	33,5 1.319	20,0 0.787	95,24 3.750	8,6 0.339	10.00X8.00	3	DIN2184-1	3B	В

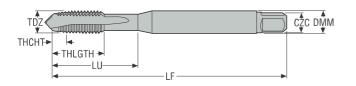
MTP-S043



- For cutting data see page(s) 278Substrate: HSS-E-PM

Designation	ltem number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-10-32EGUNF3B-TB-S043	10001214	EGUN10-32	-	32.0	6,0 0.236	23,0 0.906	15,0 0.591	76,43 3.009	5,1 0.201	6.00X4.90	3	DIN2184-1	3B	В
MTP-1/4-28EGUNF3B-TB-S043	10001215	EGUNF1/4-28	-	28.0	8,0 <i>0.315</i>	29,5 1.161	18,0 <i>0.70</i> 9	85,92 3.383	6,6 0.260	8.00X6.20	3	DIN2184-1	3B	В
MTP-5/16-24EGUNF3B-TB-S043	10001216	EGUNF5/16-24	-	24.0	10,0 <i>0.394</i>	33,5 1.319	20,0 0.787	95,24 3.750	8,2 0.323	10.00X8.00	3	DIN2184-1	3B	В
MTP-3/8-24EGUNF3B-TB-S043	10001217	EGUNF3/8-24	-	24.0	8,0 0.315	76,0 2.992	20,0 0.787	95,24 3.750	9,8 0.386	8.00X6.20	3	DIN2184-1	3B	В

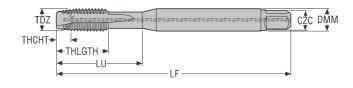
MTP-V002



- For cutting data see page(s) 286
 Coating: TiN
 Substrate: HSS-E
 Long version

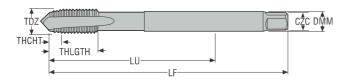
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm <i>Inch</i>	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M14X2.00ISO6H-TB-V002	03019091	M14	2,0	-	11,0 <i>0.433</i>	151,0 5.945	25,0 0.984	171,0 6.732	12,1 0.476	11.00X9.00	3	DIN376	6H	В
MTP-M20X2.50ISO6H-TB-V002	03019093	M20	2,5	-	16,0 0.630	179,0 7.047	30,0 1.181	212,75 8.376	17,7 0.697	16.00X12.00	4	DIN376	6H	В

MTP-V007


- For cutting data see page(s) 286
 Coating: TiN
 Substrate: HSS-E ≤ M2,5; HSS-PM > M2,5

Designation	ltem number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M7X1.00ISO6H-TB-V007	03019111	M7	1,0	-	7,0 0.276	30,0 1.181	14,5 0.571	75,375 2.968	6,1 0.240	7.00X5.50	3	DIN371	6H	В

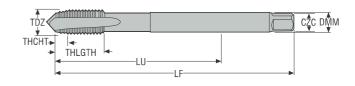
MTP-V007-A



- For cutting data see page(s) 286
 Coating: TiN
 Substrate: HSS-PM
 Internal coolant

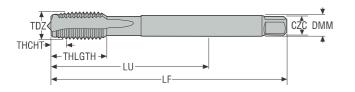
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M4X0.70ISO6H-TB-V007-A	03000184	M4	0,7	-	4,5 0.177	21,0 0.827	6,7 0.264	59,87 2.357	3,4 0.134	4.50X3.40	3	DIN371	6H	В

MTP-V008


- For cutting data see page(s) 286
 Coating: TiN
 Substrate: HSS-PM ≤ M16, HSS-E > M16

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M3X0.50ISO6H-TB-V008	03019124	M3	0,5	-	2,2 0.087	37,0 1.457	9,5 0.374	53,6875 2.114	2,5 0.098	2.20X1.80	3	DIN376	6H	В
MTP-M4X0.70ISO6H-TB-V008	03019125	M4	0,7	-	2,8 0.110	43,0 1.693	11,9 0.469	59,7625 2.353	3,4 0.134	2.80X2.10	3	DIN376	6H	В
MTP-M5X0.80ISO6H-TB-V008	03019126	M5	0,8	-	3,5 0.138	49,0 1.929	13,2 0.520	66,3 2.610	4,3 0.169	3.50X2.70	3	DIN376	6H	В
MTP-M6X1.00ISO6H-TB-V008	03019127	M6	1,0	-	4,5 0.177	59,0 2.323	15,1 <i>0.594</i>	75,375 2.968	5,1 0.201	4.50X3.40	3	DIN376	6H	В
MTP-M8X1.25ISO6H-TB-V008	03019128	M8	1,25	-	6,0 0.236	67,0 2.638	18,0 <i>0.709</i>	88,4375 3.482	6,8 0.268	6.00X4.90	3	DIN376	6H	В
MTP-M10X1.50ISO6H-TB-V008	03019129	M10	1,5	-	7,0 0.276	77,0 3.031	19,8 <i>0.780</i>	93,0625 3.664	8,6 0.339	7.00X5.50	3	DIN376	6H	В

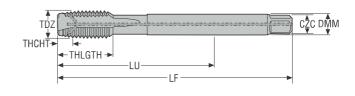
MTP-V008-A



- For cutting data see page(s) 286
 Coating: TiN
 Substrate: HSS-PM ≤ M16, HSS-E > M16
 Internal coolant

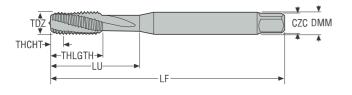
• Internal coolant														
	Item number	TDZ	Pite	ch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm <i>Inch</i>	mm Inch	mm Inch					
MTP-M12X1.75ISO6H-TB-V008-A	03000189	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	16,0 <i>0.630</i>	102,57 <i>4.0</i> 38	10,4 0.409	9.00X7.00	3	DIN376	6H	В
MTP-M14X2.00ISO6H-TB-V008-A	03000190	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	101,61 <i>4.000</i>	12,1 0.476	11.00X9.00	3	DIN376	6H	В
MTP-M16X2.00ISO6H-TB-V008-A	03000191	M16	2,0	-	12,0 <i>0.472</i>	68,0 2.677	20,0 0.787	101,61 <i>4.000</i>	14,1 0.555	12.00X9.00	4	DIN376	6H	В
MTP-M18X2.50ISO6H-TB-V008-A	03000192	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	25,0 0.984	114,68 <i>4.515</i>	15,7 0.618	14.00X11.00	4	DIN376	6H	В
MTP-M20X2.50ISO6H-TB-V008-A	03000193	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	25,0 0.984	128,4375 5.057	17,7 0.697	16.00X12.00	4	DIN376	6H	В
MTP-M22X2.50ISO6H-TB-V008-A	03000194	M22	2,5	-	18,0 <i>0.70</i> 9	93,0 3.661	25,0 0.984	129,46 5.097	19,7 0.776	18.00X14.50	4	DIN376	6H	В
MTP-M24X3.00ISO6H-TB-V008-A	03000195	M24	3,0	-	18,0 <i>0.70</i> 9	113,0 <i>4.44</i> 9	30,0 1.181	146,125 5.753	21,0 0.827	18.00X14.50	4	DIN376	6H	В
MTP-M27X3.00ISO6H-TB-V008-A	03000196	M27	3,0	-	20,0 <i>0.787</i>	97,0 3.819	30,0 1.181	147,49 5.807	24,0 0.945	20.00X16.00	4	DIN376	6H	В
MTP-M30X3.50ISO6H-TB-V008-A	03000197	M30	3,5	-	22,0 0.866	115,0 <i>4.528</i>	36,0 1.417	165,53 6.517	26,5 1.043	22.00X18.00	4	DIN376	6H	В
MTP-M33X3.50ISO6H-TB-V008-A	03000198	M33	3,5	-	25,0 0.984	113,0 <i>4.44</i> 9	50,0 1.969	165,53 6.517	29,5 1.161	25.00X20.00	4	DIN376	6H	В
MTP-M36X4.00ISO6H-TB-V008-A	03000199	M36	4,0	-	28,0 1.102	131,0 5.157	55,0 2.165	183,93 7.241	32,0 1.260	28.00X22.00	4	DIN376	6H	В

MTP-V014


- For cutting data see page(s) 288
 Coating: TiN
 Substrate: HSS-PM ≤ M16, HSS-E > M16

									Jubalial	e: HSS-PM ≤ M10	J, 1100-L	> IVI 10		
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M9X1.00ISO6H-TB-V014	03000358	MF9X1.0	1,0	_	7,0 0.276	67,0 2.638	17,0 0.669	85,375 3.361	8,1 0.319	7.00X5.50	3	DIN374	6H	В
MTP-M11X1.00ISO6H-TB-V014	03000359	MF11X1.0	1,0	-	8,0 0.315	63,0 2.480	18,0 0.709	85,375 3.361	10,1 0.398	8.00X6.20	3	DIN374	6Н	В
MTP-M11X1.25ISO6H-TB-V014	03000360	MF11X1.25	1,25	-	8,0 <i>0.315</i>	63,0 2.480	22,0 0.866	84,21875 3.316	9,8 0.386	8.00X6.20	3	DIN374	6Н	В
MTP-M14X1.00ISO6H-TB-V014	03019140	MF14X1.0	1,0	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 0.827	95,375 <i>3.755</i>	13,1 <i>0.516</i>	11.00X9.00	3	DIN374	6Н	В
MTP-M14X1.25ISO6H-TB-V014	03019141	MF14X1.25	1,25	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 0.827	94,21875 3.709	12,8 <i>0.504</i>	11.00X9.00	3	DIN374	6H	В
MTP-M16X1.00ISO6H-TB-V014	03019143	MF16X1.0	1,0	-	12,0 <i>0.472</i>	58,0 2.283	21,0 0.827	95,375 3.755	15,1 0.594	12.00X9.00	3	DIN374	6Н	В
MTP-M18X1.00ISO6H-TB-V014	03019145	MF18X1.0	1,0	-	14,0 0.551	66,0 2.598	24,0 0.945	105,375 4.149	17,1 0.673	14.00X11.00	4	DIN374	6H	В
MTP-M20X1.00ISO6H-TB-V014	03019147	MF20X1.0	1,0	_	16,0 0.630	80,0 3.150	24,0 0.945	120,375 4.739	19,1 0.752	16.00X12.00	4	DIN374	6Н	В
MTP-M24X2.00ISO6H-TB-V014	03019152	MF24X2.0	2,0	-	18,0 <i>0.70</i> 9	93,0 3.661	28,0 1.102	130,75 5.148	22,0 0.866	18.00X14.50	4	DIN374	6Н	В
MTP-M25X1.50ISO6H-TB-V014	03019153	MF25X1.5	1,5	-	18,0 <i>0.709</i>	93,0 3.661	28,0 1.102	133,34 5.250	23,5 0.925	18.00X14.50	4	DIN374	6Н	В
MTP-M26X1.50ISO6H-TB-V014	03019155	MF26X1.5	1,5	-	18,0 <i>0.709</i>	93,0 3.661	28,0 1.102	133,34 5.250	24,5 0.965	18.00X14.50	4	DIN374	6H	В
MTP-M27X1.50ISO6H-TB-V014	03019156	MF27X1.5	1,5	_	20,0 0.787	77,0 3.031	28,0 1.102	133,35 5.250	25,5 1.004	20.00X16.00	4	DIN374	6H	В
MTP-M27X2.00ISO6H-TB-V014	03019157	MF27X2.0	2,0	-	20,0 0.787	77,0 3.031	28,0 1.102	131,39 5.173	25,0 0.984	20.00X16.00	4	DIN374	6H	В
MTP-M28X1.50ISO6H-TB-V014	03019158	MF28X1.5	1,5	-	20,0 0.787	77,0 3.031	28,0 1.102	133,35 5.250	26,5 1.043	20.00X16.00	4	DIN374	6H	В
MTP-M30X1.50ISO6H-TB-V014	03019159	MF30X1.5	1,5	-	22,0 0.866	85,0 3.346	28,0 1.102	143,33 5.643	28,5 1.122	22.00X18.00	4	DIN374	6H	В
MTP-M30X2.00ISO6H-TB-V014	03019160	MF30X2.0	2,0	-	22,0 0.866	85,0 3.346	28,0 1.102	141,39 5.567	28,0 1.102	22.00X18.00	4	DIN374	6H	В

MTP-V014-A



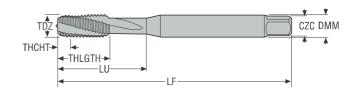
- For cutting data see page(s) 288
 Coating: TiN
 Substrate: HSS-PM ≤ M16, HSS-E > M16
 Internal coolant

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTP-M6X0.75ISO6H-TB-V014-A	03000200	MF6X0.75	0,75	-	4,5 0.177	59,0 2.323	15,1 0.594	76,66 3.018	5,3 0.209	4.50X3.40	3	DIN374	6Н	В
MTP-M8X0.75ISO6H-TB-V014-A	03000201	MF8X0.75	0,75	-	6,0 0.236	57,0 2.244	14,9 0.587	76,58 3.015	7,3 0.287	6.00X4.90	3	DIN374	6H	В
MTP-M10X0.75ISO6H-TB-V014-A	03000203	MF10X0.75	0,75	-	7,0 0.276	67,0 2.638	17,6 0.693	86,58 3.409	9,3 <i>0.366</i>	7.00X5.50	3	DIN374	6H	В
MTP-M10X1.25ISO6H-TB-V014-A	03000205	MF10X1.25	1,25	-	7,0 0.276	77,0 3.031	19,8 0.780	94,61 3.725	8,8 0.346	7.00X5.50	3	DIN374	6H	В
MTP-M12X1.00ISO6H-TB-V014-A	03000206	MF12X1.0	1,0	-	9,0 <i>0.354</i>	73,0 2.874	21,0 0.827	95,49 3.759	11,1 0.437	9.00X7.00	3	DIN374	6H	В
MTP-M12X1.25ISO6H-TB-V014-A	03000207	MF12X1.25	1,25	-	9,0 <i>0.354</i>	73,0 2.874	21,0 0.827	94,5 3.720	10,8 <i>0.425</i>	9.00X7.00	3	DIN374	6H	В
MTP-M14X1.00ISO6H-TB-V014-A	03000209	MF14X1.0	1,0	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 0.827	95,49 3.759	13,1 0.516	11.00X9.00	3	DIN374	6H	В
MTP-M14X1.25ISO6H-TB-V014-A	03000210	MF14X1.25	1,25	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 0.827	94,5 3.720	12,8 0.504	11.00X9.00	3	DIN374	6H	В
MTP-M16X1.00ISO6H-TB-V014-A	03000212	MF16X1.0	1,0	-	12,0 0.472	58,0 2.283	21,0 0.827	95,49 3.759	15,1 0.594	12.00X9.00	3	DIN374	6H	В
MTP-M18X1.00ISO6H-TB-V014-A	03000214	MF18X1.0	1,0	-	14,0 <i>0.551</i>	66,0 2.598	24,0 0.945	105,49 <i>4.15</i> 3	17,1 0.673	14.00X11.00	4	DIN374	6H	В
MTP-M18X1.50ISO6H-TB-V014-A	03000215	MF18X1.5	1,5	-	14,0 <i>0.551</i>	66,0 2.598	24,0 0.945	103,0625 4.058	16,6 <i>0.654</i>	14.00X11.00	4	DIN374	6H	В
MTP-M20X1.00ISO6H-TB-V014-A	03000216	MF20X1.0	1,0	-	16,0 <i>0.630</i>	80,0 3.150	24,0 0.945	120,33 <i>4.</i> 737	19,1 <i>0.752</i>	16.00X12.00	4	DIN374	6H	В
MTP-M20X1.50ISO6H-TB-V014-A	03000217	MF20X1.5	1,5	-	16,0 0.630	80,0 3.150	24,0 0.945	118,0625 4.648	18,6 <i>0.732</i>	16.00X12.00	4	DIN374	6H	В
MTP-M22X1.50ISO6H-TB-V014-A	03000218	MF22X1.5	1,5	-	18,0 <i>0.70</i> 9	78,0 3.071	25,0 0.984	118,0625 4.648	20,5 0.807	18.00X14.50	4	DIN374	6H	В
MTP-M24X1.50ISO6H-TB-V014-A	03000219	MF24X1.5	1,5	-	18,0 <i>0.70</i> 9	93,0 3.661	28,0 1.102	133,34 5.250	22,5 0.886	18.00X14.50	4	DIN374	6Н	В
MTP-M24X2.00ISO6H-TB-V014-A	03000220	MF24X2.0	2,0	-	18,0 <i>0.70</i> 9	93,0 3.661	28,0 1.102	130,75 5.148	22,0 0.866	18.00X14.50	4	DIN374	6H	В

MTH-P001

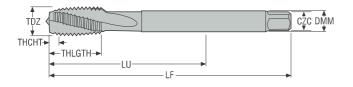
Blind holes

- For cutting data see page(s) 266Coating: TiAlNSubstrate: HSS-E-PM


Designation	Item number	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M3X0.50ISO6H-BC-P001	02999974	M3	0,5	-	4,5 0.177	12,0 0.472	12,0 <i>0.4</i> 72	61,625 2.426	2,5 0.098	4.50X3.40	3	SECO-DIN	6H	С
MTH-M4X0.70ISO6H-BC-P001	02999975	M4	0,7	-	6,0 0.236	13,0 0.512	13,0 <i>0.512</i>	67,97 2.676	3,4 0.134	6.00X4.90	3	SECO-DIN	6H	С
MTH-M5X0.80ISO6H-BC-P001	02999976	M5	0,8	-	6,0 0.236	15,0 0.591	15,0 0.591	77,67 3.058	4,3 0.169	6.00X4.90	3	SECO-DIN	6Н	С
MTH-M6X1.00ISO6H-BC-P001	02999977	M6	1,0	-	8,0 0.315	18,0 0.709	18,0 <i>0.709</i>	87,25 3.435	5,1 0.201	8.00X6.20	3	SECO-DIN	6H	С
MTH-M8X1.25ISO6H-BC-P001	02999978	M8	1,25	-	10,0 <i>0.394</i>	20,0 0.787	20,0 <i>0.787</i>	96,5625 3.802	6,8 0.268	10.00X8.00	3	SECO-DIN	6H	С
MTH-M10X1.50ISO6H-BC-P001	02999979	M10	1,5	-	10,0 0.394	39,0 1.535	20,0 0.787	95,875 3.775	8,6 0.339	10.00X8.00	3	SECO-DIN	6H	С

MTH-P001-A

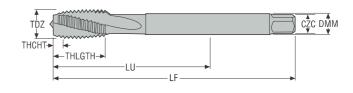
Blind holes



- For cutting data see page(s) 266
 Coating: TiAIN
 Substrate: HSS-E-PM
 Internal coolant

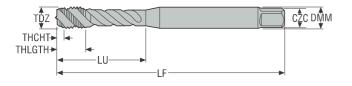
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M4X0.70ISO6H-BC-P001-A	02999985	M4	0,7	_	6,0 0.236	13,0 <i>0.512</i>	13,0 <i>0.512</i>	67,97 2.676	3,4 0.134	6.00X4.90	3	SECO-DIN	6H	С
MTH-M5X0.80ISO6H-BC-P001-A	02999986	M5	0,8	-	6,0 0.236	15,0 <i>0.591</i>	15,0 0.591	77,67 3.058	4,3 0.169	6.00X4.90	3	SECO-DIN	6H	С
MTH-M6X1.00ISO6H-BC-P001-A	02999987	M6	1,0	-	8,0 0.315	18,0 <i>0.709</i>	18,0 <i>0.70</i> 9	87,07 3.428	5,1 0.201	8.00X6.20	3	SECO-DIN	6H	С
MTH-M8X1.25ISO6H-BC-P001-A	02999988	M8	1,25	-	10,0 0.394	20,0 0.787	20,0 0.787	96,32 3.792	6,8 0.268	10.00X8.00	3	SECO-DIN	6H	С
MTH-M10X1.50ISO6H-BC-P001-A	02999989	M10	1,5	-	10,0 0.394	39,0 1.535	20,0 <i>0.787</i>	95,57 3.763	8,6 0.339	10.00X8.00	3	SECO-DIN	6H	С

MTH-P002


- For cutting data see page(s) 266Coating: TiAlNSubstrate: HSS-E-PM

Designation	Item number	TDZ	Pit	:ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6H-BC-P002	02999980	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	105,1875 <i>4.141</i>	10,4 0.409	9.00X7.00	4	DIN376	6H	С
MTH-M14X2.00ISO6H-BC-P002	02999981	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	104,5 <i>4.114</i>	12,1 0.476	11.00X9.00	4	DIN376	6H	С
MTH-M16X2.00ISO6H-BC-P002	02999982	M16	2,0	-	12,0 <i>0.4</i> 72	68,0 2.677	25,0 0.984	104,5 <i>4.114</i>	14,1 0.555	12.00X9.00	4	DIN376	6H	С
MTH-M18X2.50ISO6H-BC-P002	02999983	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	118,125 <i>4.651</i>	15,7 0.618	14.00X11.00	4	DIN376	6H	С
MTH-M20X2.50ISO6H-BC-P002	02999984	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	30,0 1.181	133,125 5.241	17,7 0.697	16.00X12.00	4	DIN376	6H	С

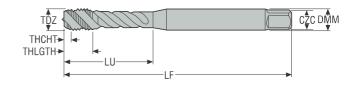
MTH-P002-A



- For cutting data see page(s) 266
 Coating: TiAIN
 Substrate: HSS-E-PM
 Internal coolant

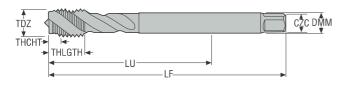
Designation	Item number	TDZ	Pite	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6H-BC-P002-A	02999990	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	104,38 <i>4.10</i> 9	10,4 0.409	9.00X7.00	4	DIN376	6H	С
MTH-M14X2.00ISO6H-BC-P002-A	02999991	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	103,74 <i>4.084</i>	12,1 0.476	11.00X9.00	4	DIN376	6H	С
MTH-M16X2.00ISO6H-BC-P002-A	02999992	M16	2,0	-	12,0 <i>0.4</i> 72	68,0 2.677	25,0 0.984	103,74 <i>4.084</i>	14,1 0.555	12.00X9.00	4	DIN376	6H	С
MTH-M18X2.50ISO6H-BC-P002-A	02999993	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	117,05 <i>4.608</i>	15,7 0.618	14.00X11.00	4	DIN376	6H	С
MTH-M20X2.50ISO6H-BC-P002-A	02999994	M20	2,5	-	16,0 0.630	95,0 3.740	30,0 1.181	132,05 <i>5.1</i> 99	17,7 0.697	16.00X12.00	4	DIN376	6H	С

MTH-P003


- For cutting data see page(s) 266
 Coating: TiAIN
 Substrate: HSS-E-PM
 Internal coolant

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M1.6X0.35ISO6HX-BC-P003	0299995	M1.6	0,35	-	2,5 0.098	6,0 0.236	4,0 <i>0.15</i> 7	39,3 1.547	1,3 <i>0.051</i>	2.50X2.10	2	DIN371	6HX	С
MTH-M2X0.40ISO6HX-BC-P003	02999996	M2	0,4	-	2,8 0.110	9,0 <i>0.354</i>	4,0 0.157	44,2 1.740	1,6 0.063	2.80X2.10	2	DIN371	6HX	С
MTH-M2.2X0.45ISO6HX-BC-P003	02999997	M2.2	0,45	-	2,8 0.110	12,0 <i>0.4</i> 72	4,0 0.157	44,1 1.736	1,8 0.071	2.80X2.10	2	DIN371	6HX	С
MTH-M2.3X0.40ISO6HX-BC-P003	0299998	M2.3	0,4	-	2,8 0.110	12,0 0.472	4,0 0.157	44,2 1.740	1,9 0.075	2.80X2.10	2	DIN371	6HX	С
MTH-M2.5X0.45ISO6HX-BC-P003	02999999	M2.5	0,45	-	2,8 0.110	12,5 0.492	4,0 0.157	49,1 1.933	2,1 0.083	2.80X2.10	2	DIN371	6HX	С
MTH-M2.6X0.45ISO6HX-BC-P003	03000000	M2.6	0,45	-	2,8 0.110	12,5 0.492	4,0 0.157	49,1 1.933	2,15 0.085	2.80X2.10	2	DIN371	6HX	С
MTH-M3X0.50ISO6HX-BC-P003	03000001	М3	0,5	-	3,5 0.138	18,0 <i>0.70</i> 9	5,9 0.232	54,625 2.151	2,5 0.098	3.50X2.70	3	DIN371	6HX	С
MTH-M3.5X0.60ISO6HX-BC-P003	03000002	M3.5	0,6	-	4,0 0.157	20,0 <i>0.787</i>	7,0 0.276	54,35 2.140	2,9 0.114	4.00X3.00	3	DIN371	6HX	С
MTH-M4X0.70ISO6HX-BC-P003	03000003	M4	0,7	-	4,5 0.177	21,0 0.827	6,7 0.264	61,075 2.405	3,4 0.134	4.50X3.40	3	DIN371	6HX	С
MTH-M5X0.80ISO6HX-BC-P003	03000004	M5	0,8	-	6,0 0.236	25,0 0.984	7,7 0.303	67,8 2.669	4,3 0.169	6.00X4.90	3	DIN371	6HX	С
MTH-M6X1.00ISO6HX-BC-P003	03000006	M6	1,0	-	6,0 0.236	30,0 1.181	10,0 <i>0.</i> 39 <i>4</i>	77,25 3.041	5,1 0.201	6.00X4.90	3	DIN371	6HX	С
MTH-M7X1.00ISO6HX-BC-P003	03000007	M7	1,0	-	7,0 0.276	30,0 1.181	10,0 0.394	77,25 3.041	6,1 0.240	7.00X5.50	3	DIN371	6HX	С
MTH-M8X1.25ISO6HX-BC-P003	03000008	M8	1,25	-	8,0 0.315	35,0 1.378	11,6 0.457	86,5625 3.408	6,8 0.268	8.00X6.20	3	DIN371	6HX	С
MTH-M10X1.50ISO6HX-BC-P003	03000009	M10	1,5	-	10,0 <i>0.</i> 394	39,0 1.535	15,1 0.594	95,875 3.775	8,6 0.339	10.00X8.00	3	DIN371	6HX	С

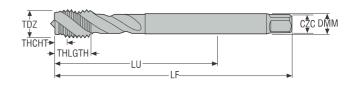
MTH-P003-A



- For cutting data see page(s) 266
 Coating: AlTiN-based
 Substrate: HSS-E-PM
 Internal coolant

Internal coolant														
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M4X0.70ISO6HX-BC-P003-A	03000024	M4	0,7	-	4,5 0.177	21,0 0.827	6,7 0.264	61,075 2.405	3,4 0.134	4.50X3.40	3	DIN371	6HX	С
MTH-M5X0.80ISO6HX-BC-P003-A	03000025	M5	0,8	-	6,0 0.236	25,0 0.984	7,7 0.303	68,1 2.681	4,3 0.169	6.00X4.90	3	DIN371	6HX	С
MTH-M6X1.00ISO6HX-BC-P003-A	03000026	M6	1,0	-	6,0 0.236	30,0 1.181	10,0 <i>0.394</i>	77,39 3.047	5,1 0.201	6.00X4.90	3	DIN371	6HX	С
MTH-M7X1.00ISO6HX-BC-P003-A	03000027	M7	1,0	-	7,0 0.276	30,0 1.181	10,0 <i>0.394</i>	77,25 3.041	6,1 0.240	7.00X5.50	3	DIN371	6HX	С
MTH-M8X1.25ISO6HX-BC-P003-A	03000028	M8	1,25	-	8,0 <i>0.315</i>	35,0 1.378	11,6 <i>0.457</i>	86,5625 3.408	6,8 0.268	8.00X6.20	3	DIN371	6HX	С
MTH-M10X1.50ISO6HX-BC-P003-A	03000029	M10	1,5	-	10,0 <i>0.394</i>	39,0 1.535	15,1 0.594	95,875 3.775	8,6 0.339	10.00X8.00	3	DIN371	6HX	С

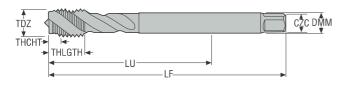
MTH-P004



- For cutting data see page(s) 266Coating: AITiN-basedSubstrate: HSS-E-PM

									- Guboua	te. 1100-L-1 IVI				
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M5X0.80ISO6HX-BC-P004	03000010	M5	0,8	-	3,5 0.138	49,0 1.929	8,0 <i>0.315</i>	67,8 2.669	4,3 0.169	3.50X2.70	3	DIN376	6HX	С
MTH-M6X1.00ISO6HX-BC-P004	03000011	M6	1,0	-	4,5 0.177	59,0 2.323	10,0 <i>0.394</i>	77,25 3.041	5,1 0.201	4.50X3.40	3	DIN376	6HX	С
MTH-M7X1.00ISO6HX-BC-P004	03000012	M7	1,0	-	5,5 0.217	59,0 2.323	10,0 <i>0.394</i>	77,25 3.041	6,1 0.240	5.50X4.30	3	DIN376	6HX	С
MTH-M8X1.25ISO6HX-BC-P004	03000013	M8	1,25	-	6,0 0.236	67,0 2.638	13,0 <i>0.512</i>	86,5625 3.408	6,8 0.268	6.00X4.90	3	DIN376	6HX	С
MTH-M10X1.50ISO6HX-BC-P004	03000014	M10	1,5	-	7,0 0.276	77,0 3.031	20,0 <i>0.787</i>	95,875 3.775	8,6 0.339	7.00X5.50	3	DIN376	6HX	С
MTH-M12X1.75ISO6HX-BC-P004	03000015	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	16,0 <i>0.630</i>	105,59 <i>4.1</i> 57	10,4 0.409	9.00X7.00	3	DIN376	6HX	С
MTH-M14X2.00ISO6HX-BC-P004	03000016	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	104,5 <i>4.114</i>	12,1 0.476	11.00X9.00	3	DIN376	6HX	С
MTH-M16X2.00ISO6HX-BC-P004	03000017	M16	2,0	-	12,0 <i>0.4</i> 72	68,0 2.677	20,0 0.787	104,5 <i>4.114</i>	14,1 0.555	12.00X9.00	4	DIN376	6HX	С
MTH-M18X2.50ISO6HX-BC-P004	03000018	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	25,0 0.984	118,75 <i>4.675</i>	15,7 0.618	14.00X11.00	4	DIN376	6HX	С
MTH-M20X2.50ISO6HX-BC-P004	03000019	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	25,0 0.984	133,75 5.266	17,7 0.697	16.00X12.00	4	DIN376	6HX	С
MTH-M22X2.50ISO6HX-BC-P004	03000020	M22	2,5	-	18,0 <i>0.70</i> 9	93,0 3.661	25,0 0.984	133,73 5.265	19,7 <i>0.7</i> 76	18.00X14.50	4	DIN376	6HX	С
MTH-M24X3.00ISO6HX-BC-P004	03000021	M24	3,0	-	18,0 <i>0.</i> 709	113,0 <i>4.44</i> 9	30,0 1.181	152,72 6.013	21,0 0.827	18.00X14.50	4	DIN376	6HX	С
MTH-M27X3.00ISO6HX-BC-P004	03000022	M27	3,0	-	20,0 0.787	97,0 3.819	30,0 1.181	152,76 6.014	24,0 0.945	20.00X16.00	4	DIN376	6HX	С
MTH-M30X3.50ISO6HX-BC-P004	03000023	M30	3,5		22,0 0.866	115,0 <i>4.5</i> 28	36,0 1.417	171,78 6.763	26,5 1.043	22.00X18.00	4	DIN376	6HX	С

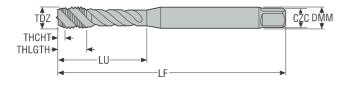
MTH-P004-A



- For cutting data see page(s) 266
 Coating: AlTiN-based
 Substrate: HSS-E-PM
 Internal coolant

- Internal coolant														
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6HX-BC-P004-A	03000030	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	16,0 <i>0.630</i>	105,59 <i>4.157</i>	10,4 0.409	9.00X7.00	3	DIN376	6HX	С
MTH-M14X2.00ISO6HX-BC-P004-A	03000031	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	105,08 <i>4.137</i>	12,1 0.476	11.00X9.00	3	DIN376	6HX	С
MTH-M16X2.00ISO6HX-BC-P004-A	03000032	M16	2,0	-	12,0 <i>0.472</i>	68,0 2.677	20,0 0.787	104,5 <i>4.114</i>	14,1 0.555	12.00X9.00	4	DIN376	6HX	С
MTH-M18X2.50ISO6HX-BC-P004-A	03000033	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	25,0 0.984	118,75 <i>4</i> .675	15,7 0.618	14.00X11.00	4	DIN376	6HX	С
MTH-M20X2.50ISO6HX-BC-P004-A	03000034	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	25,0 0.984	133,75 5.266	17,7 0.697	16.00X12.00	4	DIN376	6HX	С
MTH-M22X2.50ISO6HX-BC-P004-A	03000036	M22	2,5	-	18,0 <i>0.709</i>	93,0 3.661	25,0 0.984	133,73 5.265	19,7 0.776	18.00X14.50	4	DIN376	6HX	С
MTH-M24X3.00ISO6HX-BC-P004-A	03000037	M24	3,0	-	18,0 <i>0.70</i> 9	113,0 <i>4.44</i> 9	30,0 1.181	152,72 6.013	21,0 0.827	18.00X14.50	4	DIN376	6HX	С
MTH-M27X3.00ISO6HX-BC-P004-A	03000038	M27	3,0	-	20,0 0.787	97,0 3.819	30,0 1.181	151,75 5.974	24,0 0.945	20.00X16.00	4	DIN376	6HX	С
MTH-M30X3.50ISO6HX-BC-P004-A	03000039	M30	3,5	-	22,0 0.866	115,0 <i>4.528</i>	36,0 1.417	171,78 6.763	26,5 1.043	22.00X18.00	4	DIN376	6HX	С

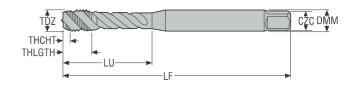
MTH-P011


- For cutting data see page(s) 266
 Coating: AlTiN-based
 Substrate: HSS-F-PM

								• S	ubstrate: I	HSS-E-PM				
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M4X0.50ISO6HX-BC-P011	03000040	MF4X0.5	0,5	-	2,8 0.110	43,0 1.693	7,0 0.276	61,625 2.426	3,5 0.138	2.80X2.10	3	DIN374	6HX	С
MTH-M5X0.50ISO6HX-BC-P011	03000041	MF5X0.5	0,5	-	3,5 0.138	49,0 1.929	8,0 0.315	68,75 2.707	4,5 0.177	3.50X2.70	3	DIN374	6HX	С
MTH-M6X0.75ISO6HX-BC-P011	03000042	MF6X0.75	0,75	-	4,5 0.177	59,0 2.323	10,0 <i>0.394</i>	77,7 3.059	5,3 0.209	4.50X3.40	3	DIN374	6HX	С
MTH-M8X0.75ISO6HX-BC-P011	03000043	MF8X0.75	0,75	-	6,0 0.236	57,0 2.244	13,0 0.512	77,72 3.060	7,3 0.287	6.00X4.90	3	DIN374	6HX	С
MTH-M8X1.00ISO6HX-BC-P011	03000044	MF8X1.0	1,0	-	6,0 0.236	67,0 2.638	13,0 <i>0.512</i>	87,2 3.433	7,1 0.280	6.00X4.90	3	DIN374	6HX	С
MTH-M10X0.75ISO6HX-BC-P011	03000045	MF10X0.75	0,75	-	7,0 0.276	67,0 2.638	13,0 0.512	87,73 3.454	9,3 0.366	7.00X5.50	3	DIN374	6HX	С
MTH-M10X1.00ISO6HX-BC-P011	03000046	MF10X1.0	1,0	-	7,0 0.276	67,0 2.638	13,0 <i>0.512</i>	87,25 3.435	9,1 <i>0.358</i>	7.00X5.50	3	DIN374	6HX	С
MTH-M10X1.25ISO6HX-BC-P011	03000047	MF10X1.25	1,25	-	7,0 0.276	77,0 3.031	15,0 <i>0.591</i>	96,5625 3.802	8,8 0.346	7.00X5.50	3	DIN374	6HX	С
MTH-M12X1.00ISO6HX-BC-P011	03000048	MF12X1.0	1,0	-	9,0 <i>0.354</i>	73,0 2.874	15,0 0.591	97,25 3.829	11,1 0.437	9.00X7.00	3	DIN374	6HX	С
MTH-M12X1.25ISO6HX-BC-P011	03000049	MF12X1.25	1,25	-	9,0 <i>0.354</i>	73,0 2.874	15,0 <i>0.591</i>	96,5625 3.802	10,8 <i>0.42</i> 5	9.00X7.00	3	DIN374	6HX	С
MTH-M12X1.50ISO6HX-BC-P011	03000050	MF12X1.5	1,5	-	9,0 <i>0.354</i>	73,0 2.874	15,0 0.591	96,07 3.782	10,6 <i>0.417</i>	9.00X7.00	3	DIN374	6HX	С
MTH-M14X1.00ISO6HX-BC-P011	03000051	MF14X1.0	1,0	-	11,0 <i>0.4</i> 33	71,0 2.795	15,0 <i>0.591</i>	97,11 3.823	13,1 0.516	11.00X9.00	3	DIN374	6HX	С
MTH-M14X1.25ISO6HX-BC-P011	03000052	MF14X1.25	1,25	-	11,0 <i>0.4</i> 33	71,0 2.795	15,0 <i>0.591</i>	96,5625 3.802	12,8 0.504	11.00X9.00	3	DIN374	6HX	С
MTH-M14X1.50ISO6HX-BC-P011	03000053	MF14X1.5	1,5	-	11,0 <i>0.4</i> 33	71,0 2.795	15,0 <i>0.591</i>	95,875 3.775	12,6 0.496	11.00X9.00	3	DIN374	6HX	С
MTH-M16X1.00ISO6HX-BC-P011	03000054	MF16X1.0	1,0	-	12,0 0.472	58,0 2.283	15,0 0.591	97,25 3.829	15,1 0.594	12.00X9.00	4	DIN374	6HX	С
MTH-M16X1.50ISO6HX-BC-P011	03000055	MF16X1.5	1,5	-	12,0 0.472	58,0 2.283	15,0 0.591	95,875 3.775	14,6 0.575	12.00X9.00	4	DIN374	6HX	С
MTH-M18X1.00ISO6HX-BC-P011	03000056	MF18X1.0	1,0	-	14,0 0.551	66,0 2.598	17,0 0.669	105,875 <i>4.168</i>	17,1 0.673	14.00X11.00	4	DIN374	6HX	С
MTH-M18X1.50ISO6HX-BC-P011	03000057	MF18X1.5	1,5	-	14,0 0.551	66,0 2.598	17,0 0.669	105,71 4.162	16,6 0.654	14.00X11.00	4	DIN374	6HX	С
MTH-M20X1.00ISO6HX-BC-P011	03000058	MF20X1.0	1,0	-	16,0 0.630	80,0 3.150	17,0 <i>0.669</i>	122,25 4.813	19,1 <i>0.752</i>	16.00X12.00	4	DIN374	6HX	С
MTH-M20X1.50ISO6HX-BC-P011	03000059	MF20X1.5	1,5	-	16,0 0.630	80,0 3.150	17,0 <i>0.669</i>	120,875 <i>4.759</i>	18,6 0.732	16.00X12.00	4	DIN374	6HX	С
MTH-M22X1.50ISO6HX-BC-P011	03000060	MF22X1.5	1,5	-	18,0 0.709	78,0 3.071	17,0 0.669	120,875 <i>4.75</i> 9	20,5 0.807	18.00X14.50	4	DIN374	6HX	С
MTH-M24X1.50ISO6HX-BC-P011	03000061	MF24X1.5	1,5	-	18,0 <i>0.709</i>	93,0 3.661	20,0 0.787	135,875 5.349	22,5 0.886	18.00X14.50	4	DIN374	6HX	С

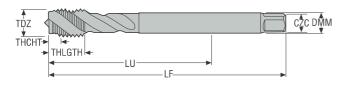
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M24X2.00ISO6HX-BC-P011	03000062	MF24X2.0	2,0	-	18,0 <i>0.709</i>	93,0 3.661	20,0 0.787	134,7 5.303	22,0 0.866	18.00X14.50	4	DIN374	6HX	С
MTH-M25X1.50ISO6HX-BC-P011	03000063	MF25X1.5	1,5	-	18,0 <i>0.709</i>	93,0 3.661	20,0 0.787	135,7 5.343	23,5 0.925	18.00X14.50	4	DIN374	6HX	С
MTH-M26X1.50ISO6HX-BC-P011	03000064	MF26X1.5	1,5	-	18,0 <i>0.70</i> 9	93,0 3.661	20,0 0.787	135,7 5.343	24,5 0.965	18.00X14.50	4	DIN374	6HX	С
MTH-M27X1.50ISO6HX-BC-P011	03000065	MF27X1.5	1,5	-	20,0 0.787	77,0 3.031	20,0 0.787	135,875 5.349	25,5 1.004	20.00X16.00	4	DIN374	6HX	С
MTH-M27X2.00ISO6HX-BC-P011	03000066	MF27X2.0	2,0	-	20,0 0.787	77,0 3.031	20,0 0.787	134,73 5.304	25,0 0.984	20.00X16.00	4	DIN374	6HX	С
MTH-M28X1.50ISO6HX-BC-P011	03000067	MF28X1.5	1,5	-	20,0 0.787	77,0 3.031	20,0 0.787	135,72 5.343	26,5 1.043	20.00X16.00	4	DIN374	6HX	С
MTH-M30X1.50ISO6HX-BC-P011	03000068	MF30X1.5	1,5	-	22,0 0.866	85,0 3.346	20,0 0.787	150,0 5.906	28,5 1.122	22.00X18.00	4	DIN374	6HX	С
MTH-M30X2.00ISO6HX-BC-P011	03000069	MF30X2.0	2,0	-	22,0 0.866	85,0 3.346	20,0 0.787	144,73 5.698	28,0 1.102	22.00X18.00	4	DIN374	6HX	С

MTH-M003


- For cutting data see page(s) 270Coating: TiCNSubstrate: HSS-E

									 Substrat 	e: HSS-E				
Designation	Item number	TDZ	Pito	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M1.6X0.35ISO6H-BC-M003	03000106	M1.6	0,35	-	2,5 0.098	6,0 0.236	4,0 0.157	39,21 1.544	1,3 0.051	2.50X2.10	2	DIN371	6H	С
MTH-M2X0.40ISO6H-BC-M003	03000107	M2	0,4	-	2,8 0.110	9,0 <i>0.354</i>	4,0 0.157	44,2 1.740	1,6 0.063	2.80X2.10	3	DIN371	6H	С
MTH-M2.2X0.45ISO6H-BC-M003	03000108	M2.2	0,45	-	2,8 0.110	12,0 <i>0.4</i> 72	4,0 0.157	44,41 1.748	1,8 0.071	2.80X2.10	3	DIN371	6H	С
MTH-M2.3X0.40ISO6H-BC-M003	03000109	M2.3	0,4	-	2,8 0.110	12,0 0.472	4,0 0.157	44,4 1.748	1,9 0.075	2.80X2.10	3	DIN371	6H	С
MTH-M2.5X0.45ISO6H-BC-M003	03000110	M2.5	0,45	-	2,8 0.110	12,5 <i>0.4</i> 92	4,0 0.157	49,32 1.942	2,1 0.083	2.80X2.10	3	DIN371	6H	С
MTH-M2.6X0.45ISO6H-BC-M003	03000111	M2.6	0,45	-	2,8 0.110	12,5 <i>0.4</i> 92	4,0 0.157	49,32 1.942	2,15 0.085	2.80X2.10	3	DIN371	6H	С
MTH-M3X0.50ISO6H-BC-M003	03000112	M3	0,5	-	3,5 0.138	18,0 <i>0.70</i> 9	5,9 0.232	54,625 2.151	2,5 0.098	3.50X2.70	3	DIN371	6H	С
MTH-M3.5X0.60ISO6H-BC-M003	03000113	M3.5	0,6	-	4,0 0.157	20,0 0.787	7,0 0.276	54,35 2.140	2,9 0.114	4.00X3.00	3	DIN371	6H	С
MTH-M4X0.70ISO6H-BC-M003	03000114	M4	0,7	-	4,5 0.177	21,0 0.827	6,7 0.264	61,075 2.405	3,4 0.134	4.50X3.40	3	DIN371	6H	С
MTH-M5X0.80ISO6H-BC-M003	03000115	M5	0,8	-	6,0 0.236	25,0 0.984	7,7 0.303	67,8 2.669	4,3 0.169	6.00X4.90	3	DIN371	6H	С
MTH-M6X1.00ISO6H-BC-M003	03000116	M6	1,0	-	6,0 0.236	30,0 1.181	10,0 0.394	77,25 3.041	5,1 0.201	6.00X4.90	3	DIN371	6H	С
MTH-M7X1.00ISO6H-BC-M003	03000117	M7	1,0	-	7,0 0.276	30,0 1.181	10,0 <i>0.</i> 39 <i>4</i>	77,25 3.041	6,1 0.240	7.00X5.50	3	DIN371	6H	С
MTH-M8X1.25ISO6H-BC-M003	03000118	M8	1,25	-	8,0 0.315	35,0 1.378	11,6 0.457	86,5625 3.408	6,8 0.268	8.00X6.20	3	DIN371	6H	С
MTH-M10X1.50ISO6H-BC-M003	03000119	M10	1,5	-	10,0 0.394	39,0 1.535	15,1 0.594	95,875 3.775	8,6 0.339	10.00X8.00	3	DIN371	6H	С

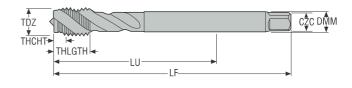
MTH-M003-A



- For cutting data see page(s) 270
 Coating: TiCN
 Substrate: HSS-E
 Internal coolant

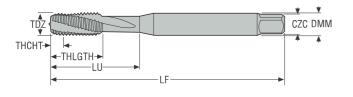
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M4X0.70ISO6H-BC-M003-A	03000125	M4	0,7	-	4,5 0.177	21,0 0.827	6,7 0.264	61,075 2.405	3,4 0.134	4.50X3.40	3	DIN371	6H	С
MTH-M5X0.80ISO6H-BC-M003-A	03000126	M5	0,8	-	6,0 0.236	25,0 0.984	7,7 0.303	67,8 2.669	4,3 0.169	6.00X4.90	3	DIN371	6H	С
MTH-M6X1.00ISO6H-BC-M003-A	03000127	M6	1,0	-	6,0 0.236	30,0 1.181	10,0 0.394	77,25 3.041	5,1 0.201	6.00X4.90	3	DIN371	6H	С
MTH-M7X1.00ISO6H-BC-M003-A	03000128	M7	1,0	-	7,0 0.276	30,0 1.181	10,0 0.394	77,57 3.054	6,1 0.240	7.00X5.50	3	DIN371	6H	С
MTH-M8X1.25ISO6H-BC-M003-A	03000129	M8	1,25	-	8,0 <i>0.315</i>	35,0 1.378	11,6 0.457	86,5625 3.408	6,8 0.268	8.00X6.20	3	DIN371	6H	С
MTH-M10X1.50ISO6H-BC-M003-A	03000130	M10	1,5	-	10,0 0.394	39,0 1.535	15,1 0.594	95,875 3.775	8,6 0.339	10.00X8.00	3	DIN371	6H	С

MTH-M004


- For cutting data see page(s) 270Coating: TiCNSubstrate: HSS-E

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6H-BC-M004	03000120	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	105,1875 <i>4.141</i>	10,4 0.409	9.00X7.00	3	DIN376	6H	С
MTH-M14X2.00ISO6H-BC-M004	03000121	M14	2,0	-	11,0 <i>0.433</i>	81,0 3.189	25,0 0.984	104,5 <i>4.114</i>	12,1 0.476	11.00X9.00	3	DIN376	6H	С
MTH-M16X2.00ISO6H-BC-M004	03000122	M16	2,0	-	12,0 0.472	68,0 2.677	20,0 0.787	104,5 <i>4.114</i>	14,1 0.555	12.00X9.00	4	DIN376	6H	С
MTH-M18X2.50ISO6H-BC-M004	03000123	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	25,0 0.984	118,125 <i>4.651</i>	15,7 0.618	14.00X11.00	4	DIN376	6H	С
MTH-M20X2.50ISO6H-BC-M004	03000124	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	25,0 0.984	133,125 5.241	17,7 0.697	16.00X12.00	4	DIN376	6H	С

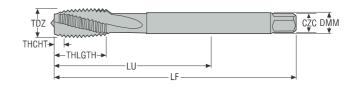
MTH-M004-A



- For cutting data see page(s) 270
 Coating: TiCN
 Substrate: HSS-E
 Internal coolant

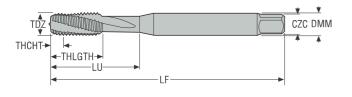
Designation	Item number	TDZ	Pito	:h	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6H-BC-M004-A	03000131	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	105,1875 <i>4.141</i>	10,4 0.409	9.00X7.00	3	DIN376	6H	С
MTH-M14X2.00ISO6H-BC-M004-A	03000132	M14	2,0	-	11,0 <i>0.433</i>	81,0 3.189	25,0 0.984	105,63 <i>4.15</i> 9	12,1 0.476	11.00X9.00	3	DIN376	6H	С
MTH-M16X2.00ISO6H-BC-M004-A	03000133	M16	2,0	-	12,0 <i>0.4</i> 72	68,0 2.677	20,0 0.787	104,5 <i>4.114</i>	14,1 0.555	12.00X9.00	4	DIN376	6H	С
MTH-M18X2.50ISO6H-BC-M004-A	03000134	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	25,0 0.984	119,42 <i>4</i> .702	15,7 0.618	14.00X11.00	4	DIN376	6H	С
MTH-M20X2.50ISO6H-BC-M004-A	03000135	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	25,0 0.984	134,43 5.293	17,7 0.697	16.00X12.00	4	DIN376	6H	С

MTH-N001


- For cutting data see page(s) 272Coating: BRIGHTSubstrate: HSS-E-PM

Designation	Item number	TDZ		tch	DMM	LU	THLGTH	LF mm	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	Inch	Inch	Inch	Inch	Inch					
MTH-M3X0.50ISO6H-BC-N001	03000153	M3	0,5	-	3,5 0.138	18,0 <i>0.709</i>	9,0 <i>0.354</i>	54,625 2.151	2,5 0.098	3.50X2.70	3	DIN371	6H	С
MTH-M4X0.70ISO6H-BC-N001	03000154	M4	0,7	-	4,5 0.177	21,0 0.827	12,0 <i>0.472</i>	61,075 2.405	3,4 0.134	4.50X3.40	3	DIN371	6H	С
MTH-M5X0.80ISO6H-BC-N001	03000155	M5	8,0	-	6,0 0.236	25,0 0.984	13,0 <i>0.512</i>	68,2 2.685	4,3 0.169	6.00X4.90	3	DIN371	6H	С
MTH-M6X1.00ISO6H-BC-N001	03000156	M6	1,0	-	6,0 <i>0</i> .236	30,0 1.181	15,0 <i>0.591</i>	77,25 3.041	5,1 0.201	6.00X4.90	3	DIN371	6H	С
MTH-M8X1.25ISO6H-BC-N001	03000157	M8	1,25	-	8,0 <i>0.315</i>	35,0 1.378	18,0 <i>0.70</i> 9	87,0 3.425	6,8 0.268	8.00X6.20	3	DIN371	6H	С
MTH-M10X1.50ISO6H-BC-N001	03000158	M10	1,5	-	10,0 <i>0.394</i>	39,0 1.535	20,0 <i>0</i> .787	96,3 3.791	8,6 0.339	10.00X8.00	3	DIN371	6H	С

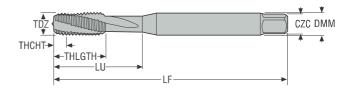
MTH-N002



- For cutting data see page(s) 272Coating: BRIGHTSubstrate: HSS-E-PM

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6H-BC-N002	03000159	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	105,25 <i>4.144</i>	10,4 0.409	9.00X7.00	3	DIN376	6H	С
MTH-M14X2.00ISO6H-BC-N002	03000160	M14	2,0	-	11,0 <i>0.433</i>	81,0 3.189	25,0 0.984	104,6 <i>4.118</i>	12,1 0.476	11.00X9.00	3	DIN376	6H	С
MTH-M16X2.00ISO6H-BC-N002	03000161	M16	2,0	-	12,0 0.472	68,0 2.677	25,0 0.984	104,5 <i>4.114</i>	14,1 0.555	12.00X9.00	3	DIN376	6H	С

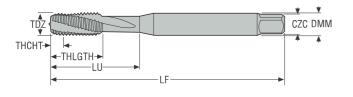
MTH-S001



- For cutting data see page(s) 274Substrate: HSS-E-PM

Designation	Item number	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M3X0.50ISO6HX-BC-S001	10001105	М3	0,5	-	3,5 0.138	8,0 <i>0.315</i>	8,0 <i>0.315</i>	54,75 2.156	2,5 0.098	3.50X2.70	3	DIN371	6HX	С
MTH-M4X0.70ISO6HX-BC-S001	10001106	M4	0,7	-	4,5 0.177	10,5 <i>0.413</i>	10,5 <i>0.41</i> 3	61,25 2.411	3,4 0.134	4.50X3.40	3	DIN371	6HX	С
MTH-M5X0.80ISO6HX-BC-S001	10001107	M5	0,8	-	6,0 0.236	13,0 <i>0.512</i>	13,0 <i>0.512</i>	68,0 2.677	4,3 0.169	6.00X4.90	3	DIN371	6HX	С
MTH-M6X1.00ISO6HX-BC-S001	10001108	M6	1,0	-	6,0 0.236	16,0 0.630	16,0 0.630	77,5 3.051	5,1 0.201	6.00X4.90	3	DIN371	6HX	С
MTH-M8X1.25ISO6HX-BC-S001	10001109	M8	1,25	-	8,0 <i>0.315</i>	20,5 0.807	20,5 0.807	86,87 3.420	6,8 0.268	8.00X6.20	3	DIN371	6HX	С
MTH-M10X1.50ISO6HX-BC-S001	10001110	M10	1,5	-	10,0 <i>0.394</i>	25,5 1.004	25,5 1.004	96,25 3.789	8,6 0.339	10.00X8.00	3	DIN371	6HX	С

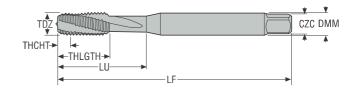
MTH-S002



- For cutting data see page(s) 274Substrate: HSS-E-PM

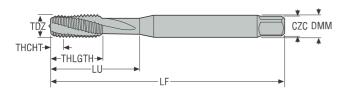
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6HX-BC-S002	10001111	M12	1,75	-	12,0 <i>0.472</i>	30,5 1.201	30,5 1.201	105,09 <i>4.137</i>	10,4 0.409	12.00X9.00	4	DIN371	6HX	С
MTH-M16X2.00ISO6HX-BC-S002	10001112	M16	2,0	-	16,0 <i>0.630</i>	39,5 1.555	39,5 1.555	104,4 <i>4.110</i>	14,1 0.555	16.00X12.00	4	DIN371	6HX	С

MTH-S003



- For cutting data see page(s) 274Coating: TiNSubstrate: HSS-E-PM

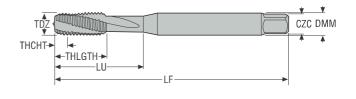
Designation	Item number	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M3X0.50ISO6HX-BC-S003	10001073	M3	0,5	-	3,5 0.138	8,0 <i>0.315</i>	8,0 <i>0.315</i>	54,75 2.156	2,5 0.098	3.50X2.70	3	DIN371	6HX	С
MTH-M4X0.70ISO6HX-BC-S003	10001074	M4	0,7	-	4,5 0.177	10,5 <i>0.413</i>	10,5 <i>0.41</i> 3	61,25 2.411	3,4 0.134	4.50X3.40	3	DIN371	6HX	С
MTH-M5X0.80ISO6HX-BC-S003	10001075	M5	8,0	-	6,0 0.236	13,0 <i>0.512</i>	13,0 <i>0.512</i>	68,0 2.677	4,3 0.169	6.00X4.90	3	DIN371	6HX	С
MTH-M6X1.00ISO6HX-BC-S003	10001076	M6	1,0	-	6,0 0.236	16,0 0.630	16,0 <i>0.630</i>	77,5 3.051	5,1 0.201	6.00X4.90	3	DIN371	6HX	С
MTH-M8X1.25ISO6HX-BC-S003	10001077	M8	1,25	-	8,0 <i>0.315</i>	20,5 0.807	20,5 0.807	86,87 3.420	6,8 0.268	8.00X6.20	3	DIN371	6HX	С
MTH-M10X1.50ISO6HX-BC-S003	10001078	M10	1,5	-	10,0 <i>0.394</i>	25,5 1.004	25,5 1.004	96,25 3.789	8,6 0.339	10.00X8.00	3	DIN371	6HX	С



- For cutting data see page(s) 274Coating: TiNSubstrate: HSS-E-PM

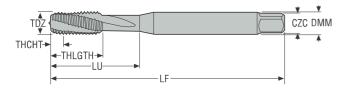
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6HX-BC-S004	10001079	M12	1,75	-	12,0 <i>0.4</i> 72	30,5 1.201	30,5 1.201	105,09 <i>4.137</i>	10,4 0.409	12.00X9.00	4	DIN371	6HX	С
MTH-M16X2.00ISO6HX-BC-S004	10001080	M16	2,0	-	16,0 <i>0.630</i>	39,5 1.555	39,5 1.555	104,4 <i>4.110</i>	14,1 0.555	16.00X12.00	4	DIN371	6HX	С

MTH-S011



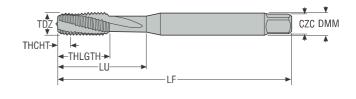
- For cutting data see page(s) 274Substrate: HSS-E-PM

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M8X1.00ISO6HX-BC-S011	10001082	MF8X1	1,0	-	8,0 0.315	20,0 0.787	20,0 0.787	87,5 3.445	7,0 0.276	8.00X6.20	3	DIN371	6HX	С
MTH-M10X1.00ISO6HX-BC-S011	10001083	MF10X1	1,0	-	10,0 <i>0.394</i>	24,0 0.945	24,0 0.945	87,5 3.445	9,0 <i>0.354</i>	10.00X8.00	3	DIN371	6HX	С
MTH-M10X1.25ISO6HX-BC-S011	10001084	MF10X1.25	1,25	-	10,0 <i>0.394</i>	24,5 0.965	24,5 0.965	96,87 3.814	8,75 0.344	10.00X8.00	3	DIN371	6HX	С
MTH-M12X1.25ISO6HX-BC-S011	10001085	MF12X1.25	1,25	-	12,0 0.472	28,5 1.122	28,5 1.122	96,49 3.799	10,75 0.423	12.00X9.00	4	DIN371	6HX	С
MTH-M12X1.50ISO6HX-BC-S011	10001086	MF12X1.5	1,5	-	12,0 0.472	29,5 1.161	29,5 1.161	95,8 3.772	10,5 0.413	12.00X9.00	4	DIN371	6HX	С



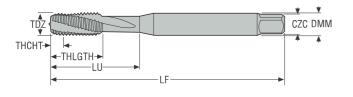
- For cutting data see page(s) 274Substrate: HSS-E-PM

Designation	Item number	TDZ	Pi	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-MJ3X0.50ISO4H-BC-S012	10001069	MJ3X0.5	0,5	-	3,5 0.138	8,0 <i>0.315</i>	8,0 <i>0.315</i>	54,75 2.156	2,6 0.102	3.50X2.70	3	DIN371	4H	С
MTH-MJ4X0.70ISO4H-BC-S012	10001070	MJ4X0.7	0,7	-	4,5 0.177	10,5 <i>0.41</i> 3	10,5 <i>0.41</i> 3	61,25 2.411	3,4 0.134	4.50X3.40	3	DIN371	4H	С
MTH-MJ5X0.80ISO4H-BC-S012	10001071	MJ5X0.8	0,8	-	6,0 0.236	13,0 <i>0.512</i>	13,0 <i>0.512</i>	68,0 2.677	4,3 0.169	6.00X4.90	3	DIN371	4H	С
MTH-MJ6X1.00ISO4H-BC-S012	10001072	MJ6X1	1,0	-	6,0 0.236	15,5 0.610	15,5 0.610	77,5 3.051	5,1 0.201	6.00X4.90	3	DIN371	4H	С



- For cutting data see page(s) 274Substrate: HSS-E-PM

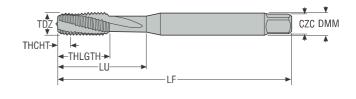
Designation	ltem number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-2-56UNC2B-BC-S031	10001113	UNC2-56	-	56.0	2,8 0.110	9,0 <i>0.354</i>	9,0 <i>0.354</i>	43,87 1.727	1,85 0.073	2.80X2.10	3	DIN2184-1	2B	С
MTH-3-48UNC2B-BC-S031	10001114	UNC3-48	-	48.0	2,8 0.110	9,0 <i>0.354</i>	9,0 <i>0.354</i>	48,68 1.917	2,1 0.083	2.80X2.10	3	DIN2184-1	2B	С
MTH-4-40UNC2B-BC-S031	10001115	UNC4-40	-	40.0	3,5 0.138	10,0 <i>0.394</i>	10,0 0.394	54,41 2.142	2,35 0.093	3.50X2.70	3	DIN2184-1	2B	С
MTH-6-32UNC2B-BC-S031	10001116	UNC6-32	-	32.0	4,0 0.157	12,0 0.472	12,0 0.472	54,02 2.127	2,85 0.112	4.00X3.00	3	DIN2184-1	2B	С
MTH-8-32UNC2B-BC-S031	10001117	UNC8-32	-	32.0	4,5 0.177	13,0 <i>0.512</i>	13,0 <i>0.512</i>	61,02 2.402	3,5 0.138	4.50X3.40	3	DIN2184-1	2B	С
MTH-10-24UNC2B-BC-S031	10001119	UNC10-24	-	24.0	6,0 0.236	16,0 0.630	16,0 0.630	67,35 2.652	3,9 0.154	6.00X4.90	3	DIN2184-1	2B	С
MTH-1/4-20UNC2B-BC-S031	10001120	UNC1/4-20	-	20.0	7,0 0.276	15,0 0.591	15,0 0.591	76,44 3.009	5,1 0.201	7.00X5.50	3	DIN2184-1	2B	С
MTH-5/16-18UNC2B-BC-S031	10001122	UNC5/16-18	-	18.0	8,0 0.315	18,0 0.709	18,0 <i>0.709</i>	86,05 3.388	6,6 0.260	8.00X6.20	3	DIN2184-1	2B	С
MTH-3/8-16UNC2B-BC-S031	10001121	UNC3/8-16	-	16.0	10,0 <i>0.394</i>	20,0 0.787	20,0 <i>0.787</i>	95,55 3.762	8,0 0.315	10.00X8.00	4	DIN2184-1	2B	С



- For cutting data see page(s) 274Substrate: HSS-E-PM

Designation	ltem number	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-4-40UNJC3B-BC-S032	10001087	UNJC4-40	-	40.0	3,5 0.138	8,0 0.315	8,0 0.315	54,41 2.142	2,3 0.091	3.50X2.70	3	DIN2184-1	3B	С
MTH-6-32UNJC3B-BC-S032	10001088	UNJC6-32	-	32.0	4,0 0.157	10,0 <i>0.</i> 394	10,0 <i>0.394</i>	54,02 2.127	2,8 0.110	4.00X3.00	3	DIN2184-1	3B	С
MTH-8-32UNJC3B-BC-S032	10001089	UNJC8-32	-	32.0	4,5 0.177	11,0 <i>0.4</i> 33	11,0 <i>0.433</i>	61,02 2.402	3,5 0.138	4.50X3.40	3	DIN2184-1	3B	С
MTH-10-24UNJC3B-BC-S032	10001090	UNJC10-24	-	24.0	6,0 0.236	13,5 0.531	13,5 0.531	67,35 2.652	3,9 0.154	6.00X4.90	3	DIN2184-1	3B	С
MTH-1/4-20UNJC3B-BC-S032	10001091	UNJC1/4-20	-	20.0	7,0 0.276	17,5 0.689	17,5 0.689	76,82 3.024	5,2 0.205	7.00X5.50	3	DIN2184-1	3B	С
MTH-5/16-18UNJC3B-BC-S032	10001093	UNJC5/16-18	-	18.0	8,0 <i>0.315</i>	21,0 0.827	21,0 0.827	86,47 3.404	6,7 0.264	8.00X6.20	3	DIN2184-1	3B	С
MTH-3/8-16UNJC3B-BC-S032	10001092	UNJC3/8-16	-	16.0	10,0 <i>0.394</i>	25,0 0.984	25,0 0.984	96,03 3.781	8,1 0.319	10.00X8.00	3	DIN2184-1	3B	С

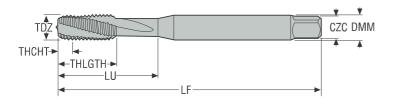
MTH-S041



- For cutting data see page(s) 276Substrate: HSS-E-PM

Designation	ltem number	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-6-40UNF3B-BC-S041	10001123	UNF6-40	-	40.0	4,0 0.157	12,0 0.472	12,0 0.472	54,41 2.142	2,95 0.116	4.00X3.00	3	DIN2184-1	3B	С
MTH-8-36UNF3B-BC-S041	10001126	UNF8-36	-	36.0	4,5 0.177	13,0 <i>0.512</i>	13,0 <i>0.512</i>	61,24 2.411	3,5 0.138	4.50X3.40	3	DIN2184-1	3B	С
MTH-10-32UNF3B-BC-S041	10001127	UNF10-32	-	32.0	6,0 0.236	16,0 0.630	16,0 0.630	68,02 2.678	4,1 0.161	6.00X4.90	3	DIN2184-1	3B	С
MTH-12-28UNF3B-BC-S041	10001129	UNF12-28	-	28.0	6,0 0.236	15,0 0.591	15,0 0.591	77,46 3.050	4,6 0.181	6.00X4.90	3	DIN2184-1	3B	С
MTH-1/4-28UNF3B-BC-S041	10001130	UNF1/4-28	-	28.0	7,0 0.276	25,0 0.984	15,0 0.591	77,46 3.050	5,5 0.217	7.00X5.50	3	DIN2184-1	3B	С
MTH-5/16-24UNF3B-BC-S041	10001133	UNF5/16-24	-	24.0	8,0 0.315	29,5 1.161	18,0 <i>0.709</i>	87,03 3.426	6,9 0.272	8.00X6.20	3	DIN2184-1	3B	С
MTH-3/8-24UNF3B-BC-S041	10001131	UNF3/8-24	-	24.0	10,0 0.394	33,5 1.319	20,0 0.787	97,03 3.820	8,5 0.335	10.00X8.00	4	DIN2184-1	3B	С

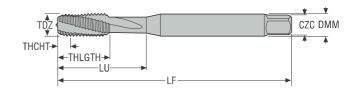
MTH-S042



- For cutting data see page(s) 276Substrate: HSS-E-PM

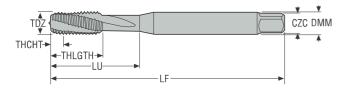
Designation	Item number	TDZ	Pir	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-6-40UNJF3B-BC-S042	10001094	UNJF6-40	-	40.0	4,0 0.157	9,5 0.374	9,5 0.374	54,41 2.142	2,95 0.116	4.00X3.00	3	DIN2184-1	3B	С
MTH-8-36UNJF3B-BC-S042	10001095	UNJF8-36	-	36.0	4,5 0.177	11,0 <i>0.4</i> 33	11,0 <i>0.433</i>	61,24 2.411	3,6 0.142	4.50X3.40	3	DIN2184-1	3B	С
MTH-10-32UNJF3B-BC-S042	10001097	UNJF10-32	-	32.0	6,0 0.236	12,5 0.492	12,5 0.492	68,02 2.678	4,15 0.163	6.00X4.90	3	DIN2184-1	3B	С
MTH-1/4-28UNJF3B-BC-S042	10001098	UNJF1/4-28	-	28.0	7,0 0.276	16,0 0.630	16,0 0.630	77,73 3.060	5,6 0.220	7.00X5.50	3	DIN2184-1	3B	С
MTH-5/16-24UNJF3B-BC-S042	10001100	UNJF5/16-24	-	24.0	8,0 <i>0.315</i>	20,0 0.787	20,0 0.787	87,35 3.439	7,0 0.276	8.00X6.20	3	DIN2184-1	3B	С
MTH-3/8-24UNJF3B-BC-S042	10001099	UNJF3/8-24	-	24.0	10,0 <i>0.</i> 394	23,0 0.906	23,0 0.906	97,35 3.833	8,6 0.339	10.00X8.00	3	DIN2184-1	3B	С

MTH-S043



- For cutting data see page(s) 276Coating: AICrNSubstrate: HSS-E-PM

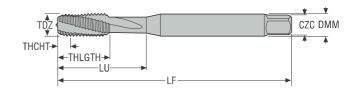
Designation	Item number	TDZ	Pir	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
Designation	Humbor	152	mm	TPI	mm inch	mm inch	mm inch	mm inch	mm inch	323	ille.		TOTAL	
MTH-10-32EGUNF3B-BC-S043 MTH-10-32STIUNF3B-BC-S043	10001199	EGUN10-32	-	32.0	6,0 0.236	23 0.906	15,0 0.591	77,8 3.062	5,1 0.201	6.00X4.90	3	DIN2184-1	3B	С
MTH-1/4-28EGUNF3B-BC-S043 MTH-1/4-28STIUNF3B-BC-S043	10001200	EGUNF1/4-28	-	28.0	8,0 0.315	30 1.161	18,0 <i>0.70</i> 9	87,5 3.443	6,6 0.260	8.00X6.20	3	DIN2184-1	3B	С
MTH-5/16-24EGUNF3B-BC-S043 MTH-5/16-24STIUNF3B-BC-S043	10001201	EGUNF5/16-24	-	24.0	10,0 0.394	34 1.319	20,0 <i>0.787</i>	97,0 3.820	8,2 0.323	10.00X8.00	3	DIN2184-1	3B	С
MTH-3/8-24EGUNF3B-BC-S043 MTH-3/8-24STIUNF3B-BC-S043	10001202	EGUNF3/8-24	-	24.0	8,0 <i>0.315</i>	76 2.992	20,0 <i>0.787</i>	97,0 3.820	9,8 0.386	8.00X6.20	4	DIN2184-1	3B	С



- For cutting data see page(s) 276Substrate: HSS-E-PM

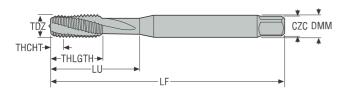
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm inch	mm inch	mm inch	mm inch	mm inch					
MTH-10-32EGUNF3B-BC-S044 MTH-10-32STIUNF3B-BC-S044	10001101	EGUNF10-32	-	32.0	6,0 0.236	15 0.591	15,0 0.591	78,0 3.072	5,1 0.201	6.00X4.90	3	DIN2184-1	3B	С
MTH-1/4-28EGUNF3B-BC-S044 MTH-1/4-28STIUNF3B-BC-S044	10001102	EGUNF1/4-28	-	28.0	8,0 0.315	18 <i>0.70</i> 9	18,0 0.709	87,7 3.454	6,6 0.260	8.00X6.20	3	DIN2184-1	3B	С
MTH-3/8-24EGUNF3B-BC-S044 MTH-3/8-24STIUNF3B-BC-S044	10001103	EGUNF3/8-24	-	24.0	11,0 <i>0.4</i> 33	20 <i>0.</i> 787	20,0 0.787	87,0 3.426	9,8 0.386	11.00X9.00	4	DIN2184-1	3B	С
MTH-5/16-24EGUNF3B-BC-S044 MTH-5/16-24STIUNF3B-BC-S044	10001104	EGUNF5/16-24	-	24.0	10,0 0.394	20 <i>0.</i> 787	20,0 0.787	87,4 3.439	8,2 0.323	10.00X8.00	3	DIN2184-1	3B	С

MTH-S101



- For cutting data see page(s) 276Coating: AICrNSubstrate: HSS-E-PM

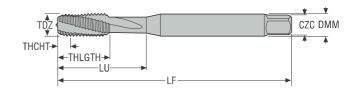
									- Gubotrat	C. TIOO-E-I WI				
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M2X0.40ISO6HX-BC-S101	10001134	M2	0,4	-	2,8 0.110	8,0 <i>0.315</i>	8,0 <i>0.315</i>	44,0 1.732	1,6 0.063	2.80X2.10	3	DIN371	6HX	С
MTH-M2.5X0.45ISO6HX-BC-S101	10001135	M2.5	0,45		2,8 0.110	9,0 <i>0.354</i>	9,0 <i>0.354</i>	48,87 1.924	2,1 0.083	2.80X2.10	3	DIN371	6HX	С
MTH-M3X0.50ISO6HX-BC-S101	10001136	M3	0,5	-	3,5 0.138	10,0 0.394	10,0 <i>0.394</i>	54,75 2.156	2,5 0.098	3.50X2.70	3	DIN371	6HX	С
MTH-M3.5X0.60ISO6HX-BC-S101	10001137	M3.5	0,6	-	4,0 0.157	12,0 0.472	12,0 <i>0.47</i> 2	54,5 2.146	2,9 0.114	4.00X3.00	3	DIN371	6HX	С
MTH-M4X0.70ISO6HX-BC-S101	10001138	M4	0,7	-	4,5 0.177	13,0 <i>0.512</i>	13,0 <i>0.512</i>	61,25 2.411	3,4 0.134	4.50X3.40	3	DIN371	6HX	С
MTH-M5X0.80ISO6HX-BC-S101	10001139	M5	8,0	-	6,0 0.236	16,0 0.630	16,0 <i>0.630</i>	68,0 2.677	4,3 0.169	6.00X4.90	3	DIN371	6HX	С
MTH-M6X1.00ISO6HX-BC-S101	10001140	M6	1,0	-	6,0 0.236	23,0 0.906	15,0 <i>0.591</i>	77,2 3.039	5,1 0.201	6.00X4.90	3	DIN371	6HX	С
MTH-M8X1.25ISO6HX-BC-S101	10001141	M8	1,25	-	8,0 0.315	29,5 1.161	18,0 0.709	86,49 3.405	6,8 0.268	8.00X6.20	3	DIN371	6HX	С
MTH-M10X1.50ISO6HX-BC-S101	10001142	M10	1,5	-	10,0 0.394	33,5 1.319	20,0 0.787	95,8 3.772	8,6 0.339	10.00X8.00	3	DIN371	6HX	С



- For cutting data see page(s) 276Coating: AICrNSubstrate: HSS-E-PM

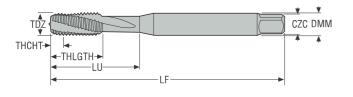
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6HX-BC-S102	10001143	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	105,09 <i>4.137</i>	10,4 0.409	9.00X7.00	4	DIN376	6HX	С
MTH-M16X2.00ISO6HX-BC-S102	10001145	M16	2,0	-	12,0 <i>0.4</i> 72	68,0 2.677	25,0 0.984	104,4 <i>4.110</i>	14,1 0.555	12.00X9.00	4	DIN376	6HX	С
MTH-M20X2.50ISO6HX-BC-S102	10001146	M20	2,5	-	16,0 0.630	95,0 3.740	30,0 1.181	133,0 5.236	17,7 0.697	16.00X12.00	4	DIN376	6HX	С

MTH-S111



- For cutting data see page(s) 276Coating: AICrNSubstrate: HSS-E-PM

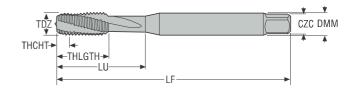
Designation	Item number	TDZ	Pi	tch TPI	DMM mm	LU mm	THLGTH	LF mm	PHDR mm	czc	NOF	BSG	TCTR	тнснт
MTU MOVO TELOGOLIV DO 0444	40004447	14501/0.75		1171	Inch 6,0	Inch 23.0	Inch 15.0	Inch 77.89	Inch 5,25	0.000/4.00	•	DINIOTA	01111	
MTH-M6X0.75ISO6HX-BC-S111	10001147	MF6X0.75	0,75	-	0.236 8,0	0.906 29,5	0.591 18.0	3.067 87.89	0.207 7,25	6.00X4.90	3	DIN371	6HX	С
MTH-M8X0.75ISO6HX-BC-S111	10001148	MF8X0.75	0,75	-	0.315	1.161	0.709	3.460	0.285	8.00X6.20	3	DIN371	6HX	С
MTH-M8X1.00ISO6HX-BC-S111	10001149	MF8X1	1,0	-	8,0 0.315	29,5 1.161	18,0 0.709	87,2 3.433	7,0 0.276	8.00X6.20	3	DIN371	6HX	С
MTH-M10X1.00ISO6HX-BC-S111	10001150	MF10X1	1,0	-	10,0 <i>0.</i> 394	33,5 1.319	20,0 <i>0.787</i>	97,2 3.827	9,0 <i>0.354</i>	10.00X8.00	3	DIN371	6HX	С
MTH-M12X1.50ISO6HX-BC-S111	10001151	MF12X1.5	1,5	-	9,0 <i>0.</i> 354	73,0 2.874	21,0 0.827	95,8 3.772	10,5 <i>0.413</i>	9.00X7.00	4	DIN374	6HX	С
MTH-M14X1.50ISO6HX-BC-S111	10001152	MF14X1.5	1,5	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 <i>0</i> .827	95,8 3.772	12,5 0.492	11.00X9.00	4	DIN374	6HX	С



- For cutting data see page(s) 276Coating: AICrNSubstrate: HSS-E-PM

Designation	Item number	TDZ	Pi	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-MJ3X0.50ISO4H-BC-S112	10001203	MJ3X0.5	0,5	-	3,5 0.138	10,0 0.394	10,0 <i>0.394</i>	54,75 2.156	2,6 0.102	3.50X2.70	3	DIN371	4H	С
MTH-MJ4X0.70ISO4H-BC-S112	10001204	MJ4X0.7	0,7	-	4,5 0.177	13,0 <i>0.512</i>	13,0 <i>0.512</i>	61,25 2.411	3,4 0.134	4.50X3.40	3	DIN371	4H	С
MTH-MJ5X0.80ISO4H-BC-S112	10001205	MJ5X0.8	0,8	-	6,0 0.236	16,0 0.630	16,0 0.630	68,0 2.677	4,3 0.169	6.00X4.90	3	DIN371	4H	С
MTH-MJ6X1.00ISO4H-BC-S112	10001206	MJ6X1	1,0	-	6,0 0.236	23,0 0.906	15,0 <i>0.591</i>	77,2 3.039	5,1 0.201	6.00X4.90	3	DIN371	4H	С
MTH-MJ8X1.25ISO4H-BC-S112	10001207	MJ8X1.25	1,25	-	8,0 <i>0.315</i>	29,5 1.161	18,0 <i>0.70</i> 9	86,49 3.405	6,9 0.272	8.00X6.20	3	DIN371	4H	С
MTH-MJ10X1.5ISO4H-BC-S112	10001208	MJ10X1.5	1,5	-	10,0 <i>0.394</i>	33,5 1.319	20,0 0.787	95,8 3.772	8,7 0.343	10.00X8.00	3	DIN371	4H	С

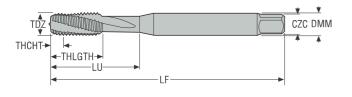
MTH-S142



- For cutting data see page(s) 276Coating: AICrNSubstrate: HSS-E-PM

Designation	ltem number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-10-32UNJF3B-BC-S142	10001153	UNJF10-32	-	32.0	6,0 0.236	16,0 <i>0.630</i>	16,0 0.630	68,02 2.678	4,15 0.163	6.00X4.90	3	DIN2184-1	3B	С
MTH-1/4-28UNJF3B-BC-S142	10001154	UNJF1/4-28	-	28.0	7,0 0.276	25,0 0.984	15,0 0.591	77,73 3.060	5,6 0.220	7.00X5.50	3	DIN2184-1	3B	С
MTH-5/16-24UNJF3B-BC-S142	10001155	UNJF5/16-24	-	24.0	8,0 0.315	29,5 1.161	18,0 0.709	87,03 3.426	7,0 0.276	8.00X6.20	3	DIN2184-1	3B	С
MTH-3/8-24UNJF3B-BC-S142	10001156	UNJF3/8-24	-	24.0	10,0 <i>0.394</i>	33,5 1.319	20,0 0.787	97,03 3.820	8,6 0.339	10.00X8.00	3	DIN2184-1	3B	С

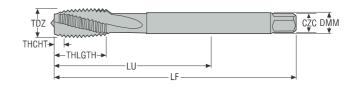
MTH-V011



- For cutting data see page(s) 282Coating: TiNSubstrate: HSS-E

Designation	Item number	TDZ	Pite	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M8X0.75ISO6HX-BC-V011	03000162	MF8X0.75	0,75	-	6,0 0.236	57,0 2.244	13,0 0.512	87,9375 3.462	7,3 0.287	6.00X4.90	3	DIN374	6HX	С
MTH-M18X1.00ISO6HX-BC-V011	03000174	MF18X1.0	1,0	-	14,0 <i>0.551</i>	66,0 2.598	17,0 <i>0.669</i>	106,51 4.193	17,1 0.673	14.00X11.00	3	DIN374	6HX	С
MTH-M20X1.00ISO6HX-BC-V011	03000176	MF20X1.0	1,0	-	16,0 <i>0.630</i>	80,0 3.150	17,0 <i>0.66</i> 9	121,53 <i>4.785</i>	19,1 <i>0.752</i>	16.00X12.00	3	DIN374	6HX	С

MTH-V015


- For cutting data see page(s) 282Coating: TiNSubstrate: HSS-E

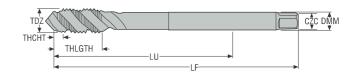
Designation	Item number	TDZ	Pi	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M3X0.50ISO6H-BC-V015	03019188	M3	0,5	-	3,5 0.138	18,0 <i>0.709</i>	9,0 <i>0.354</i>	54,625 2.151	2,5 0.098	3.50X2.70	3	DIN371	6H	С
MTH-M4X0.70ISO6H-BC-V015	03019189	M4	0,7	-	4,5 0.177	21,0 0.827	11,0 <i>0.4</i> 33	61,075 2.405	3,4 0.134	4.50X3.40	3	DIN371	6H	С
MTH-M5X0.80ISO6H-BC-V015	03019190	M5	0,8	-	6,0 0.236	25,0 0.984	13,0 <i>0.512</i>	67,8 2.669	4,3 0.169	6.00X4.90	3	DIN371	6H	С
MTH-M6X1.00ISO6H-BC-V015	03019191	M6	1,0	-	6,0 <i>0</i> .236	30,0 1.181	15,0 0.591	77,25 3.041	5,1 0.201	6.00X4.90	3	DIN371	6H	С
MTH-M8X1.25ISO6H-BC-V015	03019193	M8	1,25	-	8,0 <i>0.315</i>	35,0 1.378	18,0 0.709	86,5625 3.408	6,8 0.268	8.00X6.20	3	DIN371	6H	С
MTH-M10X1.50ISO6H-BC-V015	03019194	M10	1,5	-	10,0 <i>0.394</i>	39,0 1.535	20,0 0.787	95,875 3.775	8,6 0.339	10.00X8.00	3	DIN371	6H	С

MTH-V016

- For cutting data see page(s) 282Coating: TiNSubstrate: HSS-E

Designation	Item number	TDZ	Pito	:h	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6H-BC-V016	03019195	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	105,1875 <i>4.141</i>	10,4 0.409	9.00X7.00	3	DIN376	6H	С
MTH-M14X2.00ISO6H-BC-V016	03019196	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	104,5 <i>4.114</i>	12,1 0.476	11.00X9.00	3	DIN376	6H	С
MTH-M16X2.00ISO6H-BC-V016	03019197	M16	2,0	-	12,0 0.472	68,0 2.677	25,0 0.984	104,5 <i>4.114</i>	14,1 0.555	12.00X9.00	3	DIN376	6H	С
MTH-M18X2.50ISO6H-BC-V016	03019198	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	118,125 <i>4.651</i>	15,7 0.618	14.00X11.00	3	DIN376	6H	С
MTH-M20X2.50ISO6H-BC-V016	03019199	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	30,0 1.181	133,125 5.241	17,7 0.697	16.00X12.00	3	DIN376	6H	С
MTH-M22X2.50ISO6H-BC-V016	03019200	M22	2,5	-	18,0 <i>0.709</i>	93,0 3.661	34,0 1.339	133,125 5.241	19,7 0.776	18.00X14.50	4	DIN376	6H	С
MTH-M24X3.00ISO6H-BC-V016	03019201	M24	3,0	-	18,0 <i>0.709</i>	113,0 <i>4.44</i> 9	38,0 1.496	151,75 5.974	21,0 0.827	18.00X14.50	4	DIN376	6H	С
MTH-M27X3.00ISO6H-BC-V016	03019202	M27	3,0	-	20,0 0.787	97,0 3.819	38,0 1.496	151,75 5.974	24,0 0.945	20.00X16.00	4	DIN376	6H	С
MTH-M30X3.50ISO6H-BC-V016	03019203	M30	3,5	-	22,0 0.866	115,0 4.528	45,0 1.772	171,79 6.763	26,5 1.043	22.00X18.00	4	DIN376	6H	С
MTH-M33X3.50ISO6H-BC-V016	03019204	M33	3,5	-	25,0 0.984	113,0 <i>4.44</i> 9	50,0 1.969	171,79 6.763	29,5 1.161	25.00X20.00	4	DIN376	6H	С
MTH-M36X4.00ISO6H-BC-V016	03019205	M36	4,0	_	28,0 1.102	131,0 5.157	55,0 2.165	190,7 7.508	32,0 1.260	28.00X22.00	4	DIN376	6H	С

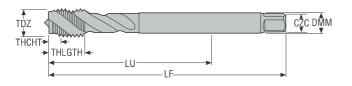
MTH-V025



- For cutting data see page(s) 282
 Coating: TiN
 Substrate: HSS-E
 Long version

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M6X1.00ISO6H-BC-V025	02880644	M6	1,0	-	6,0 <i>0.236</i>	30,0 1.181	10,0 <i>0.</i> 39 <i>4</i>	122,25 4.813	5,1 0.201	6.00X4.90	3	DIN371	6H	С

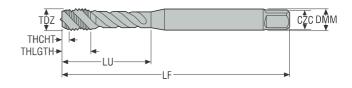
MTH-V026



- For cutting data see page(s) 282
 Coating: TiN
 Substrate: HSS-E
 Long version

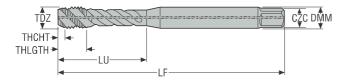
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M14X2.00ISO6H-BC-V026	02880648	M14	2,0	-	11,0 <i>0.433</i>	151,0 5.945	20,0 0.787	174,5 6.870	12,1 0.476	11.00X9.00	3	DIN376	6H	С
MTH-M20X2.50ISO6H-BC-V026	02880651	M20	2,5	-	16,0 0.630	179,0 7.047	25,0 0.984	217,125 8.548	17,7 0.697	16.00X12.00	4	DIN376	6H	С

MTH-V029


- For cutting data see page(s) 282
 Coating: TiN
 Substrate: HSS-PM ≤ M16, HSS-E > M16

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M12X1.75ISO6G-BC-V029	02880658	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	16,0 <i>0.630</i>	110,0 <i>4.331</i>	10,4 0.409	9.00X7.00	3	DIN376	6G	С
MTH-M14X2.00ISO6G-BC-V029	02880659	M14	2,0	-	11,0 0.433	81,0 3.189	20,0 0.787	104,5 4.114	12,1 0.476	11.00X9.00	3	DIN376	6G	С
MTH-M16X2.00ISO6G-BC-V029	02880660	M16	2,0	-	12,0 <i>0.472</i>	68,0 2.677	20,0 <i>0.787</i>	110,0 <i>4.331</i>	14,1 0.555	12.00X9.00	4	DIN376	6G	С
MTH-M20X2.50ISO6G-BC-V029	02880661	M20	2,5	-	16,0 0.630	95,0 3.740	25,0 0.984	140,0 5.512	17,7 0.697	16.00X12.00	4	DIN376	6G	С

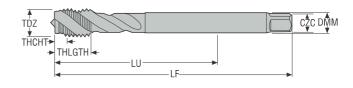
MTH-V030



- For cutting data see page(s) 282
 Coating: TiN
 Substrate: HSS-E ≤ M2,5; HSS-PM > M2,5

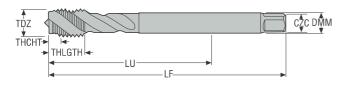
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M7X1.00ISO6H-BC-V030	02880669	M7	1,0	-	7,0 0.276	31,0 1.220	10,0 <i>0.394</i>	77,25 3.041	6,1 0.240	7.00X5.50	3	DIN371	6H	С

MTH-V030-A


- For cutting data see page(s) 282
 Coating: TiN
 Substrate: HSS-PM
 Internal coolant

Designation	Item number	TDZ	Pitcl	h	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M4X0.70ISO6H-BC-V030-A	03000228	M4	0,7	-	4,5 0.177	21,0 0.827	6,7 0.264	61,39 2.417	3,4 0.134	4.50X3.40	3	DIN371	6H	С

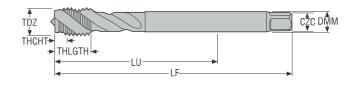
MTH-V033



- For cutting data see page(s) 284
 Coating: TiN
 Substrate: HSS-PM ≤ M16, HSS-E > M16

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	THCHT
_			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M6X1.00ISO6H-BC-V033	02880683	M6	1,0	-	4,5 0.177	59,0 2.323	10,0 <i>0.394</i>	77,25 3.041	5,1 0.201	4.50X3.40	3	DIN376	6H	С
MTH-M8X1.25ISO6H-BC-V033	02880684	M8	1,25	-	6,0 0.236	67,0 2.638	13,0 0.512	86,5625 3.408	6,8 0.268	6.00X4.90	3	DIN376	6H	С
MTH-M10X1.50ISO6H-BC-V033	02880686	M10	1,5	-	7,0 0.276	77,0 3.031	15,0 <i>0.591</i>	95,875 3.775	8,6 0.339	7.00X5.50	3	DIN376	6H	С
MTH-M39X4.00ISO6H-BC-V033	03000221	M39	4,0	-	32,0 1.260	102,0 4.016	40,0 1.575	189,9 7.476	35,0 1.378	32.00X24.00	4	DIN376	6H	С
MTH-M42X4.50ISO6H-BC-V033	03000223	M42	4,5	-	32,0 1.260	102,0 <i>4.016</i>	45,0 1.772	188,77 7.432	37,5 1.476	32.00X24.00	4	DIN376	6H	С
MTH-M48X5.00ISO6H-BC-V033	03000224	M48	5,0	-	36,0 1.417	147,0 5.787	50,0 1.969	237,65 9.356	43,0 1.693	36.00X29.00	4	DIN376	6H	С
MTH-M52X5.00ISO6H-BC-V033	03000225	M52	5,0	-	40,0 1.575	120,0 4.724	50,0 1.969	237,65 9.356	47,0 1.850	40.00X32.00	5	DIN376	6H	С
MTH-M56X5.50ISO6H-BC-V033	03000226	M56	5,5	-	40,0 1.575	120,0 4.724	55,0 2.165	236,52 9.312	50,5 1.988	40.00X32.00	5	DIN376	6H	С
MTH-M64X6.00ISO6H-BC-V033	03000227	M64	6,0	-	50,0 1.969	178,0 7.008	60,0 2.362	300,4 11.827	58,0 2.283	50.00X39.00	6	DIN376	6H	С

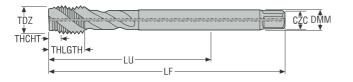
MTH-V033-A



- For cutting data see page(s) 284
 Coating: TiN
 Substrate: HSS-PM ≤ M16, HSS-E > M16
 Internal coolant

									• Internal	Coolant				
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M18X2.50ISO6H-BC-V033-A	03000236	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	25,0 0.984	118,27 <i>4</i> .656	15,7 0.618	14.00X11.00	4	DIN376	6H	С
MTH-M20X2.50ISO6H-BC-V033-A	03000237	M20	2,5	-	16,0 0.630	95,0 3.740	25,0 0.984	133,125 5.241	17,7 0.697	16.00X12.00	4	DIN376	6H	С
MTH-M22X2.50ISO6H-BC-V033-A	03000238	M22	2,5	-	18,0 <i>0.709</i>	93,0 3.661	25,0 0.984	133,125 5.241	19,7 0.776	18.00X14.50	4	DIN376	6H	С
MTH-M24X3.00ISO6H-BC-V033-A	03000239	M24	3,0	-	18,0 0.709	113,0 4.449	30,0 1.181	151,75 5.974	21,0 0.827	18.00X14.50	4	DIN376	6H	С
MTH-M27X3.00ISO6H-BC-V033-A	03000240	M27	3,0		20,0 0.787	97,0 3.819	30,0 1.181	152,15 5.990	24,0 0.945	20.00X16.00	4	DIN376	6H	С
MTH-M30X3.50ISO6H-BC-V033-A	03000241	M30	3,5	-	22,0 0.866	115,0 4.528	36,0 1.417	171,02 6.733	26,5 1.043	22.00X18.00	4	DIN376	6H	С
MTH-M33X3.50ISO6H-BC-V033-A	03000242	M33	3,5	-	25,0 0.984	113,0 <i>4.44</i> 9	50,0 1.969	171,02 6.733	29,5 1.161	25.00X20.00	4	DIN376	6H	С
MTH-M36X4.00ISO6H-BC-V033-A	03000243	M36	4,0	-	28,0 1.102	131,0 5.157	55,0 2.165	189,9 7.476	32,0 1.260	28.00X22.00	4	DIN376	6H	С
MTH-M39X4.00ISO6H-BC-V033-A	03000244	M39	4,0	-	32,0 1.260	102,0 4.016	40,0 1.575	189,9 7.476	35,0 1.378	32.00X24.00	4	DIN376	6H	С
MTH-M42X4.50ISO6H-BC-V033-A	03000245	M42	4,5	-	32,0 1.260	102,0 4.016	45,0 1.772	188,77 7.432	37,5 1.476	32.00X24.00	4	DIN376	6H	С
MTH-M48X5.00ISO6H-BC-V033-A	03000246	M48	5,0	-	36,0 1.417	147,0 5.787	50,0 1.969	237,65 9.356	43,0 1.693	36.00X29.00	4	DIN376	6H	С
MTH-M52X5.00ISO6H-BC-V033-A	03000247	M52	5,0	-	40,0 1.575	120,0 4.724	50,0 1.969	237,65 9.356	47,0 1.850	40.00X32.00	5	DIN376	6H	С
MTH-M56X5.50ISO6H-BC-V033-A	03000248	M56	5,5	-	40,0 1.575	120,0 4.724	55,0 2.165	236,52 9.312	50,5 1.988	40.00X32.00	5	DIN376	6H	С
MTH-M64X6.00ISO6H-BC-V033-A	03000249	M64	6,0	-	50,0 1.969	178,0 7.008	60,0 2.362	300,4 11.827	58,0 2.283	50.00X39.00	6	DIN376	6H	С

MTH-V038

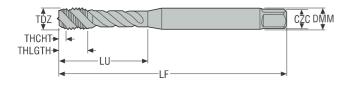


- For cutting data see page(s) 284
 Coating: TiN
 Substrate: HSS-PM ≤ M16, HSS-E > M16

Designation	ltem number	TDZ	Pi	tch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	тнснт
			mm	TPI	mm inch	mm inch	mm inch	mm inch	mm inch					
MTH-M9X1.00ISO6H-BC-V038 MTH-M9X1.00ISO6H-BC-V038	03000361	MF9X1.0	1,0	-	7,0 0.276	67 2.638	17,0 0.669	87,3 3.435	8,1 0.319	7.00X5.50	3	DIN374	6H	С
MTH-M11X1.00ISO6H-BC-V038 MTH-M11X1.00ISO6H-BC-V038	03000362	MF11X1.0	1,0	-	8,0 <i>0.315</i>	63 2.480	18,0 0.709	87,3 3.435	10,1 0.398	8.00X6.20	3	DIN374	6H	С
MTH-M11X1.25ISO6H-BC-V038 MTH-M11X1.25ISO6H-BC-V038	03000363	MF11X1.25	1,25	-	8,0 <i>0.315</i>	63 2.480	22,0 0.866	86,6 3.408	9,8 0.386	8.00X6.20	3	DIN374	6H	С
MTH-M14X1.00ISO6H-BC-V038 MTH-M14X1.00ISO6H-BC-V038	02880698	MF14X1.0	1,0	-	11,0 <i>0.433</i>	71 2.795	15,0 0.591	107,3 4.222	13,1 0.516	11.00X9.00	3	DIN374	6H	С
MTH-M14X1.25ISO6H-BC-V038 MTH-M14X1.25ISO6H-BC-V038	02880699	MF14X1.25	1,25	-	11,0 <i>0.4</i> 33	71 2.795	15,0 0.591	106,6 4.195	12,8 0.504	11.00X9.00	3	DIN374	6H	С
MTH-M16X1.00ISO6H-BC-V038 MTH-M16X1.00ISO6H-V038	02880702	MF16X1.0	1,0	-	12,0 <i>0.4</i> 72	58 2.283	15,0 0.591	97,3 3.829	15,1 0.594	12.00X9.00	4	DIN374	6H	С
MTH-M18X1.00ISO6H-BC-V038 MTH-M18X1.00ISO6H-BC-V038	02880704	MF18X1.0	1,0	-	14,0 <i>0.551</i>	66 2.598	17,0 0.669	107,3 4.222	17,1 0.673	14.00X11.00	4	DIN374	6H	С
MTH-M20X1.00ISO6H-BC-V038 MTH-M20X1.00ISO6H-BC-V038	02880706	MF20X1.0	1,0	-	16,0 <i>0.630</i>	80 3.150	17,0 0.669	122,3 4.813	19,1 <i>0.752</i>	16.00X12.00	4	DIN374	6H	С
MTH-M24X2.00ISO6H-BC-V038 MTH-M24X2.00ISO6H-BC-V038	02880710	MF24X2.0	2,0	-	18,0 <i>0.70</i> 9	93 3.661	20,0 0.787	120,9 <i>4.75</i> 9	22,0 0.866	18.00X14.50	4	DIN374	6H	С
MTH-M25X1.50ISO6H-BC-V038 MTH-M25X1.50ISO6H-BC-V038	02880711	MF25X1.5	1,5	-	18,0 <i>0.70</i> 9	93 3.661	20,0 0.787	135,9 5.349	23,5 0.925	18.00X14.50	4	DIN374	6H	С
MTH-M26X1.50ISO6H-BC-V038 MTH-M26X1.50ISO6H-BC-V038	02880712	MF26X1.5	1,5	-	18,0 <i>0.70</i> 9	93 3.661	20,0 0.787	135,5 5.335	24,5 0.965	18.00X14.50	4	DIN374	6H	С
MTH-M27X1.50ISO6H-BC-V038 MTH-M27X1.50ISO6H-BC-V038	02880713	MF27X1.5	1,5	-	20,0 <i>0.787</i>	77 3.031	20,0 0.787	135,9 5.349	25,5 1.004	20.00X16.00	4	DIN374	6H	С
MTH-M27X2.00ISO6H-BC-V038 MTH-M27X2.00ISO6H-BC-V038	02880714	MF27X2.0	2,0	-	20,0 <i>0.787</i>	77 3.031	20,0 0.787	134,5 5.295	25,0 0.984	20.00X16.00	4	DIN374	6H	С
MTH-M28X1.50ISO6H-BC-V038 MTH-M28X1.50ISO6H-BC-V038	02880715	MF28X1.5	1,5	-	20,0 <i>0.787</i>	77 3.031	20,0 0.787	135,5 5.335	26,5 1.043	20.00X16.00	4	DIN374	6H	С
MTH-M30X1.50ISO6H-BC-V038 MTH-M30X1.50ISO6H-BC-V038	02880717	MF30X1.5	1,5	_	22,0 0.866	85 3.346	20,0 0.787	145,5 5.729	28,5 1.122	22.00X18.00	4	DIN374	6H	С
MTH-M30X2.00ISO6H-BC-V038 MTH-M30X2.00ISO6H-BC-V038	02880718	MF30X2.0	2,0	-	22,0 0.866	85 3.346	20,0 <i>0.787</i>	144,4 5.685	28,0 1.102	22.00X18.00	4	DIN374	6H	С

MTH-V038-A

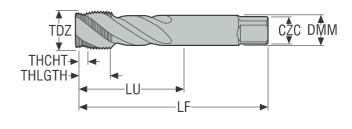
- For cutting data see page(s) 284
 Coating: TiN
 Substrate: HSS-PM ≤ M16, HSS-E > M16
 Internal coolant


								• "	nternal coo	iani				
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	THCH
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M6X0.75ISO6H-BC-V038-A	03000250	MF6X0.75	0,75	-	4,5 0.177	59,0 2.323	10,0 <i>0</i> .394	77,74 3.061	5,3 0.209	4.50X3.40	3	DIN374	6H	С
MTH-M8X0.75ISO6H-BC-V038-A	03000251	MF8X0.75	0,75	-	6,0 0.236	57,0 2.244	13,0 0.512	77,7 3.059	7,3 0.287	6.00X4.90	3	DIN374	6H	С
MTH-M10X0.75ISO6H-BC-V038-A	03000253	MF10X0.75	0,75	-	7,0 0.276	67,0 2.638	13,0 0.512	87,71 3.453	9,3 <i>0.</i> 366	7.00X5.50	3	DIN374	6H	С
MTH-M10X1.25ISO6H-BC-V038-A	03000255	MF10X1.25	1,25	-	7,0 0.276	77,0 3.031	15,0 0.591	96,59 3.803	8,8 0.346	7.00X5.50	3	DIN374	6H	С
MTH-M12X1.00ISO6H-BC-V038-A	03000256	MF12X1.0	1,0	-	9,0 <i>0.354</i>	73,0 2.874	15,0 0.591	97,05 3.821	11,1 0.437	9.00X7.00	3	DIN374	6H	С
MTH-M12X1.25ISO6H-BC-V038-A	03000257	MF12X1.25	1,25	-	9,0 <i>0.354</i>	73,0 2.874	15,0 0.591	96,49 3.799	10,8 0.425	9.00X7.00	3	DIN374	6H	С
MTH-M14X1.00ISO6H-BC-V038-A	03000259	MF14X1.0	1,0	-	11,0 <i>0.4</i> 33	71,0 2.795	15,0 0.591	97,05 3.821	13,1 0.516	11.00X9.00	3	DIN374	6H	С
MTH-M14X1.25ISO6H-BC-V038-A	03000260	MF14X1.25	1,25	-	11,0 0.433	71,0 2.795	15,0 0.591	96,49 3.799	12,8 0.504	11.00X9.00	3	DIN374	6H	С
MTH-M16X1.00ISO6H-BC-V038-A	03000262	MF16X1.0	1,0	-	12,0 0.472	58,0 2.283	15,0 0.591	97,05 3.821	15,1 0.594	12.00X9.00	4	DIN374	6H	С
MTH-M18X1.00ISO6H-BC-V038-A	03000264	MF18X1.0	1,0	_	14,0 0.551	66,0 2.598	17,0 0.669	106,65 4.199	17,1 0.673	14.00X11.00	4	DIN374	6H	С
MTH-M18X1.50ISO6H-BC-V038-A	03000265	MF18X1.5	1,5	-	14,0 <i>0.551</i>	66,0 2.598	17,0 0.669	105,52 <i>4.154</i>	16,6 <i>0.654</i>	14.00X11.00	4	DIN374	6H	С
MTH-M20X1.00ISO6H-BC-V038-A	03000266	MF20X1.0	1,0	-	16,0 <i>0.630</i>	80,0 3.150	17,0 0.669	121,65 <i>4.789</i>	19,1 <i>0.752</i>	16.00X12.00	4	DIN374	6H	С
MTH-M20X1.50ISO6H-BC-V038-A	03000267	MF20X1.5	1,5	-	16,0 <i>0.630</i>	80,0 <i>3.150</i>	17,0 0.669	120,875 <i>4.75</i> 9	18,6 0.732	16.00X12.00	4	DIN374	6H	С
MTH-M22X1.50ISO6H-BC-V038-A	03000268	MF22X1.5	1,5	-	18,0 <i>0.709</i>	78,0 3.071	17,0 0.669	120,875 <i>4.75</i> 9	20,5 0.807	18.00X14.50	4	DIN374	6H	С
MTH-M24X1.50ISO6H-BC-V038-A	03000269	MF24X1.5	1,5	-	18,0 <i>0.709</i>	93,0 3.661	20,0 0.787	135,52 5.335	22,5 0.886	18.00X14.50	4	DIN374	6H	С
MTH-M24X2.00ISO6H-BC-V038-A	03000270	MF24X2.0	2,0	-	18,0 0.709	93,0 3.661	20,0 0.787	134,4 5.291	22,0 0.866	18.00X14.50	4	DIN374	6H	С
MTH-M25X1.50ISO6H-BC-V038-A	03000271	MF25X1.5	1,5	-	18,0 <i>0.709</i>	93,0 3.661	20,0 0.787	135,52 5.335	23,5 0.925	18.00X14.50	4	DIN374	6H	С
MTH-M26X1.50ISO6H-BC-V038-A	03000272	MF26X1.5	1,5	-	18,0 <i>0.709</i>	93,0 3.661	20,0 0.787	135,52 5.335	24,5 0.965	18.00X14.50	4	DIN374	6H	С
MTH-M27X1.50ISO6H-BC-V038-A	03000273	MF27X1.5	1,5	-	20,0 0.787	77,0 3.031	20,0 0.787	135,52 5.335	25,5 1.004	20.00X16.00	4	DIN374	6H	С
MTH-M27X2.00ISO6H-BC-V038-A	03000274	MF27X2.0	2,0	-	20,0 0.787	77,0 3.031	20,0 0.787	134,4 5.291	25,0 0.984	20.00X16.00	4	DIN374	6H	С
MTH-M28X1.50ISO6H-BC-V038-A	03000275	MF28X1.5	1,5	-	20,0 0.787	77,0 3.031	20,0 <i>0.787</i>	135,52 5.335	26,5 1.043	20.00X16.00	4	DIN374	6H	С

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-M30X1.50ISO6H-BC-V038-A	03000276	MF30X1.5	1,5	-	22,0 0.866	85,0 3.346	20,0 0.787	145,52 5.729	28,5 1.122	22.00X18.00	4	DIN374	6Н	С
MTH-M30X2.00ISO6H-BC-V038-A	03000277	MF30X2.0	2,0	-	22,0 0.866	85,0 3.346	20,0 0.787	144,4 5.685	28,0 1.102	22.00X18.00	4	DIN374	6Н	С

SECO!

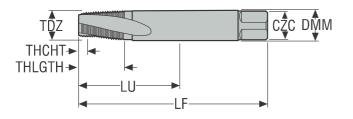
MTH-V043



- For cutting data see page(s) 284Coating: TiNSubstrate: HSS-PM

Designation	ltem number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-3/4-16UNF-BC-V043	03000279	UNF3/4-16	-	16.0	14,0 0.551	77,5 3.051	25,0 0.984	120,63 <i>4.74</i> 9	17,6 <i>0.6</i> 93	14.00X11.00	4	DIN2184-1	2B	С
MTH-7/8-14UNF-BC-V043	03000280	UNF7/8-14	-	14.0	18,0 0.709	93,0 3.661	25,0 0.984	135,0 5.315	20,6 0.811	18.00X14.50	4	DIN2184-1	2B	С
MTH-1-12UNF-BC-V043	03000281	UNF1-12	-	12.0	18,0 0.709	113,0 <i>4.44</i> 9	30,0 1.181	154,17 6.070	23,5 0.925	18.00X14.50	4	DIN2184-1	2B	С

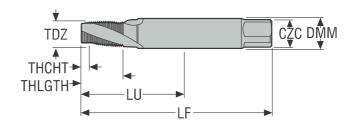
MTH-V045



- For cutting data see page(s) 284
 Coating: TiN
 Substrate: HSS-PM ≤ G3/8, HSS-E > G3/8

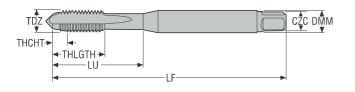
Designation	ltem number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-1.1/8-11G-BC-V045	02880747	G1.1/8-11	-	11.0	28,0 1.102	101,0 3.976	22,0 0.866	163,7 6.445	35,5 1.398	28.00X22.00	4	DIN5156	NORMAL	. С
MTH-1.1/4-11G-BC-V045	02880748	G1.1/4-11	-	11.0	32,0 1.260	72,0 2.835	22,0 0.866	163,7 6.445	39,5 1.555	32.00X24.00	4	DIN5156	NORMAL	. C
MTH-1.1/2-11G-BC-V045	02880749	G1.1/2-11	-	11.0	36,0 1.417	87,0 3.425	23,0 0.906	183,7 7.232	45,4 1.787	36.00X29.00	4	DIN5156	NORMAL	. С

MTH-V048


- For cutting data see page(s) 290VaporisedSubstrate: HSS-E

									• Substite	ile: HSS-E				
Designation	ltem number	TDZ	Pi	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-1/16-27NPT-XC-V048	02880750	NPT1/16-27	-	27.0	7,95 0.313	56,0 2.205	14,0 <i>0.551</i>	80,0 3.150	6,15 0.242	7.95X5.94	3	DIN/ANSI	NORMAL	С
MTH-1/8-27NPT-XC-V048	02880751	NPT1/8-27	-	27.0	11,1 0.437	64,0 2.520	14,0 <i>0.551</i>	90,0 3.543	8,4 0.331	11.10X8.33	4	DIN/ANSI	NORMAL	С
MTH-1/4-18NPT-XC-V048	02880752	NPT1/4-18	-	18.0	14,27 0.562	59,0 2.323	20,0 0.787	100,0 3.937	11,1 0.437	14.27X10.69	4	DIN/ANSI	NORMAL	С
MTH-3/8-18NPT-XC-V048	02880753	NPT3/8-18	-	18.0	17,78 0.700	67,0 2.638	20,0 0.787	110,0 <i>4.331</i>	14,3 0.563	17.78X13.49	5	DIN/ANSI	NORMAL	С
MTH-1/2-14NPT-XC-V048	02880754	NPT1/2-14	-	14.0	17,45 0.687	79,0 3.110	26,0 1.024	125,0 4.921	17,9 0.705	17.45X13.08	5	DIN/ANSI	NORMAL	С
MTH-3/4-14NPT-XC-V048	02880755	NPT3/4-14	-	14.0	23,01 0.906	78,0 3.071	26,0 1.024	140,0 5.512	23,2 0.913	23.01X17.25	5	DIN/ANSI	NORMAL	С
MTH-1-11.5NPT-XC-V048	02880756	NPT1-11.5	-	11.5	28,58 1.125	58,0 2.283	31,0 1.220	150,0 5.906	29,0 1.142	28.58X21.41	5	DIN/ANSI	NORMAL	С

MTH-V050

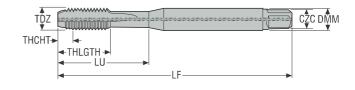


- For cutting data see page(s) 290VaporisedSubstrate: HSS-E

	Item													
Designation	number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTH-1/16-27NPTF-XC-V050	02880757	NPTF1/16-27	-	27.0	7,95 0.313	56,0 2.205	14,0 0.551	80,0 3.150	6,1 0.240	7.95X5.94	3	DIN/ANSI	NORMAL	С
MTH-1/8-27NPTF-XC-V050	02880758	NPTF1/8-27	-	27.0	11,1 <i>0.4</i> 37	64,0 2.520	14,0 0.551	90,0 3.543	8,4 0.331	11.10X8.33	4	DIN/ANSI	NORMAL	С
MTH-1/4-18NPTF-XC-V050	02880759	NPTF1/4-18	-	18.0	14,27 0.562	59,0 2.323	20,0 0.787	100,0 3.937	11,0 0.433	14.27X10.69	4	DIN/ANSI	NORMAL	С
MTH-3/8-18NPTF-XC-V050	02880760	NPTF3/8-18	-	18.0	17,78 0.700	67,0 2.638	20,0 0.787	110,0 <i>4.331</i>	14,3 0.563	17.78X13.49	5	DIN/ANSI	NORMAL	С
MTH-1/2-14NPTF-XC-V050	02880761	NPTF1/2-14	-	14.0	17,45 0.687	79,0 3.110	26,0 1.024	125,0 4.921	17,6 0.693	17.45X13.08	5	DIN/ANSI	NORMAL	С
MTH-3/4-14NPTF-XC-V050	02880762	NPTF3/4-14	-	14.0	23,01 0.906	78,0 3.071	26,0 1.024	140,0 5.512	23,0 0.906	23X17.25	5	DIN/ANSI	NORMAL	С

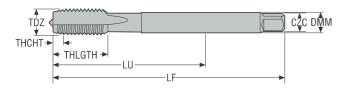
SECO!

MTS-K101


- For cutting data see page(s) 280Coating: TiAINSubstrate: HSS-E-PM

Designation	Item number	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTS-M3X0.50ISO6HX-XC-K101	03305497	М3	0,5	-	3,5 0.138	18,0 <i>0.709</i>	9,0 <i>0.354</i>	54,63 2.151	2,5 0.098	3.50X2.70	4	DIN371	6HX	С
MTS-M4X0.70ISO6HX-XC-K101	03305498	M4	0,7	-	4,5 0.177	21,0 0.827	12,0 <i>0.4</i> 72	61,08 2.405	3,4 0.134	4.50X3.40	4	DIN371	6HX	С
MTS-M5X0.80ISO6HX-XC-K101	03305499	M5	8,0	-	6,0 0.236	25,0 0.984	13,0 <i>0.512</i>	67,80 2.669	4,3 0.169	6.00X4.90	5	DIN371	6HX	С
MTS-M6X1.00ISO6HX-XC-K101	03305500	M6	1,0	-	6,0 0.236	30,0 1.181	15,0 <i>0.591</i>	77,25 3.041	5,1 0.201	6.00X4.90	5	DIN371	6HX	С
MTS-M8X1.25ISO6HX-XC-K101	03305501	M8	1,25	-	8,0 <i>0.315</i>	35,0 1.378	18,0 <i>0.70</i> 9	86,56 3.408	6,8 0.268	8.00X6.20	5	DIN371	6HX	С
MTS-M10X1.50ISO6HX-XC-K101	03305502	M10	1,5	-	10,0 <i>0.394</i>	39,0 1.535	20,0 <i>0.787</i>	95,88 3.775	8,6 0.339	10.00X8.00	5	DIN371	6HX	С

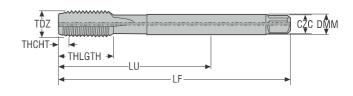
MTS-K101-A



- For cutting data see page(s) 280
 Coating: TiAIN
 Substrate: HSS-E-PM
 Internal coolant

• Internal coolant														
Designation	Item number	TDZ	Pite	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTS-M4X0.70ISO6HX-XC-K101-A	03305448	M4	0,7	_	4,5 0.177	21,0 0.827	12,0 <i>0.4</i> 72	61,07 2.404	3,4 0.134	4.50X3.40	4	DIN371	6HX	С
MTS-M5X0.80ISO6HX-XC-K101-A	03305450	M5	0,8	-	6,0 0.236	25,0 0.984	13,0 <i>0.512</i>	67,80 2.669	4,3 0.169	6.00X4.90	5	DIN371	6HX	С
MTS-M5X0.80ISO6HX-XE-K101-A	03305460	M5	0,8	-	6,0 <i>0.236</i>	25,0 0.984	13,0 <i>0.512</i>	67,80 2.669	4,3 0.169	6.00X4.90	5	DIN371	6HX	Е
MTS-M6X1.00ISO6HX-XC-K101-A	03305451	M6	1,0	-	6,0 0.236	30,0 1.181	15,0 <i>0.591</i>	77,25 3.041	5,1 0.201	6.00X4.90	5	DIN371	6HX	С
MTS-M6X1.00ISO6HX-XE-K101-A	03305461	M6	1,0	-	6,0 0.236	30,0 1.181	15,0 <i>0.591</i>	78,25 3.081	5,1 0.201	6.00X4.90	5	DIN371	6HX	Е
MTS-M8X1.25ISO6HX-XC-K101-A	03305452	M8	1,25	-	8,0 <i>0.315</i>	35,0 1.378	18,0 <i>0.709</i>	86,56 3.408	6,8 0.268	8.00X6.20	5	DIN371	6HX	С
MTS-M8X1.25ISO6HX-XE-K101-A	03305462	M8	1,25	-	8,0 <i>0.315</i>	35,0 1.378	18,0 <i>0.709</i>	87,81 3.457	6,8 0.268	8.00X6.20	5	DIN371	6HX	Е
MTS-M10X1.50ISO6HX-XC-K101-A	03305453	M10	1,5	-	10,0 <i>0</i> .394	39,0 1.535	20,0 0.787	95,88 3.775	8,6 0.339	10.00X8.00	5	DIN371	6HX	С
MTS-M10X1.50ISO6HX-XE-K101-A	03305463	M10	1,5	_	10,0 <i>0.394</i>	39,0 1.535	20,0 0.787	97,38 3.834	8,6 0.339	10.00X8.00	5	DIN371	6HX	E

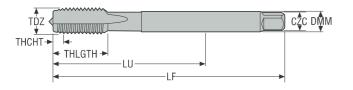
MTS-K002



- For cutting data see page(s) 280Coating: TiAINSubstrate: HSS-E-PM

										tc. 1100-E-1 W				
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTS-M27X3.00ISO6HX-XC-K002	02999880	M27	3,0	-	20,0 0.787	97,0 3.819	38,0 1.496	151,6 5.969	24,0 0.945	20.00X16.00	4	DIN376	6HX	С
MTS-M30X3.50ISO6HX-XC-K002	02999881	M30	3,5	-	22,0 0.866	115,0 <i>4.5</i> 28	45,0 1.772	170,2 6.701	26,5 1.043	22.00X18.00	4	DIN376	6HX	С
MTS-M33X3.50ISO6HX-XC-K002	02999882	M33	3,5	-	25,0 0.984	113,0 <i>4.44</i> 9	50,0 1.969	170,2 6.701	29,5 1.161	25.00X20.00	4	DIN376	6HX	С
MTS-M36X4.00ISO6HX-XC-K002	02999883	M36	4,0	-	28,0 1.102	131,0 5.157	55,0 2.165	188,8 7.433	32,0 1.260	28.00X22.00	4	DIN376	6HX	С
MTS-M39X4.00ISO6HX-XC-K002	02999884	M39	4,0	-	32,0 1.260	102,0 <i>4.016</i>	60,0 2.362	188,8 7.433	35,0 1.378	32.00X24.00	4	DIN376	6HX	С
MTS-M42X4.50ISO6HX-XC-K002	02999885	M42	4,5	-	32,0 1.260	102,0 <i>4.016</i>	60,0 2.362	187,4 7.378	37,5 1.476	32.00X24.00	4	DIN376	6HX	С

MTS-K002-A

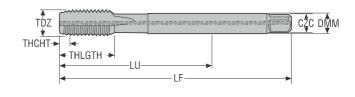


- For cutting data see page(s) 280
 Coating: TiAIN
 Substrate: HSS-E-PM
 Internal coolant

Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTS-M27X3.00ISO6HX-XC-K002-A	02999838	M27	3,0	-	20,0 <i>0.787</i>	97,0 3.819	38,0 1.496	152,5 6.004	24,0 0.945	20.00X16.00	4	DIN376	6HX	С
MTS-M30X3.50ISO6HX-XC-K002-A	02999839	M30	3,5	-	22,0 0.866	115,0 4.528	45,0 1.772	171,25 6.742	26,5 1.043	22.00X18.00	4	DIN376	6HX	С
MTS-M33X3.50ISO6HX-XC-K002-A	02999840	M33	3,5	-	25,0 0.984	113,0 <i>4.44</i> 9	50,0 1.969	170,2 6.701	29,5 1.161	25.00X20.00	4	DIN376	6HX	С
MTS-M36X4.00ISO6HX-XC-K002-A	02999841	M36	4,0	-	28,0 1.102	131,0 5.157	55,0 2.165	188,8 7.433	32,0 1.260	28.00X22.00	4	DIN376	6HX	С
MTS-M39X4.00ISO6HX-XC-K002-A	02999842	M39	4,0	-	32,0 1.260	102,0 4.016	60,0 2.362	188,8 7.433	35,0 1.378	32.00X24.00	4	DIN376	6HX	С
MTS-M42X4.50ISO6HX-XC-K002-A	02999843	M42	4,5	-	32,0 1.260	102,0 <i>4.016</i>	60,0 2.362	187,4 7.378	37,5 1.476	32.00X24.00	4	DIN376	6HX	С

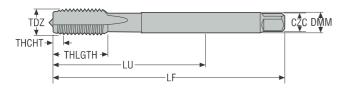
SECO!

MTS-K102


- For cutting data see page(s) 280Coating: TiAINSubstrate: HSS-E-PM

									- Guboua	te. Hoo-E-I W				
Designation	Item number	TDZ	Pite	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTS-M8X1.25ISO6HX-XC-K102	03305503	M8	1,25	-	6,0 0.236	67,0 2.638	20,0 0.787	86,56 3.408	6,8 0.268	6.00X4.90	5	DIN376	6HX	С
MTS-M10X1.50ISO6HX-XC-K102	03305504	M10	1,5	-	7,0 0.276	77,0 3.031	23,5 0.925	95,88 3.775	8,6 0.339	7.00X5.50	5	DIN376	6HX	С
MTS-M12X1.75ISO6HX-XC-K102	03305505	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	105,19 <i>4.141</i>	10,4 0.409	9.00X7.00	5	DIN376	6HX	С
MTS-M14X2.00ISO6HX-XC-K102	03305506	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	104,50 <i>4.114</i>	12,1 0.476	11.00X9.00	5	DIN376	6HX	С
MTS-M16X2.00ISO6HX-XC-K102	03305507	M16	2,0	-	12,0 <i>0.472</i>	68,0 2.677	25,0 0.984	104,50 <i>4.114</i>	14,1 0.555	12.00X9.00	5	DIN376	6HX	С
MTS-M18X2.50ISO6HX-XC-K102	03305508	M18	2,5	-	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	118,13 <i>4.651</i>	15,7 0.618	14.00X11.00	5	DIN376	6HX	С
MTS-M20X2.50ISO6HX-XC-K102	03305509	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	30,0 1.181	133,13 5.241	17,7 0.697	16.00X12.00	5	DIN376	6HX	С
MTS-M22X2.50ISO6HX-XC-K102	03305510	M22	2,5	-	18,0 <i>0.70</i> 9	93,0 3.661	34,0 1.339	133,13 5.241	19,7 0.776	18.00X14.50	5	DIN376	6HX	С
MTS-M24X3.00ISO6HX-XC-K102	03305511	M24	3,0	-	18,0 <i>0.70</i> 9	113,0 <i>4.44</i> 9	38,0 1.496	151,75 5.974	21,0 0.827	18.00X14.50	5	DIN376	6HX	С

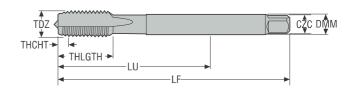
MTS-K102-A



- For cutting data see page(s) 280
 Coating: TiAIN
 Substrate: HSS-E-PM
 Internal coolant

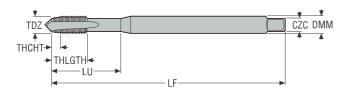
• Internal coolant														
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTS-M12X1.75ISO6HX-XC-K102-A	03305454	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	105,19 <i>4.141</i>	10,4 0.409	9.00X7.00	5	DIN376	6HX	С
MTS-M12X1.75ISO6HX-XE-K102-A	03305464	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	106,94 <i>4.210</i>	10,4 0.409	9.00X7.00	5	DIN376	6HX	Е
MTS-M14X2.00ISO6HX-XC-K102-A	03305455	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	104,50 <i>4.114</i>	12,1 0.476	11.00X9.00	5	DIN376	6HX	С
MTS-M16X2.00ISO6HX-XC-K102-A	03305456	M16	2,0	-	12,0 0.472	68,0 2.677	25,0 0.984	104,50 <i>4.114</i>	14,1 0.555	12.00X9.00	5	DIN376	6HX	С
MTS-M16X2.00ISO6HX-XE-K102-A	03305465	M16	2,0	-	12,0 <i>0.472</i>	68,0 2.677	25,0 0.984	106,50 <i>4.1</i> 93	14,1 0.555	12.00X9.00	5	DIN376	6HX	Е
MTS-M20X2.50ISO6HX-XC-K102-A	03305457	M20	2,5	-	16,0 <i>0.630</i>	95,0 3.740	30,0 1.181	133,13 5.241	17,7 0.697	16.00X12.00	5	DIN376	6HX	С
MTS-M22X2.50ISO6HX-XC-K102-A	03305458	M22	2,5	-	18,0 <i>0.70</i> 9	93,0 3.661	34,0 1.339	133,13 5.241	19,7 0.776	18.00X14.50	5	DIN376	6HX	С
MTS-M24X3.00ISO6HX-XC-K102-A	03305459	M24	3,0	-	18,0 <i>0.70</i> 9	113,0 <i>4.44</i> 9	38,0 1.496	151,75 5.974	21,0 0.827	18.00X14.50	5	DIN376	6HX	С

MTS-K111


- For cutting data see page(s) 280Coating: TiAINSubstrate: HSS-E-PM

									uusiiale. I	100 2 1 111				
Designation	Item number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTS-M10X1.00ISO6HX-XC-K111	03305466	MF10X1.0	1,0	-	7,0 0.276	67,0 2.638	18,0 <i>0.70</i> 9	87,25 3.435	9,0 <i>0.354</i>	7.00X5.50	5	DIN374	6HX	С
MTS-M10X1.25ISO6HX-XC-K111	03305467	MF10X1.25	1,25	-	7,0 0.276	77,0 3.031	20,0 <i>0.787</i>	96,56 3.802	8,8 0.346	7.00X5.50	5	DIN374	6HX	С
MTS-M12X1.25ISO6HX-XC-K111	03305468	MF12X1.25	1,25	-	9,0 <i>0.354</i>	73,0 2.874	21,0 0.827	96,56 3.802	10,75 0.423	9.00X7.00	5	DIN374	6HX	С
MTS-M12X1.50ISO6HX-XC-K111	03305469	MF12X1.5	1,5	-	9,0 <i>0.354</i>	73,0 2.874	21,0 0.827	95,88 3.775	10,5 <i>0.41</i> 3	9.00X7.00	5	DIN374	6HX	С
MTS-M14X1.50ISO6HX-XC-K111	03305470	MF14X1.5	1,5	-	11,0 0.433	71,0 2.795	21,0 0.827	95,88 3.775	12,5 0.492	11.00X9.00	5	DIN374	6HX	С
MTS-M16X1.50ISO6HX-XC-K111	03305471	MF16X1.5	1,5	-	12,0 0.472	58,0 2.283	21,0 0.827	95,88 3.775	14,5 0.571	12.00X9.00	5	DIN374	6HX	С
MTS-M18X1.50ISO6HX-XC-K111	03305472	MF18X1.5	1,5	-	14,0 0.551	66,0 2.598	24,0 0.945	105,88 <i>4.168</i>	16,5 0.650	14.00X11.00	5	DIN374	6HX	С
MTS-M20X1.50ISO6HX-XC-K111	03305473	MF20X1.5	1,5	-	16,0 0.630	80,0 3.150	24,0 0.945	120,88 <i>4.75</i> 9	18,5 0.728	16.00X12.00	5	DIN374	6HX	С

MTS-K121

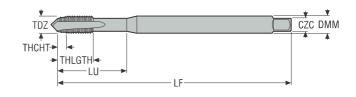


- For cutting data see page(s) 280Coating: TiAINSubstrate: HSS-E-PM

	Item													
Designation	number	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	THCHT
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTS-1/8-28G-XC-K121	03305474	G1/8-28	-	28,0	7,0 0.276	67,0 2.638	13,0 <i>0.512</i>	87,51 3.445	8,8 0.346	7.00X5.50	4	DIN5156	NORMAL-X	С
MTS-1/4-19G-XC-K121	03305475	G1/4-19	-	19,0	11,0 0.433	71,0 2.795	15,0 <i>0.591</i>	96,32 3.792	11,8 0.465	11.00X9.00	4	DIN5156	NORMAL-X	С
MTS-3/8-19G-XC-K121	03305476	G3/8-19	-	19,0	12,0 0.472	58,0 2.283	21,0 0.827	96,32 3.792	15,25 0.600	12.00X9.00	5	DIN5156	NORMAL-X	С
MTS-1/2-14G-XC-K121	03305477	G1/2-14	-	14,0	16,0 0.630	80,0 3.150	21,0 <i>0.827</i>	120,01 <i>4</i> .725	19,0 <i>0.748</i>	16.00X12.00	5	DIN5156	NORMAL-X	С
MTS-3/4-14G-XC-K121	03305478	G3/4-14	-	14,0	20,0 0.787	77,0 3.031	21,0 0.827	135,01 5.315	24,5 0.965	20.00X16.00	6	DIN5156	NORMAL-X	С
MTS-1-11G-XC-K121	03305479	G1-11	-	11,0	25,0 0.984	93,0 3.661	27,0 1.063	153,65 6.049	30,75 1.211	25.00X20.00	6	DIN5156	NORMAL-X	С

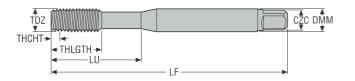
SECO!

MTS-K131


- For cutting data see page(s) 280Coating: TiAINSubstrate: HSS-E-PM

									• Oubstre	ile. Hoo-L-Fivi				
Designation	ltem number	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTS-1/4-20UNC-XC-K131	03305480	UNC1/4-20	-	20.0	7,0 0.276	25,0 0.984	15,6 0.614	76,50 3.012	5,1 0.201	8.25X5.5	5	DIN2184-1	2BX	С
MTS-5/16-18UNC-XC-K131	03305481	UNC5/16-18	-	18.0	8,0 <i>0.315</i>	33,5 1.319	18,7 <i>0.7</i> 36	86,12 3.391	6,6 0.260	9.25X6.20	5	DIN2184-1	2BX	С
MTS-3/8-16UNC-XC-K131	03305482	UNC3/8-16	-	16.0	10,0 <i>0.394</i>	38,0 1.496	20,6 0.811	95,63 3.765	8,0 0.315	11.25X8.00	5	DIN2184-1	2BX	С
MTS-7/16-14UNC-XC-K131	03305483	UNC7/16-14	-	14.0	8,0 0.315	72,7 2.862	20,0 <i>0.787</i>	95,01 3.741	9,4 0.370	9.25X6.20	5	DIN2184-1	2BX	С
MTS-1/2-13UNC-XC-K131	03305484	UNC1/2-13	-	13.0	9,0 <i>0.354</i>	81,9 3.224	23,0 0.906	104,63 <i>4.11</i> 9	10,8 <i>0.42</i> 5	10.25X7.00	5	DIN2184-1	2BX	С
MTS-5/8-11UNC-XC-K131	03305485	UNC5/8-11	-	11.0	12,0 0.472	65,7 2.587	23,0 0.906	103,65 <i>4.081</i>	13,5 0.531	12.25X9.00	5	DIN2184-1	2BX	С
MTS-3/4-10UNC-XC-K131	03305486	UNC3/4-10	-	10.0	14,0 0.551	77,5 3.051	30,0 1.181	118,02 <i>4.646</i>	16,5 0.650	14.25X11.00	5	DIN2184-1	2BX	С
MTS-7/8-9UNC-XC-K131	03305487	UNC7/8-9	-	9.0	18,0 <i>0.709</i>	90,95 3.581	34,0 1.339	132,24 5.206	19,5 <i>0.768</i>	17.25X14.5	5	DIN2184-1	2BX	С

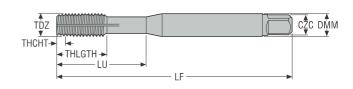
MTS-K141



- For cutting data see page(s) 280Coating: TiAINSubstrate: HSS-E-PM

Designation	ltem number	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MTS-1/4-28UNF-XC-K141	03305488	UNF1/4-28	-	28.0	7,0 0.276	25,0 0.984	15,6 <i>0.614</i>	77,50 3.051	5,5 0.217	8.25X5.5	5	DIN2184-1	2BX	С
MTS-5/16-24UNF-XC-K141	03305489	UNF5/16-24	-	24.0	8,0 <i>0.315</i>	33,5 1.319	18,7 0.736	87,09 3.429	6,9 0.272	9.25X6.20	5	DIN2184-1	2BX	С
MTS-3/8-24UNF-XC-K141	03305491	UNF3/8-24	-	24.0	10,0 0.394	38,0 1.496	20,6 0.811	97,09 3.822	8,5 0.335	11.25X8.00	5	DIN2184-1	2BX	С
MTS-7/16-20UNF-XC-K141	03305492	UNF7/16-20	-	20.0	8,0 <i>0.315</i>	72,7 2.862	20,0 0.787	96,51 3.800	9,9 0.390	9.25X6.20	5	DIN2184-1	2BX	С
MTS-1/2-20UNF-XC-K141	03305493	UNF1/2-20	-	20.0	9,0 <i>0.354</i>	71,9 2.831	23,0 0.906	106,51 <i>4.1</i> 93	11,5 <i>0.45</i> 3	10.25X7.00	5	DIN2184-1	2BX	С
MTS-5/8-18UNF-XC-K141	03305494	UNF5/8-18	-	18.0	12,0 0.472	55,7 2.193	23,0 0.906	106,12 <i>4.178</i>	14,5 0.571	12.25X9.00	5	DIN2184-1	2BX	С
MTS-3/4-16UNF-XC-K141	03305495	UNF3/4-16	-	16.0	14,0 0.551	62,5 2.461	25,0 0.984	120,63 <i>4.74</i> 9	17,5 0.689	14.25X11.00	5	DIN2184-1	2BX	С
MTS-7/8-14UNF-XC-K141	03305496	UNF7/8-14	-	14.0	18,0 <i>0.709</i>	75,95 2.990	25,0 0.984	135,01 5.315	20,4 0.803	17.25X14.5	5	DIN2184-1	2BX	С

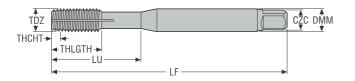
MF-V054



- For cutting data see page(s) 292
 Coating: TiN
 Substrate: HSS-E
 * With tip shape. More information: Suggest at secotools.com

										THAT UP C	mape. More inio	initiation: c	Juggoot at o	000100101	,0111
Designation	Item number		TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
				mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MF-M1X0.25ISO5HX-XC-V054	03000282	*	M1	0,25	-	2,5 0.098	20,0 0.787	5,5 0.217	39,25 1.545	0,89 0.035	2.50X2.10	3	DIN2174	5HX	С
MF-M1.1X0.25ISO5HX-XC-V054	03000283	*	M1.1	0,25	-	2,5 0.098	20,0 0.787	5,5 0.217	39,25 1.545	0,99 0.039	2.50X2.10	3	DIN2174	5HX	С
MF-M1.2X0.25ISO5HX-XC-V054	03000284	*	M1.2	0,25	-	2,5 0.098	20,0 0.787	5,5 0.217	39,25 1.545	1,09 0.043	2.50X2.10	3	DIN2174	5HX	С
MF-M1.4X0.30ISO5HX-XC-V054	03000285	*	M1.4	0,3	-	2,5 0.098	20,0 0.787	7,0 0.276	39,1 1.539	1,27 0.050	2.50X2.10	3	DIN2174	5HX	С
MF-M1.6X0.35ISO6HX-XC-V054	03000286	*	M1.6	0,35	-	2,5 0.098	20,0 0.787	8,0 0.315	38,95 1.533	1,45 0.057	2.50X2.10	3	DIN2174	6HX	С
MF-M1.7X0.35ISO6HX-XC-V054	03000287	*	M1.7	0,35	-	2,5 0.098	20,0 0.787	8,0 0.315	38,95 1.533	1,55 0.061	2.50X2.10	3	DIN2174	6HX	С
MF-M1.8X0.35ISO6HX-XC-V054	03000288	*	M1.8	0,35	-	2,5 0.098	20,0 0.787	8,0 <i>0.315</i>	38,95 1.533	1,65 0.065	2.50X2.10	3	DIN2174	6HX	С
MF-M2.2X0.45ISO6HX-XC-V054	03000290	×	M2.2	0,45	-	2,8 0.110	12,0 0.472	7,0 0.276	43,65 1.719	2,0 0.079	2.80X2.10	3	DIN2174	6HX	С
MF-M2.3X0.40ISO6HX-XC-V054	03000291	*	M2.3	0,4	-	2,8 0.110	12,0 <i>0.472</i>	7,0 0.276	43,8 1.724	2,12 0.083	2.80X2.10	3	DIN2174	6HX	С
MF-M2.6X0.45ISO6HX-XC-V054	03000293	*	M2.6	0,45	-	2,8 0.110	14,0 0.551	8,0 0.315	48,65 1.915	2,4 0.094	2.80X2.10	3	DIN2174	6HX	С

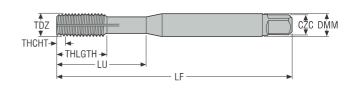
MF-V055



- With channels for lubrication
 For cutting data see page(s) 292
 Coating: TiN
 Substrate: HSS-E
 * With tip shape. More information: Suggest at secotools.com

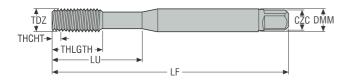
Designation	Item number	*	TDZ	Pit	tch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
				mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MF-M7X1.00ISO6HX-XC-V055	02880467	*	M7	1,0	-	7,0 0.276	30,0 1.181	15,0 <i>0.591</i>	77,0 3.031	6,55 0.258	7.00X5.50	5	DIN2174	6HX	С
MF-M24X3.00ISO6HX-XC-V055	02880474	-	M24	3,0	-	18,0 <i>0.70</i> 9	113,0 <i>4.44</i> 9	36,0 1.417	151,0 5.945	22,65 0.892	18.00X14.50	8	DIN2174	6HX	С
MF-M27X3.00ISO6HX-XC-V055	03000294	-	M27	3,0	-	20,0 0.787	97,0 3.819	36,0 1.417	149,5 5.886	25,65 1.010	20.00X16.00	8	DIN2174	6HX	С
MF-M30X3.50ISO6HX-XC-V055	03000295	-	M30	3,5	-	22,0 0.866	115,0 <i>4.528</i>	40,0 1.575	167,75 6.604	28,45 1.120	22.00X18.00	10	DIN2174	6HX	С
MF-M33X3.50ISO6HX-XC-V055	03000296	-	M33	3,5	-	25,0 0.984	113,0 <i>4.44</i> 9	40,0 1.575	167,75 6.604	31,45 1.238	25.00X20.00	10	DIN2174	6HX	С
MF-M36X4.00ISO6HX-XC-V055	03000297	-	M36	4,0	-	28,0 1.102	131,0 5.157	50,0 1.969	186,0 7.323	34,23 1.348	28.00X22.00	10	DIN2174	6HX	С
MF-M39X4.00ISO6HX-XC-V055	03000298	-	M39	4,0	-	32,0 1.260	102,0 <i>4.016</i>	50,0 1.969	186,0 7.323	37,23 1.466	32.00X24.00	10	DIN2174	6HX	С
MF-M42X4.50ISO6HX-XC-V055	03000299	-	M42	4,5	-	32,0 1.260	102,0 4.016	50,0 1.969	184,25 7.254	40,0 1.575	32.00X24.00	10	DIN2174	6HX	С
MF-M48X5.00ISO6HX-XC-V055	03000300	-	M48	5,0	-	36,0 1.417	147,0 5.787	60,0 2.362	232,5 9.154	45,8 1.803	36.00X29.00	12	DIN2174	6HX	С

MF-V056


- With channels for lubrication
 For cutting data see page(s) 292
 Coating: TiN
 Substrate: HSS-E
 * With tip shape. More information: Suggest at secotools.com

Designation	ltem number		TDZ	Pi	tch	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	тнсн
				mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MF-4-40UNC-XC-V056	03000306	*	UNC4-40	-	40.0	3,5 0.138	18,0 <i>0.709</i>	9,0 0.354	53,78 2.117	2,6 0.102	3.50X2.70	4	DIN2184-1	2BX	С
MF-3/4-10UNC-XC-V056	03000317	-	UNC3/4-10	-	10.0	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	116,11 <i>4.571</i>	17,93 <i>0.706</i>	14.00X11.00	7	DIN2184-1	2BX	С
MF-7/8-9UNC-XC-V056	03000318	-	UNC7/8-9	-	9.0	18,0 <i>0.70</i> 9	93,0 3.661	34,0 1.339	131,53 5.178	20,98 0.826	18.00X14.50	7	DIN2184-1	2BX	С
MF-1-8UNC-XC-V056	03000319	-	UNC1-8	-	8.0	18,0 0.709	113,0 <i>4.44</i> 9	38,0 1.496	150,47 5.924	24,0 0.945	18.00X14.50	8	DIN2184-1	2BX	С

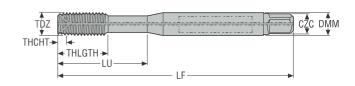
MF-V057



- With channels for lubrication
 For cutting data see page(s) 292
 Coating: TiN
 * With tip shape. More information: Suggest at secotools.com

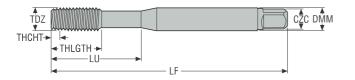
- With the onlines more information															
Designation	Item number		TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
				mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MF-3/4-16UNF-XC-V057	03000327	-	UNF3/4-16	-	16.0	14,0 <i>0.551</i>	81,0 3.189	30,0 1.181	119,44 <i>4.7</i> 02	18,35 0.722	14.00X11.00	7	DIN2184-1	2BX	С
MF-1-12UNF-XC-V057	03000328	-	UNF1-12	-	12.0	18,0 0.709	113,0 <i>4.44</i> 9	38,0 1.496	152,59 6.007	24,46 0.963	18.00X14.50	8	DIN2184-1	2BX	С

MF-V058


- For cutting data see page(s) 292
 Coating: TiN
 Substrate: HSS-E
 * With tip shape. More information: Suggest at secotools.com

Designation	Item number		TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
				mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MF-M3.5X0.60ISO6GX-XC-V058	02880476	*	M3.5	0,6	-	4,0 0.157	20,0 0.787	11,0 <i>0.4</i> 33	54,2 2.134	3,2 0.126	4.00X3.00	4	DIN2174	6GX	С
MF-M12X1.75ISO6GX-XC-V058	02880482	*	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	104,75 <i>4.124</i>	11,2 0.441	9.00X7.00	5	DIN2174	6GX	С

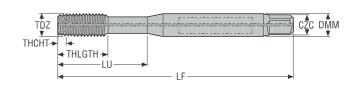
MF-V060-A



- For cutting data see page(s) 292
 Coating: TiN
 Substrate: HSS-E
 Internal coolant

Designation	Item number	TDZ	Pite	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MF-M12X1.75ISO6HX-XC-V060-A	02880487	M12	1,75	-	9,0 <i>0.354</i>	83,0 3.268	23,0 0.906	104,75 <i>4.124</i>	11,2 0.441	9.00X7.00	5	DIN2174	6HX	С
MF-M14X2.00ISO6HX-XC-V060-A	03000329	M14	2,0	-	11,0 <i>0.4</i> 33	81,0 3.189	25,0 0.984	103,0 <i>4.055</i>	13,1 0.516	11.00X9.00	6	DIN2174	6HX	С
MF-M16X2.00ISO6HX-XC-V060-A	03000330	M16	2,0	-	12,0 <i>0.4</i> 72	68,0 2.677	25,0 0.984	104,0 <i>4.094</i>	15,1 0.594	12.00X9.00	6	DIN2174	6HX	С
MF-M18X2.50ISO6HX-XC-V060-A	03000331	M18	2,5	-	14,0 0.551	81,0 3.189	30,0 1.181	116,25 <i>4</i> .577	16,9 0.665	14.00X11.00	7	DIN2174	6HX	С
MF-M20X2.50ISO6HX-XC-V060-A	03000332	M20	2,5	-	16,0 0.630	95,0 3.740	30,0 1.181	132,5 5.217	18,9 0.744	16.00X12.00	7	DIN2174	6HX	С
MF-M22X2.50ISO6HX-XC-V060-A	03000333	M22	2,5	-	18,0 <i>0.</i> 709	93,0 3.661	34,0 1.339	131,25 5.167	20,9 0.823	18.00X14.50	7	DIN2174	6HX	С
MF-M24X3.00ISO6HX-XC-V060-A	03000334	M24	3,0	-	18,0 <i>0.70</i> 9	113,0 <i>4.44</i> 9	38,0 1.496	149,5 5.886	22,65 0.892	18.00X14.50	8	DIN2174	6HX	С
MF-M27X3.00ISO6HX-XC-V060-A	03000335	M27	3,0	-	20,0 0.787	97,0 3.819	38,0 1.496	149,5 5.886	25,65 1.010	20.00X16.00	8	DIN2174	6HX	С
MF-M30X3.50ISO6HX-XC-V060-A	03000336	M30	3,5	-	22,0 0.866	115,0 <i>4.5</i> 28	45,0 1.772	169,5 6.673	28,45 1.120	22.00X18.00	10	DIN2174	6HX	С
MF-M33X3.50ISO6HX-XC-V060-A	03000337	M33	3,5	-	25,0 0.984	113,0 <i>4.44</i> 9	50,0 1.969	167,75 6.604	31,45 1.238	25.00X20.00	10	DIN2174	6HX	С
MF-M36X4.00ISO6HX-XC-V060-A	03000338	M36	4,0	-	28,0 1.102	131,0 5.157	55,0 2.165	186,0 7.323	34,23 1.348	28.00X22.00	10	DIN2174	6HX	С
MF-M39X4.00ISO6HX-XC-V060-A	03000339	M39	4,0	-	32,0 1.260	102,0 <i>4.016</i>	60,0 2.362	186,0 7.323	37,23 1.466	32.00X24.00	10	DIN2174	6HX	С
MF-M42X4.50ISO6HX-XC-V060-A	03000340	M42	4,5	-	32,0 1.260	102,0 4.016	60,0 2.362	184,25 7.254	40,0 1.575	32.00X24.00	10	DIN2174	6HX	С
MF-M48X5.00ISO6HX-XC-V060-A	03000341	M48	5,0	_	36,0 1,417	147,0 5.787	60,0 2.362	232,5 9.154	45,8 1.803	36.00X29.00	12	DIN2174	6HX	С

MF-V063


- For cutting data see page(s) 292
 Coating: TiN
 Substrate: HSS-E
 * With tip shape. More information: Suggest at secotools.com

									•	iai ap anap	Je. More imornia		99		
Designation	Item number	*	TDZ	Pit	ch	DMM	LU	THLGTH	LF	PHDR	czc	NOF	BSG	TCTR	THCHT
				mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MF-M7X0.75ISO6HX-XC-V063	02880490	*	MF7X0.75	0,75	-	7,0 0.276	30,0 1.181	15,0 0.591	77,75 3.061	6,65 0.262	7.00X5.50	5	DIN2174	6HX	С
MF-M8X0.75ISO6HX-XC-V063	02880491	-	MF8X0.75	0,75	-	6,0 0.236	57,0 2.244	18,0 0.709	77,37 3.046	7,65 0.301	6.00X4.90	5	DIN2174	6HX	С
MF-M8X1.00ISO6HX-XC-V063	02880492	-	MF8X1.0	1,0	-	6,0 0.236	67,0 2.638	18,0 0.709	86,5 3.406	7,55 0.297	6.00X4.90	5	DIN2174	6HX	С
MF-M10X1.00ISO6HX-XC-V063	02880493	-	MF10X1.0	1,0	-	7,0 0.276	75,0 2.953	20,0 0.787	87,0 3.425	9,55 0.376	7.00X5.50	5	DIN2174	6HX	С
MF-M10X1.25ISO6HX-XC-V063	02880494	-	MF10X1.25	1,25	-	7,0 0.276	75,0 2.953	20,0 0.787	96,25 3.789	9,45 0.372	7.00X5.50	5	DIN2174	6HX	С
MF-M14X1.00ISO6HX-XC-V063	02880498	-	MF14X1.0	1,0	-	11,0 0.433	71,0 2.795	21,0 0.827	97,0 3.819	13,55 0.533	11.00X9.00	6	DIN2174	6HX	С
MF-M14X1.25ISO6HX-XC-V063	02880499	-	MF14X1.25	1,25	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 0.827	95,62 3.765	13,45 0.530	11.00X9.00	6	DIN2174	6HX	С
MF-M14X1.50ISO6HX-XC-V063	02880500	-	MF14X1.5	1,5	-	11,0 <i>0.4</i> 33	71,0 2.795	21,0 0.827	95,5 3.760	13,35 0.526	11.00X9.00	6	DIN2174	6HX	С

MF-V063-A

- For cutting data see page(s) 292
 Coating: TiN
 Substrate: HSS-E
 Internal coolant

Designation	Item number	TDZ	Pite	:h	DMM	LU	THLGTH	LF	PHDR	CZC	NOF	BSG	TCTR	тнснт
			mm	TPI	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch					
MF-M5X0.50ISO6HX-XC-V063-A	03000342	MF5X0.5	0,5	-	6,0 <i>0.236</i>	25,0 0.984	13,0 0.512	68,25 2.687	4,8 0.189	6.00X4.90	5	DIN2174	6HX	С
MF-M6X0.75ISO6HX-XC-V063-A	03000343	MF6X0.75	0,75	-	6,0 0.236	30,0 1.181	15,0 0.591	77,37 3.046	5,65 0.222	6.00X4.90	5	DIN2174	6HX	С
MF-M8X0.75ISO6HX-XC-V063-A	03000344	MF8X0.75	0,75	-	6,0 0.236	57,0 2.244	15,0 0.591	77,37 3.046	7,65 0.301	6.00X4.90	5	DIN2174	6HX	С
MF-M8X1.00ISO6HX-XC-V063-A	03000345	MF8X1.0	1,0	-	6,0 0.236	67,0 2.638	18,0 0.709	86,5 3.406	7,55 0.297	6.00X4.90	5	DIN2174	6HX	С
MF-M10X0.75ISO6HX-XC-V063-A	03000346	MF10X0.75	0,75	-	7,0 0.276	67,0 2.638	18,0 0.709	87,37 3.440	9,65 0.380	7.00X5.50	5	DIN2174	6HX	С
MF-M10X1.00ISO6HX-XC-V063-A	03000347	MF10X1.0	1,0	-	7,0 0.276	67,0 2.638	18,0 <i>0.709</i>	86,5 3.406	9,55 0.376	7.00X5.50	5	DIN2174	6HX	С
MF-M10X1.25ISO6HX-XC-V063-A	03000349	MF10X1.25	1,25	-	7,0 0.276	77,0 3.031	20,0 0.787	95,62 3.765	9,45 0.372	7.00X5.50	5	DIN2174	6HX	С
MF-M12X1.00ISO6HX-XC-V063-A	03000350	MF12X1.0	1,0	-	9,0 0.354	73,0 2.874	21,0 0.827	97,0 3.819	11,55 0.455	9.00X7.00	5	DIN2174	6HX	С
MF-M12X1.25ISO6HX-XC-V063-A	03000351	MF12X1.25	1,25	-	9,0 0.354	73,0 2.874	21,0 0.827	95,62 3.765	11,45 0.451	9.00X7.00	5	DIN2174	6HX	С
MF-M12X1.50ISO6HX-XC-V063-A	03000352	MF12X1.5	1,5	-	9,0 0.354	73,0 2.874	21,0 0.827	94,75 3.730	11,35 0.447	9.00X7.00	5	DIN2174	6HX	С
MF-M14X1.00ISO6HX-XC-V063-A	03000353	MF14X1.0	1,0	-	11,0 <i>0.433</i>	71,0 2.795	21,0 0.827	96,5 3.799	13,55 0.533	11.00X9.00	6	DIN2174	6HX	С
MF-M14X1.25ISO6HX-XC-V063-A	03000354	MF14X1.25	1,25	-	11,0 <i>0.433</i>	71,0 2.795	21,0 0.827	95,62 3.765	13,45 0.530	11.00X9.00	6	DIN2174	6HX	С
MF-M14X1.50ISO6HX-XC-V063-A	03000355	MF14X1.5	1,5	-	11,0 <i>0.433</i>	71,0 2.795	21,0 0.827	95,5 3.760	13,35 0.526	11.00X9.00	6	DIN2174	6HX	С
MF-M16X1.00ISO6HX-XC-V063-A	03000356	MF16X1.0	1,0	-	12,0 0.472	58,0 2.283	21,0 0.827	96,5 3.799	15,55 0.612	12.00X9.00	6	DIN2174	6HX	С
MF-M16X1.50ISO6HX-XC-V063-A	03000357	MF16X1.5	1,5	-	12,0 <i>0.4</i> 72	58,0 2.283	21,0 0.827	95,5 3.760	15,35 0.604	12.00X9.00	6	DIN2174	6HX	С

MILL TO THE MAX WITH SECO HIGH FEED SP

SECO HIGH FEED SP

YOUR CHALLENGE

Milling challenging materials like tough steels, stainless steels, superalloys and titanium cause built-up or notched edges and broken inserts that increase tooling costs and cause unexpected downtime.

OUR SOLUTION

The High Feed SP easily cuts ISO P, M and S materials to increase material removal rates and extend tool life.

YOUR CHALLENGE

Inexperienced operators index inserts incorrectly, which leads to unexpected machine downtime and scrapped parts.

OUR SOLUTION

The High Feed SP is robust and easy to index.

YOUR CHALLENGE

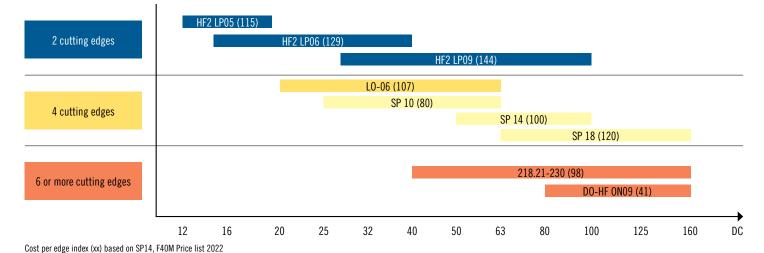
Optimized milling performance requires switching among numerous tools to implement various machining strategies and part materials.

OUR SOLUTION

One High Feed SP tool handles a complete range of high feed milling operations and materials.

CUSTOMER BENEFITS

- Lower cost per part
- Increased production
- Maximum machine usage
- Less unexpected downtime
- Tooling versatility reduces production costs and saves time
- High Feed strategy provides maximized machine performance



SECO HIGH FEED SP

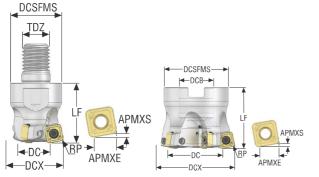
GET THE TOOL THAT MILLS IT ALL

For challenging ISO P, M and S materials, the Seco High Feed SP features a combination of dedicated cutting geometries and insert grades, as well as optimized lead angles, that combine to boost material removal rates, maximize chip evacuation and extend tool life. Packed with versility, one High Feed SP tool optimizes copy milling, ramping, pocketing, face milling and plunging operations to reduce tooling inventory further. Designed for ease of use, the milling tools provide simple foolproof insert indexing that prevents operator mistakes, unexpected machine downtime and scrapped parts.

POSITIONING HIGH FEED CUTTERS

INSERT RANGE OVERVIEW

															GRADE	S								
DESIGNATION	IC IN MM	AN IN MM	RE In MM	S IN MM	CUTTING RAKE IN °								COA	TED								UI	NCOATE	D
						MP1501	MP2050	MP2501	MP3000	MH1000	MM4500	MK1500	MK2050	MS2050	MS2500	T25M	T350M	F15M	F25M	F30M	F40M	¥	H15	H25
SPKT10T317TN-M10	10,0	11,0	1,7	3,97	13,0 °																			
SPKT10T317TN-MD12	10,0	11,0	1,7	3,97	5,0 °																			
SPKT140523TN-M14	14,0	11,0	2,3	5,56	13,0 °																			
SPKT140523TN-MD16	14,0	11,0	2,3	5,56	5,0 °																			
SPKT180630TN-M14	18,0	11,0	3,0	6,35	12,0 °																			
SPKT180630TN-MD16	18,0	11,0	3,0	6,35	5,0 °								•								•			


HIGH FEED SP

For challenging ISO P, M and S materials, the Seco High Feed SP features a combination of dedicated cutting geometries and insert grades, as well as optimized lead angles, that combine to boost material removal rates, maximize chip evacuation and extend tool life. Packed with versility, one High Feed SP tool optimizes copy milling, ramping, pocketing, face milling and plunging operations to reduce tooling inventory further. Designed for ease of use, the milling tools provide simple foolproof insert indexing that prevents operator mistakes, unexpected machine downtime and scrapped parts.

- 3 insert sizes, with IC = 10, 14 & 18mm
- 30 items in metric version, Ø32 to Ø160mm
- 19 items in inch version, Ø01.25 to Ø06.00
- Standard and close pitch
- Well proven SPKT inserts with a range of premium Seco grades optimized for tough materials.

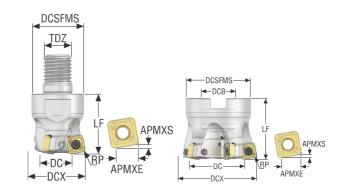
R217/220.21-SP10 - Metric

- For insert selection and cutting data recommendations, see page(s) 497-499
 For complete insert programme, see page(s) 826
 For ISO attribute explanation, see page 16

Designation	ltem number	Type of mounting	DC	DCX	ZEFP	APMXS	APMXE	DCB	DCSFMS	LF	RP	RMPX°	Cmin	Cmax	Weight	RPMX	Insert
			mm	mm		mm	mm	mm	mm	mm	mm		mm	mm	kg		
R217.21-1632.RE-SP10.3A	10097555	Combimaster	15,7	32,0	3	1,1	7,0	-	30,0	35,0	2,83	4,3	47,7	62,0	0,3	21600	SPKT10T317
R217.21-1635.RE-SP10.3A	10097557	Combimaster	18,7	35,0	3	1,1	7,0	-	30,0	35,0	2,8	3,5	53,7	68,0	0,2	20700	SPKT10T317
R217.21-1635.RE-SP10.4A	10097558	Combimaster	18,7	35,0	4	1,1	7,0	-	30,0	35,0	2,8	3,5	53,7	68,0	0,3	20700	SPKT10T317
R217.21-2040.RE-SP10.4A	10097559	Combimaster	23,7	40,0	4	1,1	7,0	-	36,5	40,0	2,79	2,7	63,7	78,0	0,4	19300	SPKT10T317
R217.21-2040.RE-SP10.5A	10097560	Combimaster	23,7	40,0	5	1,1	7,0	-	36,5	40,0	2,79	2,7	63,7	78,0	0,3	19300	SPKT10T317
R217.21-2042.RE-SP10.4A	10097561	Combimaster	25,7	42,0	4	1,1	7,0	-	36,5	40,0	2,8	2,5	67,7	82,0	0,6	18800	SPKT10T317
R217.21-2042.RE-SP10.5A	10097562	Combimaster	25,7	42,0	5	1,1	7,0	-	36,5	40,0	2,8	2,5	67,7	82,0	0,4	18800	SPKT10T317
R220.21-0050-SP10.5A	10097563	Arbor	33,7	50,0	5	1,1	7,0	22,0	41,0	40,0	2,8	1,9	83,7	98,0	0,4	17300	SPKT10T317
R220.21-0050-SP10.6A	10097564	Arbor	33,7	50,0	6	1,1	7,0	22,0	41,0	40,0	2,8	1,9	83,7	98,0	0,4	17300	SPKT10T317
R220.21-0052-SP10.5A	10097565	Arbor	35,7	52,0	5	1,1	7,0	22,0	49,0	40,0	2,8	1,8	87,7	102,0	0,4	17000	SPKT10T317
R220.21-0052-SP10.6A	10097566	Arbor	35,7	52,0	6	1,1	7,0	22,0	49,0	40,0	2,8	1,8	87,7	102,0	0,6	17000	SPKT10T317
R220.21-0063-SP10.6A	10097567	Arbor	46,7	63,0	6	1,1	7,0	22,0	49,0	40,0	2,8	1,3	109,7	124,0	1,0	15800	SPKT10T317
R220.21-0063-SP10.7A	10097568	Arbor	46,7	63,0	7	1,1	7,0	22,0	49,0	40,0	2,8	1,3	109,7	124,0	1,0	15800	SPKT10T317

For Combimaster Shanks, see Machining Navigator Tooling System

Spare Parts Accessories


For cutter	Arbor screw	Insert screw	Insert clamping torque	Torque key
R217.21	-	C03508-T10P	3.0NM	T00-10P30
R217.21-2040-2042-4A	_	C03509-T10P	3.0NM	T00-10P30
R220.21-0050-0063	220.17-692	C03509-T10P	3.0NM	T00-10P30
R220.21-0050-0052-6A	220.17-692	C03508-T10P	3.0NM	T00-10P30

Torque and fixed keys, see page 869

R217/220.21-SP10 - Inch

- For insert selection and cutting data recommendations, see page(s) 497-499
 For complete insert programme, see page(s) 826
 For ISO attribute explanation, see page 16

Designation	Item number	Type of mounting	DC	DCX	ZEFP	APMXS	APMXE	DCB	DCSFMS	LF	RP	RMPX°	C min	C max	Weight	RPMX	Insert
			inch	inch		inch	inch	inch	inch	inch	inch		inch	inch	lbs		
R217.21-01.25.16RE-SP10.3A	10097569	Combimaster	0.606	1.250	3	0.043	0.276	-	1.181	1.378	0.111	5,6	1.856	2.421	1.100	21600	SPKT10T317
R217.21-01.50.20RE-SP10.4A	10097571	Combimaster	0.858	1.500	4	0.043	0.276	-	1.437	1.575	0.110	3,0	2.358	2.921	1.100	19300	SPKT10T317
R220.21-02.00-SP10.5A	10128666	Arbor	1.358	2.000	5	0.043	0.276	0.750	1.789	1.500	0.110	1,9	3.358	3.921	0.880	17300	SPKT10T317
R220.21-02.00-SP10.6A	10097573	Arbor	1.358	2.000	6	0.043	0.276	0.750	1.789	1.500	0.110	1,9	3.358	3.921	1.320	17300	SPKT10T317
R220.21-02.50-SP10.6A	10128667	Arbor	1.858	2.500	6	0.043	0.276	0.750	1.789	1.500	0.110	1,3	4.358	4.921	1.100	15800	SPKT10T317
R220.21-02.50-SP10.7A	10097574	Arbor	1.858	2.500	7	0.043	0.276	0.750	1.789	1.500	0.110	1,3	4.358	4.921	1.320	15800	SPKT10T317

For Combimaster Shanks, see Machining Navigator Tooling System

Spare Parts Accessories

For cutter	Arbor screw	Insert screw	Insert clamping torque	Torque key
R217.21	2	C03508-T10P	26.6IN.LBS	T00-10P30
R220.21-02.00	UC6S3/8UNFX1-1/4	C03508-T10P	26.6IN.LBS	T00-10P30
R220.21-02.50	UC6S3/8UNFX1-1/4	C03509-T10P	26.6IN.LBS	T00-10P30

Torque and fixed keys, see page 869

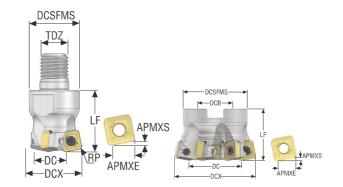
R220.21-SP10 - Insert selection - mm/lnch

SMG		a _p		f _z	
			100%	70%	30%
P1	SPKT10T317TN-M10 MP2501	1,1	0,80	0,80	0,95
	ODI/T4070477N N40 ND0504	0.044 1,1	0.032 0,80	0.032 0,80	0.038 0,95
P2	SPKT10T317TN-M10 MP2501	0.044	0.032	0.032	0.038
P3	SPKT10T317TN-M10 MP2501	1,1 0.044	0,80 0.032	0,80 0.032	0,90 <i>0.036</i>
P4	SPKT10T317TN-M10 MP2501	1,1 0.044	0,75 0.030	0,75 <i>0.030</i>	0,90 <i>0.0</i> 36
P5	SPKT10T317TN-M10 MP2501	1,1	0,75	0,75	0,90
P6	SPKT10T317TN-M10 MP2501	0.044 1,1	0.030 0,75	0.030 0,75	0.036 0,90
		0.044 1,1	0.030 0,90	0.030 0,90	0.036 1,1
P7	SPKT10T317TN-MD12 MP2501	0.044 1,1	0.036 0,95	0.036 0,95	0.044 1,1
P8	SPKT10T317TN-MD12 MP2501	0.044	0.038	0.038	0.044
P11	SPKT10T317TN-MD12 MP2501	1,1 0.044	0,90 0.036	0,90 0.036	1,1 0.044
P12	SPKT10T317TN-M10 MS2500	0,85 0.034	0,50 <i>0.020</i>	0,50 <i>0.020</i>	0,60 <i>0.024</i>
M1	SPKT10T317TN-M10 MS2050	1,1	0,80	0,80	0,95
		0.044 1,1	0.032 0,75	0.032 0,75	0.038 0,90
M2	SPKT10T317TN-M10 MS2050	0.044	0.030	0.030	0.036
M3	SPKT10T317TN-M10 MS2050	0,85 0.034	0,60 0.024	0,60 0.024	0,70 <i>0.02</i> 8
M4	SPKT10T317TN-M10 F40M	0,85 0.034	0,50 <i>0.020</i>	0,50 <i>0.020</i>	0,60 <i>0.024</i>
M5	SPKT10T317TN-M10 F40M	0,85	0,50	0,50	0,60
		0.034 1,1	0.020 1,0	0.020 1,0	0.024 1,2
K1	SPKT10T317TN-MD12 MK2050	0.044 1,1	0.040 0,90	0.040 0,90	0.048 1,1
K2	SPKT10T317TN-MD12 MK2050	0.044	0.036	0.036	0.044
K3	SPKT10T317TN-MD12 MK2050	1,1 0.044	0,90 0.036	0,90 0.036	1,1 0.044
K4	SPKT10T317TN-MD12 MK2050	1,1 0.044	0,90 <i>0.036</i>	0,90 <i>0.036</i>	1,1 <i>0.044</i>
K5	SPKT10T317TN-MD12 MK2050	1,1	0,80	0,80	0,95
K6	SPKT10T317TN-MD12 MK2050	0.044 1,1	0.032 0,90	0.032 0,90	0.038 1,1
NO	3PK 1013 / 1N-WD 2 WK2050	0.044 1,1	0.036 0,80	0.036 0,80	0.044 0,95
K7	SPKT10T317TN-MD12 MK2050	0.044	0.032	0.032	0.038
S1	SPKT10T317TN-M10 MS2500	0,85 0.034	0,50 0.020	0,50 0.020	0,60 <i>0.024</i>
S2	SPKT10T317TN-M10 MS2500	0,85 0.034	0,50 <i>0.020</i>	0,50 <i>0.020</i>	0,60 <i>0.024</i>
S3	SPKT10T317TN-M10 MS2500	0,85	0,48	0,48	0,55
S11	SPKT10T317TN-M10 MS2050	0.034 0,85	0.019 0,60	0.019 0,60	0.022 0,70
		0.034 0,85	0.024 0,60	0.024 0,60	0.028 0,70
S12	SPKT10T317TN-M10 MS2050	0.034	0.024	0.024	0.028
S13	SPKT10T317TN-M10 MS2050	0,85 <i>0.034</i>	0,50 <i>0.020</i>	0,50 <i>0.020</i>	0,60 <i>0.024</i>
H5	SPKT10T317TN-MD12 MP1501	0,85 0.034	0,60 0.024	0,60 0.024	0,70 0.028
H8	SPKT10T317TN-MD12 MP1501	0,85 0.034	0,46 0.018	0,46 0.018	0,55 0.022
H11	SPKT10T317TN-MD12 MP1501	0,85	0,60	0,60	0,70
		0.034 0,85	0.024 0,38	0.024 0,38	0.028 0,46
H12	SPKT10T317TN-M10 MS2500	0.034	0.015	0.015	0.018

SMG = Seco material group f_z = mm/tooth (in/tooth), v_c = m/min (sf/min), a_e /DC = % All cutting data are start values

R220.21-SP10 -	Cutting	data v =	(m/min)/	(cf/min)
R220.21-5P10 -	Cutting	$aata v_c = 1$	(m/min)/	(SI/MIIII)

	01 10	Outting			11(01/111111)		ı			1					
CMC		MP1501			MP2501			MP3000			T350M			F40M	
SMG	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%
	325	375	455	320	370	445	275	315	380	280	325	385	245	280	335
P1	1075	1225	1500	1050	1225	1450	900	1025	1250	920	1075	1275	800	920	1100
P2	310	360	430	315	360	430	260	305	360	270	315	375	235	275	325
Г	1025	1175	1400	1025	1175	1400	850	1000	1175	890	1025	1225	770	900	1075
P3	275 900	315 1025	380 1250	270 890	310 1025	375 1225	230 750	265 870	320 1050	235 770	270 890	330 1075	205 670	235 770	285 940
	245	285	335	240	280	330	205	235	280	210	245	290	185	210	250
P4	800	940	1100	790	920	1075	670	770	920	690	800	950	610	690	820
P5	235	270	320	230	265	315	195	225	270	200	230	275	175	200	240
	770	890 305	1050 360	750 260	870	1025 355	640	740 255	890	660 225	750	900	570	660 225	790 270
P6	260 850	1000	1175	850	300 980	1175	220 720	840	300 980	740	260 850	310 1025	195 <i>640</i>	740	890
D7	245	285	340	245	285	335	205	240	285	210	245	290	185	215	255
P7	800	940	1125	800	940	1100	670	790	940	690	800	950	610	710	840
P8	230	265	320	225	260	315	190	225 740	270	195	230	275	170	200	240
	750 240	870 280	1050 330	740 235	850 275	1025 325	620 200	235	890 275	640 205	750 240	900 285	560 180	660 210	790 245
P11	790	920	1075	770	900	1075	660	770	900	670	790	940	590	690	800
P12	155	180	215	155	175	205	130	150	180	135	155	180	115	135	155
1 12	510	590	710	510	570	670	425	490	590	445	510	590	375	445	510
M1		_	_	225 740	260 850	310 1025	195 640	225 740	270 890	210 690	245 800	290 950	190 620	220 720	265 870
140	_	_	_	185	215	255	165	190	225	175	200	235	155	180	215
M2	_	_	_	610	710	840	540	620	740	570	660	770	510	590	710
M3	_	_	_	150	170	200	130	150	180	140	160	190	125	145	170
	_	_	_	490 115	560 135	660 155	425 100	490 115	590 140	460 190	520 215	620 255	410 100	475 115	560 135
M4	_	_	_	375	445	510	330	375	460	620	710	840	330	375	445
M5	_	_	_	95	110	130	85	95	115	190	215	255	80	95	110
IVIO	_	_	_	310	360	425	280	310	375	620	710	840	260	310	360
K1	245 800	285 940	340 1125	250 820	285 940	340 1125	205 670	240 790	285 940	215 710	250 820	295 970	190 620	215 710	260 850
160	220	255	305	220	255	300	185	215	255	190	220	260	165	190	225
K2	720	840	1000	720	840	980	610	710	840	620	720	850	540	620	740
K3	185	215	255	185	215	255	155	180	215	160	185	220	140	160	190
	610 180	710 205	840 245	610 175	710 205	840 245	510 150	590 175	710 205	520 155	610 180	720 210	460 135	520 155	620 185
K4	590	670	800	570	670	800	490	570	670	510	590	690	445	510	610
K5	110	125	150	110	125	150	90	105	125	95	110	130	85	95	115
110	360	410	490	360	410	490	295	345	410	310	360	425	280	310	375
K6	155 510	180 590	215 710	155 510	180 590	215 710	130 425	155 510	180 590	135 445	155 510	185 <i>610</i>	120 395	135 445	160 520
K7	140	165	195	140	160	190	120	135	165	120	140	165	105	125	145
N/	460	540	640	460	520	620	395	445	540	395	460	540	345	410	475
S1	_	_	_	55 180	65 215	75 245	47 155	55 180	65 215	50 165	60 195	70 230	46 150	55 180	60 195
	_	_	_	45	50	60	38	43	50	41	47	55	37	42	50
S2	_	_	_	150	165	195	125	140	165	135	155	180	120	140	165
S3	_	_	_	40	45	55	33	38	45	35	41	48	32	37	44
	_	_	_	130 80	150 90	180 105	110 65	125 75	<i>150</i> 90	115 70	135 80	155 95	105 65	120 75	145 85
S11	_	_	_	260	295	345	215	245	295	230	260	310	215	245	280
S12	_	_	_	55	60	75	46	55	60	48	55	65	44	50	60
312	_	_	_	180	195	245	150	180	195	155	180	215	145	165	195
S13	_	_	_	32 105	36 120	43 140	26 85	30 100	36 120	28 90	33 110	38 125	26 85	30 100	35 115
	50	60	70	46	55	65	41	47	55	44	50	60	39	44	50
H5	165	195	230	150	180	215	135	155	180	145	165	195	130	145	165
Н8	55	65	75	49	55	65	43	50	60	47	55	65	41	47	55
	180	215	245	160	180	215	140	165	195 70	155	180	215 75	135	155 55	180
H11	65 215	75 245	90 295	60 195	70 230	80 260	50 165	60 195	70 230	55 180	65 215	75 245	49 160	55 180	65 215
⊔ 10	100	115	135	95	110	130	85	95	115	85	95	115	75	85	100
H12	330	375	445	310	360	425	280	310	375	280	310	375	245	280	330
H21	55 190	65	75 245	49	55	65 215	43	50 165	60 105	47 155	55	65 215	41	47 155	55
	180	215	245	160	180	215	140	165	195	155	180	215	135	155	180

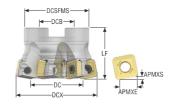

R220.21-SP10 – Cutting data $v_c = (m/min)/(sf/min)$

SMG		MM4500			MK2050			MS2050			MS2500			MP2050	
SIVIO	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%
P1	195 640	230 750	270 890	285 940	330 1075	395 1300	265 870	310 1025	370 1225	350 1150	405 1325	485 1600	315 1025	365 1200	435 1425
P2	190 620	220 720	265 870	270 890	315 1025	375 1225	260 850	300 980	360 1175	340 1125	395 1300	470 1550	305 1000	355 1175	425 1400
P3	165	190	230	240	275	330	225	260	315	295	340	410	265	305	370
	540 150	620 170	750 205	790 215	900 245	1075 290	740 200	850 235	1025 275	970 265	1125 305	1350 360	870 235	1000 275	1225 325
P4	490 140	560 165	670 195	710 205	800 235	950 280	660 190	770 220	900 265	870 250	1000 290	1175 345	770 225	900 260	1075 310
P5	460	540	640	670	770	920	620	720	870	820	950	1125	740	850	1025
P6	160 520	185 <i>610</i>	220 720	230 <i>750</i>	265 870	310 1025	215 710	250 820	295 970	280 920	325 1075	385 1275	255 840	295 970	350 1150
P7	150 490	175 570	205 670	215 710	250 820	295 970	205 670	235 770	280 920	265 870	310 1025	365 1200	240 790	280 920	330 1075
P8	140 460	160 520	195 640	200 660	230 750	280 920	190 620	220 720	265 870	245 800	285 940	345 1125	220 720	255 840	310 1025
P11	145	170	200	210	240	285	195	230	270	260	300	355	235	270	320
P12	475 95	560 110	660 125	690 135	790 155	940 185	640 130	750 145	890 175	850 165	980 190	1175 225	770 150	890 175	1050 205
	310 165	360 190	410 225	445 —	510 —	610	425 210	475 245	<i>570</i> 290	540 245	620 285	740 335	490 220	570 255	670 305
M1	540	620	740	_	_	_	690	800	950	800	940	1100	720	840	1000
M2	135 <i>44</i> 5	155 510	185 <i>610</i>	_	_	_	175 570	200 660	235 770	200 660	235 770	275 900	180 590	210 690	250 820
M3	110 360	125 410	145 <i>4</i> 75	_	_	_	140 <i>460</i>	160 520	190 <i>620</i>	160 520	185 610	220 720	145 475	165 <i>540</i>	195 <i>640</i>
M4	85 280	95 310	115 375	_	_	_	110 360	125 410	145 <i>475</i>	125 410	145 475	170 560	115 375	130 425	155 510
M5	70 230	80	95	_	_	_	90	105	120	105	120	140	95	110	130
K1	230	260 —	310 —	295	340	405	295 —	345 —	395 —	345	395	460 —	310	360 —	425 —
K2	_	_	_	970 265	1125 305	1325 360	_	_	_	_	_	_	_	_	_
	_	_	_	870 220	1000 260	1175 305	_	_	_	_	_	_	_	_	_
K 3	_	_	_	720	850	1000	_	_	_	_	_	_	_	_	_
K4	_	=	_	210 690	245 800	290 950	_	_	_	_	_	_	_	_	_
K5	_	_	_	130 <i>4</i> 25	150 490	180 590	_	_	_	_	_	_	_	_	_
K6	_	_	_	185 610	215 710	255 840	_	_	_	_	_	_	_	_	_
K7	_	_	_	165 540	195 640	230 750	_	_	_	_	_	_	_	_	_
S1	26	30	35	_	_	_	50	60	70	60	70	85	55	65	75
S2	85 21	100 24	115 28	_	_	_	165 41	195 47	230 55	195 50	230 55	280 65	180 45	215 50	245 60
	70 18	80 21	90 25	_	_	_	135 35	155 41	180 48	165 43	180 49	215 60	150 39	165 45	195 55
S3	60 36	70 41	80 49	_	_	_	115 70	135 80	155 95	140 85	160 95	195 115	130 75	150 85	180 105
S11	120	135	160	_	_	_	230	260	310	280	310	375	245	280	345
S12	33 110	38 125	45 150	_	_	_	48 155	55 180	65 215	60 195	65 215	80 260	55 180	60 195	70 230
S13	19 60	22 70	26 85	_	_	_	28 90	33 110	38 125	35 115	40 130	47 155	31 100	36 120	42 140
H5	=	_	_	_	_	_	_	_	_	_	_	_	_	_	_
H8	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
H11	_	_	_	_	_	_	_	_	_	_	_	_	55	65	80
	_	_	_	_	_	_	_	_	_	— 105	— 120	— 145	180 95	215 110	260 130
H12	_	_	_	_	_	_	_	_	_	345	395	475	310	360	425
H21		_	_			_		_	_	_	_	_			_

R217/220.21-SP14 - Metric

- For insert selection and cutting data recommendations, see page(s) 502-504
 For complete insert programme, see page(s) 826
 For ISO attribute explanation, see page 16

Designation	Item number	Type of mounting	DC	DCX	ZEFP	APMXS	APMXE	DCB	DCSFMS	LF	RP	RMPX°	Cmin	Cmax	Weight	RPMX	Insert
			mm	mm		mm	mm	mm	mm	mm	mm		mm	mm	kg		
R217.21-2040.RE-SP14.3A	10135958	Combimaster	17,0	40,0	3	1,8	10,0	-	36,5	45,0	4,06	2,9	57,0	78,0	0,4	11900	SPKT140523
R220.21-0050-SP14.4A	10068147	Arbor	27,1	50,0	4	1,8	10,0	22,0	41,0	40,0	4,02	3,5	77,1	98,0	0,3	10700	SPKT140523
R220.21-0050-SP14.5A	10068148	Arbor	27,1	50,0	5	1,8	10,0	22,0	41,0	40,0	4,04	1,8	77,1	98,0	0,5	10700	SPKT140523
R220.21-0052-SP14.4A	10068149	Arbor	29,1	52,0	4	1,8	10,0	22,0	49,0	40,0	4,02	3,2	81,1	102,0	0,3	10500	SPKT140523
R220.21-0052-SP14.5A	10101535	Arbor	29,1	52,0	5	1,8	10,0	22,0	49,0	40,0	4,02	3,2	81,1	102,0	0,7	10500	SPKT140523
R220.21-0063-SP14.5A	10068150	Arbor	40,1	63,0	5	1,8	10,0	27,0	49,0	50,0	4,01	2,3	103,1	124,0	0,4	9600	SPKT140523
R220.21-0063-SP14.6A	10068151	Arbor	40,1	63,0	6	1,8	10,0	27,0	49,0	50,0	4,01	2,3	103,1	124,0	0,5	9600	SPKT140523
R220.21-0066-SP14.5A	10068152	Arbor	43,0	66,0	5	1,8	10,0	27,0	61,0	50,0	4,02	2,1	109,0	130,0	0,7	9400	SPKT140523
R220.21-0066-SP14.6A	10101540	Arbor	43,0	66,0	6	1,8	10,0	27,0	61,0	50,0	4,02	2,1	109,0	130,0	0,5	9400	SPKT140523
R220.21-0080-SP14.6A	10068154	Arbor	57,0	80,0	6	1,8	10,0	27,0	61,0	50,0	4,01	1,6	137,0	158,0	0,5	8500	SPKT140523
R220.21-0080-SP14.7A	10068155	Arbor	57,0	80,0	7	1,8	10,0	27,0	61,0	50,0	4,01	1,6	137,0	158,0	0,6	8500	SPKT140523
R220.21-0084-SP14.6A	10068156	Arbor	61,0	84,0	6	1,8	10,0	32,0	79,0	50,0	4,01	1,5	145,0	166,0	0,9	8300	SPKT140523
R220.21-0100-SP14.8A	10068157	Arbor	77,0	100,0	8	1,8	10,0	32,0	79,0	50,0	4,01	1,2	177,0	198,0	0,5	7600	SPKT140523
R220.21-0125-SP14.9A	10132522	Arbor	102,0	125,0	9	1,8	10,0	40,0	90,0	63,0	4,0	0,9	227,0	248,0	3,2	6800	SPKT140523


For Combimaster Shanks, see Machining Navigator Tooling System

Spare Parts Accessories

For cutter	Arbor screw	Insert screw	Insert clamping torque	Torque key
R217.21	-	C45011-T20P	5.0NM	T00-20P50
R220.21-0050-0052	220.17-692M	C45011-T20P	5.0NM	T00-20P50
R220.21-0063	MLC6S12X30	C45011-T20P	5.0NM	T00-20P50
R220.21-0066-0080	MC6S12X40	C45011-T20P	5.0NM	T00-20P50
R220.21-0084-0100	MLC6S16X35	C45011-T20P	5.0NM	T00-20P50
R220.21-0125	MC6S20X50	C45011-T20P	5.0NM	T00-20P50

SECO I

R220.21-SP14 - inch

- For insert selection and cutting data recommendations, see page(s) 502-504
 For complete insert programme, see page(s) 826
 For ISO attribute explanation, see page 16

Designation	ltem number	Type of mounting	DC	DCX	ZEFP	APMXS	APMXE	DCB	DCSFMS	LF	RP	RMPX°	C min	C max	Weight	RPMX	Insert
			inch	inch		inch	inch	inch	inch	inch	inch		inch	inch	lbs		
R220.21-02.00-SP14.4A	10068158	Arbor	1.098	2.000	4	0.071	0.394	0.750	1.789	1.500	0.158	3,3	3.098	3.921	1.540	10700	SPKT140523
R220.21-02.00-SP14.5A	10068159	Arbor	1.098	2.000	5	0.071	0.394	0.750	1.789	1.500	0.158	3,3	3.098	3.921	1.100	10700	SPKT140523
R220.21-02.50-SP14.5A	10068160	Arbor	1.594	2.500	5	0.071	0.394	0.750	1.789	1.500	0.158	2,2	4.094	4.921	1.100	9600	SPKT140523
R220.21-02.50-SP14.6A	10068161	Arbor	1.594	2.500	6	0.071	0.394	0.750	1.789	1.500	0.158	2,2	4.094	4.921	1.100	9600	SPKT140523
R220.21-03.00-SP14.6A	10068162	Arbor	2.094	3.000	6	0.071	0.394	1.000	2.289	2.000	0.158	1,7	4.583	5.921	1.320	8500	SPKT140523
R220.21-03.00-SP14.7A	10068163	Arbor	2.094	3.000	7	0.071	0.394	1.000	2.289	2.000	0.158	1,7	4.583	5.921	1.100	8500	SPKT140523
R220.21-04.00-SP14.8A	10068164	Arbor	3.094	4.000	8	0.071	0.394	1.500	3.539	2.000	0.158	1,2	7.094	7.921	1.100	7600	SPKT140523

Spare Parts Accessories

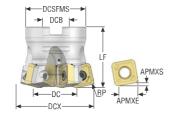
For cutter	Arbor screw	Insert screw	Insert clamping torque	Torque key
R220.21-02.00-02.50	UC6S3/8UNFX1-1/4	C45011-T20P	44.3IN.LBS	T00-20P50
R220.21-03.00	UC6S1/2UNFX1-1/2	C45011-T20P	44.3IN.LBS	T00-20P50
R220.21-04.00	ULC6S3/4UNFX11/2	C45011-T20P	44.3IN.LBS	T00-20P50

R220.21-SP14 - Insert selection - mm/lnch

SMG		a _p		f _z	
			100%	70%	30%
P1	SPKT140523TN-M14 MP2501	1,8 0.070	1,1 0.044	1,1 0.044	1,3 0.050
P2	SPKT140523TN-M14 MP2501	1,8 0.070	1,1 0.044	1,1 0.044	1,3 0.050
P3	SPKT140523TN-M14 MP2501	1,8 0.070	1,0 0.040	1,0 0.040	1,2 0.048
P4	SPKT140523TN-M14 MP2501	1,8	1,0	1,0	1,2
P5	SPKT140523TN-M14 MP2501	0.070 1,8	0.040 1,0	0.040 1,0	0.048
P6	SPKT140523TN-M14 MP2501	0.070 1,8	0.040 1,0	0.040 1,0	0.048
P7	SPKT140523TN-MD16 MP2501	0.070 1,8	0.040 1,1	0.040 1,1	0.048 1,4
P8	SPKT140523TN-MD16 MP2501	0.070 1,8	0.044 1,2	0.044 1,2	0.055 1,4
		0.070 1,8	0.048 1,1	0.048 1,1	0.055 1,4
P11	SPKT140523TN-MD16 MP2501	0.070 1,4	0.044 0,70	0.044 0,70	0.055 0,80
P12	SPKT140523TN-M14 MS2500	0.055	0.028	0.028	0.032
M1	SPKT140523TN-M14 MS2050	1,8 0.070	1,1 0.044	1,1 0.044	1,3 0.050
M2	SPKT140523TN-M14 MS2050	1,8 0.070	1,0 0.040	1,0 0.040	1,2 0.048
M3	SPKT140523TN-M14 MS2050	1,4 0.055	0,80 <i>0.032</i>	0,80 0.032	0,95 0.038
M4	SPKT140523TN-M14 F40M	1,4 0.055	0,70 0.028	0,70 0.028	0,85 0,034
M5	SPKT140523TN-M14 F40M	1,4	0,70	0,70	0,85
K1	SPKT140523TN-MD16 MK2050	0.055 1,8	0.028 1,2	0.028 1,2	0.034 1,5
K2	SPKT140523TN-MD16 MK2050	0.070 1,8	0.048 1,1	0.048 1,1	0.060 1,4
K3		0.070 1,8	0.044 1,1	0.044 1,1	0.055 1,4
	SPKT140523TN-MD16 MK2050	0.070 1,8	0.044 1,1	0.044 1,1	0.055 1,4
K4	SPKT140523TN-MD16 MK2050	0.070 1,8	0.044 1,0	0.044 1,0	0.055 1,2
K5	SPKT140523TN-MD16 MK2050	0.070	0.040	0.040	0.048
K6	SPKT140523TN-MD16 MK2050	1,8 0.070	1,1 0.044	1,1 0.044	1,4 0.055
K7	SPKT140523TN-MD16 MK2050	1,8 0.070	1,0 0.040	1,0 0.040	1,2 0.048
S1	SPKT140523TN-M14 MS2500	1,4 0.055	0,70 0.028	0,70 0.028	0,85 0.034
S2	SPKT140523TN-M14 MS2500	1,4 0.055	0,70 0.028	0,70 0.028	0,85 0.034
S3	SPKT140523TN-M14 MS2500	1,4 0.055	0,65 0.026	0,65 0.026	0,75 0.030
S11	SPKT140523TN-M14 MS2050	1,4	0,80	0,80	0,95
S12	SPKT140523TN-M14 MS2050	0.055 1,4	0.032 0,80	0.032 0,80	0.038 0,95
S13	SPKT140523TN-M14 MS2050	0.055 1,4	0.032 0,70	0.032 0,70	0.038 0,85
		0.055 1,4	0.028 0,75	0.028 0,75	0.034 0,90
H5	SPKT140523TN-MD16 MP1501	0.055 1,4	0.030 0,60	0.030 0,60	0.036 0,70
H8	SPKT140523TN-MD16 MP1501	0.055 1,4	0.024 0,75	0.024 0,75	0.028 0,90
H11	SPKT140523TN-MD16 MP1501	0.055	0.030	0.030	0.036
H12	SPKT140523TN-M14 MS2500	1,4 0.055	0,50 0.020	0,50 0.020	0,60 0.024

SMG = Seco material group f_z = mm/tooth (in/tooth), v_c = m/min (sf/min), a_e /DC = % All cutting data are start values

R220.21-SP14 – Cutting data $v_c = (m/min)/(sf/min)$

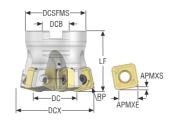

T(ZZOIZ		3	data v _C	(JI (01/111111)										
SMG		MP1501			MP2501			MP3000			T350M			F40M	
	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%
P1	300 980	350 1150	410 1350	290 950	335 1100	405 1325	250 820	295 970	345 1125	250 820	295 970	350 1150	220 720	255 840	305 1000
P2	290 950	340 1125	400 1300	280 920	330 1075	395 1300	245 800	285 940	335 1100	245 800	285 940	340 1125	210 690	250 820	300 980
P3	250 820	290 950	350 1150	250 820	290 950	345 1125	210 690	245 800	295 970	215 710	255 840	300 980	190 620	220 720	260 850
P4	220 720	255 840	310 1025	220 720	255 840	305 1000	185 610	215 710	260 <i>850</i>	190 620	225 740	265 870	165 540	195 640	230 750
P5	215 710	255 840	295 970	210 690	245 800	290 950	180 590	210 690	250 820	180 590	215 710	255 840	160 520	185 610	220 720
P6	240 790	285 940	335 1100	235 770	275 900	325 1075	205 670	240 790	280 920	205 670	240 790	285 940	175 570	210 690	250 820
P7	230	270	315	220	260	310 1025	190	225	265 870	195	225 740	270 890	165	195 640	235
P8	750 210	890 245	1025 295	720 210	850 245	290	620 175	740 205	250	640 180	215	255	540 160	185	770 220
P11	690 220	800 260	970 305	690 215	800 250	950 300	570 185	670 220	820 255	590 185	710 220	840 260	520 165	610 190	720 225
P12	720 145	850 170	1000 200	710 140	820 160	980 200	610 120	720 140	840 165	610 120	720 140	850 175	540 105	620 120	740 150
	475 —	560	660	460 200	520 235	660 285	395 180	460 215	540 250	395 190	460 220	570 265	345 170	395 200	490 240
M1	_	_	_	660 170	770 195	940 235	590 150	710 175	820 210	620 155	720 185	870 220	560 140	660 165	790 200
M2	_	_	_	560 135	640 155	770 190	490 120	570 140	690 165	510 125	610 145	720 180	460 115	540 130	660 160
M3	_	_	_	445 105	510 120	620 150	395 95	460 110	540 130	410 170	475 195	590 240	375 90	425 105	520 125
M4	_	_	_	345	395	490	310	360	425	560	640	790	295	345	410
M5	_	_	_	90 295	100 330	125 <i>410</i>	80 260	90 295	110 360	170 560	195 640	240 790	75 245	85 280	105 345
K1	230 750	270 890	315 1025	220 720	260 850	310 1025	195 640	225 740	265 870	195 640	225 740	270 890	170 560	195 <i>640</i>	235 770
K2	205 670	240 790	280 920	200 660	230 750	275 900	170 560	200 660	235 770	175 570	200 660	240 790	150 490	175 570	210 690
K3	175 570	205 670	240 790	170 560	195 640	235 770	145 <i>4</i> 75	170 560	200 660	145 475	170 560	205 670	125 410	150 <i>4</i> 90	175 570
K4	165 <i>540</i>	195 640	225 740	160 520	185 610	225 740	140 460	165 540	190 620	140 460	165 540	195 640	120 395	140 460	170 560
K5	100 330	120 395	140 460	100 330	115 375	135 <i>445</i>	85 280	100 330	120 395	85 280	100 330	120 395	75 245	85 280	105 345
K6	145 475	170 560	200 660	140 460	165 540	195 640	120 395	145 475	170 560	125 410	145 475	170 560	105 345	125 410	150 490
K7	130 425	150 490	180 590	125 410	145 475	175 570	110 360	130 425	150 490	110 360	130 425	150 490	95 310	110 360	130 425
S1	— —	_	_	50	60 195	70 230	44	50 165	60	46	55 180	65	42	48 155	60
S2	_	_	_	165 41	48	60	145 35	41	195 49	150 37	43	215 50	140 33	39	195 47
S3	_	_	_	135 36	155 42	195 50	115 31	135 36	160 43	120 32	140 37	165 46	110 29	130 34	155 42
S11	_	_	_	120 70	140 80	<i>165</i> 100	100 60	120 70	140 85	105 65	120 75	150 90	95 60	110 65	140 80
S12	_	_	_	230 49	260 55	330 70	195 42	230 49	280 60	215 44	245 50	295 60	195 40	215 46	260 55
	_	_	_	160 29	180 33	230 40	140 25	160 28	195 34	145 26	165 30	195 36	130 23	150 27	180 33
S13	 48		 65	95 42	110 48	130 60	80 38	90 44	110 50	85 40	100 46	120 55	75 35	90 40	110 50
H5	155 50	180 60	215 70	140 46	155 55	195 65	125 40	145 47	165 55	130 44	150 50	180 60	115 38	130 44	165 55
H8	165	195	230	150	180	215	130	155	180	145	165	195	125 44	145	180
H11	60 195	70 230	85 280	55 180	60 195	75 245	48 155	55 180	65 215	50 165	60 195	75 245	145	50 165	65 215
H12	90 295	105 345	125 410	90 295	105 345	125 410	75 245	90 295	105 345	80 260	90 295	110 360	70 230	80 260	95 310
H21	50 165	60 195	70 230	46 150	55 180	65 215	40 130	47 155	55 180	44 145	50 165	60 195	38 125	44 145	55 180

R220.21-SP14 – Cutting data $v_c = (m/min)/(sf/min)$

SMG		MM4500			MK2050			MS2050			MS2500			MP2050	
ONIO	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%
P1	175 570	205 670	250 820	285 940	330 1075	400 1300	240 790	280 920	335 1100	315 1025	365 1200	440 1450	280 920	330 1075	395 1300
P2	170 560	200 660	240 790	275 900	325 1075	385 1275	235 770	275 900	330 1075	305 1000	360 1175	430 1400	275 900	320 1050	385 1275
P3	150	180	215	245	285	340	205	240	290	270	315	380	245	285	340
	490 135	590 155	710 185	800 215	940 250	1125 300	670 180	790 215	950 255	890 240	1025 280	1250 335	800 215	940 250	1125 300
P4	445	510	610	710	820	980	590	710	840	790	920	1100	710	820	980
P5	130 <i>425</i>	150 490	180 590	205 670	240 790	285 940	175 570	205 670	245 800	230 750	265 870	320 1050	205 670	240 790	285 940
P6	145 475	170 560	200 660	230 750	270 890	320 1050	195 640	230 750	275 900	255 840	300 980	355 1175	230 750	270 890	320 1050
P7	135	160	190	220	255	305	185	215	255	240	280	335	215	255	305
	445 130	520 150	620 180	720 205	840 240	1000 285	610 175	710 205	840 245	790 230	920 265	1100 320	710 205	840 240	1000 285
P8	425 130	490 155	590 185	670 210	790 250	940 295	570 180	670 210	800 250	750 235	870 275	1050 325	670 210	790 245	940 295
P11	425	510	610	690	820	970	590	690	820	770	900	1075	690	800	970
P12	85 280	100 330	120 395	135 445	160 520	195 640	115 375	135 445	165 <i>540</i>	150 490	175 570	215 710	135 445	155 510	195 640
M1	145	175	205	_	_	_	190	220	265	220	255	305	195	230	275
	475 125	570 145	670 170	_	_	_	620 155	720 185	870 220	720 180	840 215	1000 255	640 165	750 190	900 230
M2	410	475	560	_	_	_	510	610	720	590	710	840	540	620	750
M3	100 330	115 375	140 460	_	_	_	125 410	145 475	180 590	145 475	170 560	205 670	130 425	150 490	185 610
M4	75 245	90 295	110 360	_	_	_	100 330	115 375	140 460	115 375	130 425	160 520	105 345	120 395	145 475
M5	65	75	90	_	_	_	80	95	115	95	110	135	85	100	120
	215	245	295	295	350	420	260	310	375	310	360	445	280 220	330 255	395 305
K1	_	_	_	970 265	1150 310	1375 370	_	_	_	_	_	_	720 195	840 230	1000 270
K2	_	_	_	870	1025	1225	_	_	=	_	_	_	640	750	890
K3	_	_	_	225 740	265 870	315 1025	_	_	_	_	_	_	165 540	195 640	230 750
K4	_	_	_	215	250	300	_	_	_	_	_	_	155	185	220
K5	_	_	_	710 130	820 155	980 185	_	_	_	_	_	_	510 95	610 115	720 135
	_	_	_	425 190	510 220	610 265	_	_	_	_	_	_	310 140	375 160	445 195
K6	_	_	_	620	720	870	_	_	_	_	_	_	460	520	640
K7	_	_	_	170 560	200 660	235 770	_	_	_	_	_	_	125 410	145 475	170 560
S1	23 75	27 90	33 110	_	_	_	46 150	55 180	65 215	55 180	65 215	80 260	50 165	60 195	70 230
S2	19	22	27	_	_	_	37	43	50	45	50	65	40	47	55
	60 17	70 19	90 24	_	_	_	120 32	140 37	165 46	150 39	165 46	215 55	130 36	155 41	180 50
S3	55	60	80	_	_	_	105	120	150	130	150	180	120	135	165
S11	33 110	38 125	46 150	_	_	_	65 215	75 245	90 295	75 245	90 295	110 360	70 230	80 260	100 330
S12	30 100	35 115	43 140	_	_	_	44 145	50 165	60 195	55 180	60 195	75 245	48 155	55 180	70 230
S13	18	20	25	_	_	_	26	30	36	31	36	44	28 90	33	40
H5	60	65	80	_	_	_	85 —	100	120	100	120	145	41	110 47	130 60
	_	_	_	_	_	_	_	_	_	_	_	_	135 45	155 50	195 65
H8	_	_	_	_	_	_	_	_	_	_	_	_	150	165	215
H11	_	_	_	_	_	_	_	_	_	_	_	_	50 165	60 195	75 245
H12	_	_	_	_	_	_	_	_	_	100 330	115 375	140 460	90 295	105 345	125 410
H21	_	_	_	_	_	_	_	_	_	_	_	_	45	50	65
	_	=	<u> </u>	_	_	_	_	_	_	_	_	_	150	165	215

R220.21-SP18 - Metric

- For insert selection and cutting data recommendations, see page(s) 507-509
 For complete insert programme, see page(s) 826
 For ISO attribute explanation, see page 16


Designation	ltem number	Type of mounting	DC	DCX	ZEFP	APMXS	S APMXE	DCB	DCSFMS	LF	RP	RMPX°	Cmin	Cmax	Weight	RPMX	Insert
			mm	mm		mm	mm	mm	mm	mm	mm		mm	mm	kg		
R220.21-0063-SP18.5A	10097579	Arbor	33,7	63,0	5	2,5	14,0	22,0	49,0	50,0	5,41	2,4	96,7	124,0	1,0	5800	SPKT180630
R220.21-0066-SP18.5A	10097580	Arbor	36,7	66,0	5	2,5	14,0	27,0	61,0	55,0	5,4	3,4	102,7	130,0	0,9	5700	SPKT180630
R220.21-0080-SP18.5A	10097581	Arbor	50,7	80,0	5	2,5	14,0	27,0	61,0	50,0	5,4	2,4	130,7	158,0	0,5	5100	SPKT180630
R220.21-0080-SP18.6A	10097582	Arbor	50,7	80,0	6	2,5	14,0	27,0	61,0	50,0	5,4	2,4	130,7	158,0	1,4	5100	SPKT180630
R220.21-0100-SP18.7A	10097583	Arbor	70,7	100,0	7	2,5	14,0	32,0	79,0	50,0	5,39	1,7	170,7	198,0	0,5	4500	SPKT180630
R220.21-0125-SP18.8A	10097584	Arbor	95,6	125,0	8	2,5	14,0	40,0	90,0	63,0	5,39	1,2	220,6	248,0	2,0	4000	SPKT180630
R220.21-8160-SP18.10A	10097585	Arbor	130,6	160,0	10	2,5	14,0	40,0	90,0	63,0	5,39	0,9	290,6	318,0	1,4	3600	SPKT180630

Spare Parts Accessories

For cutter	Arbor screw	Insert screw	Lid	Lid screw	Arbor screw	Insert clamping torque	Torque key
							p Co
R220.21-0063	MLC6S10X45	C05013-T20P	-	-	-	5.0NM	T00-20P50
R220.21-0066	MLC6S12X50	C05013-T20P	-	-	-	5.0NM	T00-20P50
R220.21-0080	MC6S12X40	C05013-T20P	-	-	-	5.0NM	T00-20P50
R220.21-0100	MLC6S16X35	C05013-T20P	-	=	9-4	5.0NM	T00-20P50
R220.21-0125	MC6S20X50	C05013-T20P	-	-	-	5.0NM	T00-20P50
R220.21-8160	-	C05013-T20P	SC160-53	MF6S4X10	MC6S12X40	5.0NM	T00-20P50

R220.21-SP18 - inch

- For insert selection and cutting data recommendations, see page(s) 507-509
 For complete insert programme, see page(s) 826
 For ISO attribute explanation, see page 16

Designation	ltem number	Type of mounting	DC	DCX	ZEFP	APMXS	APMXE	DCB	DCSFMS	LF	RP	RMPX°	C min	C max	Weight	RPMX	Insert
			inch	inch		inch	inch	inch	inch	inch	inch		inch	inch	lbs		
R220.21-02.50-SP18.5A	10097586	Arbor	1.346	2.500	5	0.098	0.551	0.750	1.789	2.000	0.213	3,7	3.846	4.921	1.320	5800	SPKT180630
R220.21-03.00-SP18.5A	10128670	Arbor	1.846	3.000	5	0.098	0.551	1.000	2.289	2.000	0.213	2,6	4.846	5.921	1.980	5100	SPKT180630
R220.21-03.00-SP18.6A	10097587	Arbor	1.846	3.000	6	0.098	0.551	1.000	2.289	2.000	0.213	2,6	4.846	5.921	1.980	5100	SPKT180630
R220.21-04.00-SP18.7A	10097588	Arbor	2.846	4.000	7	0.098	0.551	1.500	3.539	2.000	0.212	1,7	6.846	7.921	1.320	4500	SPKT180630
R220.21-05.00-SP18.8A	10097589	Arbor	3.843	5.000	8	0.098	0.551	1.500	3.539	2.500	0.212	1,2	8.843	9.921	6.610	4000	SPKT180630
R220.21-06.00-SP18.10A	10097590	Arbor	4.843	6.000	10	0.098	0.551	2.000	4.909	2.500	0.212	1,0	10.843	11.921	8.160	3700	SPKT180630

Spare Parts Accessories

For cutter	Arbor screw	Insert screw	Insert clamping torque	Lid	Lid Screw	Torque key
			0			P
R220.21-02.50	UC6S3/8UNFX11/2	C05013-T20P	44.3IN.LBS	-	-	T00-20P50
R220.21-03.00	UC6S1/2UNFX1-1/2	C05013-T20P	44.3IN.LBS	_	_	T00-20P50
R220.21-04.00	ULC6S3/4UNFX11/2	C05013-T20P	44.3IN.LBS	_	_	T00-20P50
R220.21-05.00	UC6S3/4UNFX2	C05013-T20P	44.3IN.LBS	-	-	T00-20P50
R220.21-06.00	-	C05013-T20P	44.3IN.LBS	SC-160-90	MF6S4X10	T00-20P50

SECO I

R220.21-SP18 - Insert selection - mm/lnch

SMG		a _p		f _z	
J J			100%	70%	30%
P1	SPKT180630TN-M14 MP2501	2,5	1,0	1,0	1,2
DO	CDIZTAROCOOTNI MAA MDOEGA	0.10 2,5	0.040 1,0	0.040 1,0	0.048 1,2
P2	SPKT180630TN-M14 MP2501	0.10	0.040	0.040	0.048
P3	SPKT180630TN-M14 MP2501	2,5 0.10	0,95 0.038	0,95 0.038	1,1 0.044
P4	SPKT180630TN-M14 MP2501	2,5 0.10	0,95 0.038	0,95 0.038	1,1 0.044
P5	SPKT180630TN-M14 MP2501	2,5	0,90	0,90	1,1
P6	SPKT180630TN-M14 MP2501	0.10 2,5	0.036 0,90	0.036 0,90	0.044 1,1
		0.10 2,5	0.036 1,0	0.036 1,0	0.044 1,2
P7	SPKT180630TN-MD16 MP2501	0.10 2,5	0.040 1,1	0.040 1,1	0.048 1,3
P8	SPKT180630TN-MD16 MP2501	0.10	0.044	0.044	0.050
P11	SPKT180630TN-MD16 MP2501	2,5 0.10	1,0 0.040	1,0 0.040	1,2 0.048
P12	SPKT180630TN-M14 MS2500	2,0 0.075	0,65 0.026	0,65 0.026	0,70 0.028
M1	SPKT180630TN-M14 MS2050	2,5	1,0	1,0	1,2
M2	SPKT180630TN-M14 MS2050	0.10 2,5	0.040 0,90	0.040 0,90	0.048 1,1
		0.10 2,0	0.036 0,75	0.036 0,75	0.044 0,85
M3	SPKT180630TN-M14 MS2050	0.075 2,0	0.030 0,65	0.030 0,65	0.034 0,75
M4	SPKT180630TN-M14 F40M	0.075	0.026	0.026	0.030
M5	SPKT180630TN-M14 F40M	2,0 0.075	0,65 0.026	0,65 0.026	0,75 0.030
K1	SPKT180630TN-MD16 MK2050	2,5 0.10	1,2 0.048	1,2 0.048	1,3 0.050
K2	SPKT180630TN-MD16 MK2050	2,5 0.10	1,0 0.040	1,0 0.040	1,2 0.048
K3	SPKT180630TN-MD16 MK2050	2,5	1,0	1,0	1,2
K4	SPKT180630TN-MD16 MK2050	0.10 2,5	0.040 1,0	0.040 1,0	0.048 1,2
		0.10 2,5	0.040 0,95	0.040 0,95	0.048 1,1
K5	SPKT180630TN-MD16 MK2050	0.10	0.038	0.038	0.044
K6	SPKT180630TN-MD16 MK2050	2,5 0.10	1,0 0.040	1,0 0.040	1,2 0.048
K7	SPKT180630TN-MD16 MK2050	2,5 0.10	0,95 0.038	0,95 0.038	1,1 0.044
S1	SPKT180630TN-M14 MS2500	2,0 0.075	0,65 0.026	0,65 0.026	0,75 0.030
S2	SPKT180630TN-M14 MS2500	2,0 0.075	0,65 0.026	0,65 0.026	0,75 0.030
S3	SPKT180630TN-M14 MS2500	2,0	0,60	0,60	0,70
S11	SPKT180630TN-M14 MS2050	0.075 2,0	0.024 0,75	0.024 0,75	0.028 0,85
S12	SPKT180630TN-M14 MS2050	0.075 2,0	0.030 0,75	0.030 0,75	0.034 0,85
	SPKT180630TN-M14 MS2050	0.075 2,0	0.030 0,65	0.030 0,65	0.034 0,75
S13		0.075 2,0	0.026 0,70	0.026 0,70	0.030 0,85
H5	SPKT180630TN-MD16 MP1501	0.075	0.028	0.028	0.034
H8	SPKT180630TN-MD16 MP1501	0.075	0.022	0.022	0,65 0.026
H11	SPKT180630TN-MD16 MP1501				0,85 0.034
H12	SPKT180630TN-M14 MS2500	2,0	0,48	0,48	0,55 0.022
H11	SPKT180630TN-MD16 MP1501	2,0 0.075	0,70 0.028	0,70 0.028	

SMG = Seco material group f_z = mm/tooth (in/tooth), v_c = m/min (sf/min), a_e /DC = % All cutting data are start values

R220.21-SP18 – Cutting data $v_c = (m/min)/(sf/min)$


	01 10	Outting			11(01)111111)										
SMG		MP1501			MP2501			MP3000			T350M			F40M	
	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%
P1	285 940	325 1075	395 1300	275 900	315 1025	375 1225	240 790	275 900	330 1075	240 790	275 900	325 1075	205 670	240 790	285 940
P2	270 890	310 1025	380 1250	265 870	305 1000	365 1200	225 740	260 850	320 1050	230 750	265 870	320 1050	200 660	230 750	275 900
P3	240 790	275 900	330 1075	235 770	270 890	325 1075	200 660	230 750	275 900	205 670	235 770	280 920	175 570	205 670	245 800
P4	210 690	240 790	290 950	205 670	235 770	285 940	175 570	200 660	245 800	180 590	205 670	250 820	155 510	180 590	215 710
P5	205 670	235 770	285 940	200 660	230 750	270 890	175 570	200 660	240 790	175 570	200 660	235 770	150 490	175 570	205 670
P6	230 750	265 870	320 1050	225 740	255 840	305 1000	195 640	225 740	265 870	195 640	225 740	265 870	170 560	195 640	230 750
P7	220 720	250 820	300 980	210 690	240 790	285 940	185 610	210 690	250 820	185 610	210 690	250 820	160 520	185 610	220 720
P8	200	230 750	275 900	195	225 740	270 890	170 560	195 640	230 750	170 560	195 640	235 770	150 490	170 560	205 670
D44	660 215	245	290	640 205	235	280	180	205	245	180	205	245	155	180	210
P11	710	800	950	670	770	920	590	670	800	590	670	800	510	590	690
P12	140 460	155 510	185 <i>610</i>	130 425	150 490	185 <i>610</i>	115 375	130 425	155 510	115 375	130 425	160 520	100 330	115 375	140 460
M1	_	_	_	190 620	220 720	265 870	170 560	195 <i>640</i>	240 790	180 590	205 670	245 800	165 <i>540</i>	185 <i>610</i>	225 740
M2	_	_	_	160 520	185 610	220 720	145 <i>4</i> 75	165 540	200 660	150 490	170 560	205 <i>670</i>	135 445	155 510	185 <i>610</i>
M3	_	_	_	130 425	145 <i>475</i>	175 570	115 375	130 425	160 520	120 395	135 445	165 <i>540</i>	110 360	125 410	150 490
M4	_	_	_	100 330	115 375	135 <i>445</i>	90 295	100 330	125 410	160 520	185 610	220 720	85 280	95 310	115 375
M5	_	_	_	85 280	95 310	115 375	75 245	85 280	100 330	160 520	185 610	220 720	70 230	80 260	95 310
K1	215 710	245 800	305 1000	210 690	240 790	290 950	180 590	205 670	255 840	185 610	210 690	250 820	160 520	185 610	220 720
K2	195	225	270	190	215	260	165	190	225	165	190	225	145	165	195
K 3	640 165	740 190	890 230	620 160	710 185	850 220	540 140	620 160	740 190	540 140	620 160	740 190	475 120	540 140	640 165
	540 160	620 180	750 215	520 155	610 175	720 210	460 135	520 155	620 180	460 135	520 155	620 180	395 115	460 135	540 160
K4	520 95	590 110	710 135	510 95	570 110	690 130	445 80	510 90	590 110	445 80	510 95	590	375 70	445 80	520 100
K5	310	360	445	310	360	425	260	295	360	260	310	115 375	230	260	330
K6	140 <i>460</i>	160 520	190 620	135 445	155 510	185 <i>610</i>	115 375	135 445	160 520	115 375	135 445	160 520	100 330	115 375	140 460
K7	125 <i>410</i>	140 460	170 560	120 395	140 460	165 <i>540</i>	105 345	120 395	145 <i>4</i> 75	105 345	120 395	145 <i>475</i>	90 295	105 345	125 410
S1	_	_	_	48 155	55 180	65 215	42 140	47 155	55 180	43 140	49 160	60 195	39 130	45 150	55 180
S2	_	_	_	39 130	44 145	55 180	34 110	38 125	46 150	35 115	40 130	48 155	32 105	36 120	43 140
S3	_	_	_	34 110	39 130	47	30 100	34 110	41	31 100	35	42	28 90	32	38
S11	_	_	_	65	75	155 90	60	65	135 80	60	70 220	140 85	55	105 60	125 75
S12	_	_	_	215 47	245 55	295 65	195 40	215 46	260 55	195 42	230 47	280 55	180 38	195 43	245 50
S13	_	_	_	155 27	180 31	215 37	130 23	150 27	180 32	140 24	155 28	180 33	125 22	140 25	165 30
H5	46	50	60	90 40	100 45	120 55	75 36	90 41	105 49	80 38	90 43	110 55	70 33	80 38	100 46
H8	150 49	165 55	195 65	130 43	150 49	180 60	120 39	135 44	160 50	125 41	140 47	180 55	110 36	125 41	150 49
110	160 60	180 65	215 80	140 50	160 60	195 70	130 46	145 50	165 60	135 49	155 55	180 70	120 42	135 48	160 60
H11	195	215	260	165	195	230	150	165	195	160	180	230	140	155	195
H12	90 295	100 330	120 395	85 280	95 310	115 375	75 245	85 280	100 33 <i>0</i>	75 245	85 280	100 330	65 215	75 245	90 295
H21	49 160	55 180	65 215	43 140	49 160	60 195	39 130	44 145	50 165	41 135	47 155	55 180	36 120	41 135	49 160

R220.21-SP18 – Cutting data $v_c = (m/min)/(sf/min)$

SMG		MK2050			MS2050			MS2500			MP2050	
	100%	70%	30%	100%	70%	30%	100%	70%	30%	100%	70%	30%
P1	270 890	310 1025	370 1225	230 750	260 850	315 1025	300 980	345 1125	410 1350	270 890	310 1025	370 1225
P2	260 850	300 980	360 1175	220 720	255 840	305 1000	290 950	335 1100	400 1300	260 850	300 980	360 1175
P3	230 750	265 870	320 1050	195 <i>640</i>	225 740	270 890	255 840	290 950	350 1150	230 750	265 870	315 1025
P4	200 660	230 750	280 920	170 560	195 <i>640</i>	235 770	225 740	255 840	310 1025	200 660	230 750	280 920
P5	195 640	225 740	265 870	165 <i>540</i>	190 <i>620</i>	225 740	215 710	250 820	295 970	195 <i>640</i>	225 740	265 870
P6	220 720	255 840	300 980	185 <i>610</i>	215 710	255 840	245 800	280 920	330 1075	220 720	250 820	300 980
P7	210 690	240 790	285 940	175 570	200 660	240 790	230 750	265 870	315 1025	205 670	240 790	280 920
P8	195 640	220 720	265 870	165 540	185 610	225 740	215 710	245 800	295 970	190 620	220 720	265 870
P11	200 660	230 750	275 900	170 560	195 640	235 770	225 740	255 840	305 1000	200 660	230 750	275 900
P12	130 425	150 490	180 590	110 360	125 410	155 510	145 475	165 540	200 660	130 425	145 475	180 590
M1	_	_	_	180 590	205 670	245 800	210 690	240 790	285 940	185 610	215 710	255 840
M2	_	_	_	150 490	170 560	205 670	175 570	200 660	235 770	155 510	180 590	215 710
M3	Ξ	_	_	120 395	135 445	165 540	140 460	155 510	190 620	125 410	140 460	170 560
M4	_	_	_	95 310	105 345	125 410	110 360	125 410	150 490	95 310	110 360	135 445
M5				75 245	90 295	105 345	90 295	105 345	125 410	80 260	90 295	110 360
K1	285 940	325 1075	390 1275	_	_	_	_	_	_	_	_	_
K2	255 840	290 950	345 1125	_	_	_	_	_	_	_	_	_
K3	215 710	245 800	290 950	_	_	_	_	=	_	_	_	_
K4	205 670	235 770	280 920	_ _	_	_	_	_	_	_	_	_
K5	125 <i>410</i> 180	145 475 205	175 570 245	_	_	_	_	_	_	_	_	_
K6	590	670	800	_	_	_	_	_	_	_	_	_
K7	160 520	185 610	220 720	43	<u>-</u> 49	<u></u>	<u>—</u> — 55	60	70	<u>-</u> 48	<u>—</u> 55	<u></u>
S1	_	_	_	140 35	160 40	195 48	180 43	195 48	230 60	155 38	180 44	215 50
S2	_	_ _	_	115 31	130 35	155 42	140 38	155 43	195 50	125 34	145 38	165 46
S3	=	=	_	100 60	115 70	140 85	125 75	140 85	165 100	110 65	125 75	150 90
S11	_	_	_	195 42	230 47	280 55	245 50	280 60	330	215 46	245 50	295 65
S12	_ _	_	_	140 24	155 28	180 33	165 30	195 34	230 41	150 27	165 30	215 37
S13	_	_	_	80	90	110	100	110	135	90	100	120
H5	_	_	_	_	_	_	_	_	_	_		_ _ _
H8	_	_	_	_	_	_	_	_	_	49	<u></u>	
H11	_	_	_	_	_	_	— — 95	— — 105	 125	160 85	180 95	230 115
H12	_	_	_		_ _ _	_	310	345	410	280	310	375
H21	_	_	_	_	_	_	_	_	_	_	_	_ _

SPKT10/14/18

													Grades	;								
Designation	IC	RE	s	AN°	GAN								Coated								Unco	ated
	mm Inch	mm Inch	mm Inch			MP1501	MP2050	MP2501	MP3000	MH1000	MM4500	MK1500	MK2050	MS2050	MS2500	T25M	T350M	F15M	F30M	F40M	H15	H25
SPKT10T317TN-M10	10,0 <i>0.394</i>	1,7 0.067	3,97 0.156	11,0	13,0 °						•											
SPKT10T317TN-MD12	10,0 0.394	1,7 0.067	3,97 0.156	11,0	5,0 °	•		٠	٠				•							•		
SPKT140523TN-M14	14,0 0.551	2,3 0.091	5,56 0.219	11,0	13,0 °						•											
SPKT140523TN-MD16	14,0 0.551	2,3 0.091	5,56 0.219	11,0	5,0 °	•	•	•	•				•		•		•			•		
SPKT180630TN-M14	18,0 0.709	3,0 0.118	6,35 0.250	11,0	12,0 °																	
SPKT180630TN-MD16	18,0 <i>0.70</i> 9	3,0 0.118	6,35 0.250	11,0	5,0 °	•		•	٠				-							•		

UNCOMPROMISED PERFORMANCE AND LOWER COST PER EDGE

SECO HELICAL SN8-13

YOUR CHALLENGE

Economize production operations to meet customer demand for continuous job price improvements.

OUR SOLUTION

Reduce production costs with 8-edged helix inserts that lower cost per edge.

YOUR CHALLENGE

Overcome helical roughing issues in situations with high productivity, weak fixtures, long reach, difficult materials and low machine power.

OUR SOLUTION

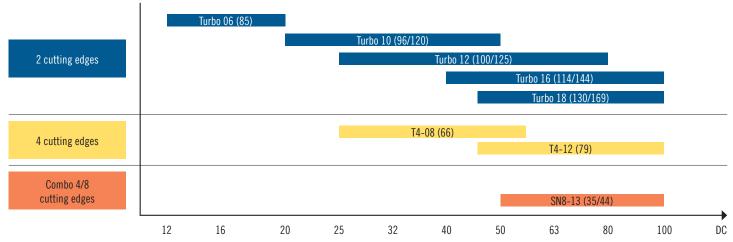
Sub-families of tools optimized for various applications within one range of cutters that offers various helix hands, front insert design and radii options.

YOUR CHALLENGE

Lack of skilled workforce leads to machine downtime, quality issues and scrap, putting a stop to unattended production to reduce costs.

OUR SOLUTION

Robust and easy-to-index cutter ensures correct mounting of front and helix inserts.



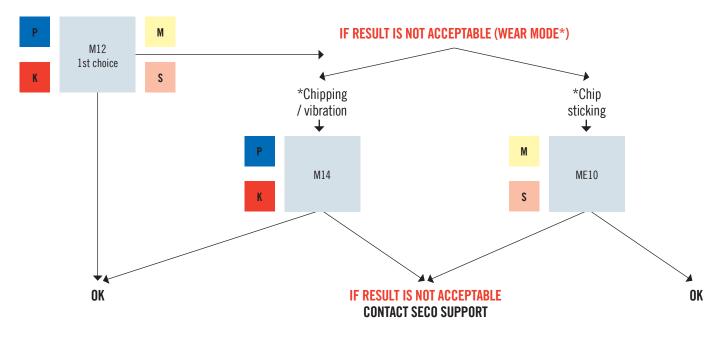
SECO HELICAL SN8-13

UNCOMPROMISED PERFORMANCE AND LOWER COST PER EDGE

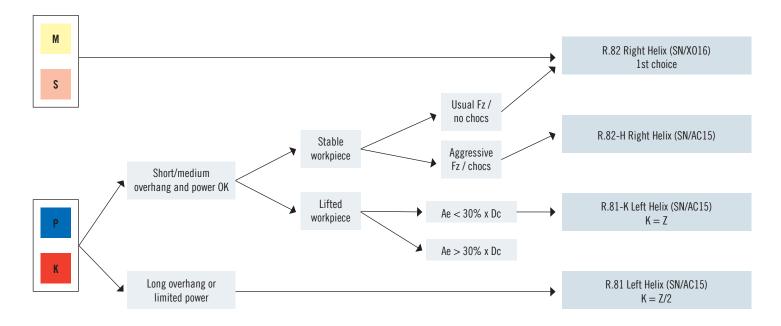
Keep up with customer demand for lower part prices. The Seco Helical SN8-13 features double-sided helix inserts with eight cutting edges that significantly lower cost per edge to boost slotting, side milling and circular rough milling efficiency. Built for difficult applications involving ISO P, M, K and S materials, the cutters offer application-specific sub-family designs featuring left or right-hand helixes, half or full effective teeth options, two front insert and many radii choices for long tool life and maximum chip evacuation. Reliable and user-friendly, the Helical SN8-13 also eliminates incorrect indexing of front and helix inserts, reducing operator error.

POSITIONING HELICAL MILLING

Cost per edge index (direct pressed/ground) based on XOMX12 2022 F40 M list price


CUSTOMER BENEFITS

- High MRR for increased productivity
- Exceptionally low cost per edge
- Long tool life in P, M, K and S materials
- Tackle difficult applications easily

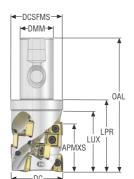


SECO HELICAL SN8-13

HELICAL SN8-13 - INSERT GEOMETRY CHOICE FLOW

HELICAL SN8-13 - SUB FAMILY CHOICE FLOW

HELICAL SN8-13


Keep up with customer demand for lower part prices. The Seco Helical SN8-13 features double-sided helix inserts with eight cutting edges that significantly lower cost per edge to boost slotting, side milling and circular rough milling efficiency. Built for difficult applications involving ISO P, M, K and S materials, the cutters offer application-specific sub-family designs featuring left or right-hand helixes, half or full effective teeth options, two front insert and many radii choices for long tool life and maximum chip evacuation. Reliable and user-friendly, the Helical SN8-13 also eliminates incorrect indexing of front and helix inserts, reducing operator error.

- Range is built with 4 sub families built with SN13 helix insert:
- SN.U13 insert offering 8 cutting edges in 3 geometries and several grades
- R217/220.82: XO16 lead insert = First choice
- R217/220.82-H: AC15 lead insert = Heavy Duty, R220.69-15H replacement
- R217/220.81: AC15 lead insert = Low Power, R215/220.59 replacement
- R217/220.81-K: AC15 lead insert = Long reach, R215/220.59 replacement

R217.82-SNXO16 - Metric

5.0NM

3.5NM

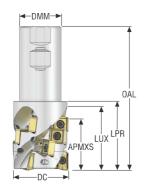
T00-15P50

T00-15P35

For insert selection and cutting data recommendations, see page(s) 162-163
 For complete insert programme, see page(s) 813, 837, 838
 For ISO attribute explanation, see page 16

C55011-T15P

- KAPRS 90°

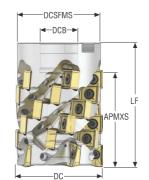

Designation	Item number	Type of mounting	DC	ZEFP	ZNP	APMXS	DMM	DCSFMS	LUX	LPR	OAL	RPMX	Weight	Insert
			mm			mm	mm	mm	mm	mm	mm		kg	
R217.82-3250.3S-047-SNXO16.3A	10127480	Seco-Weldon	50.0	3	12	47.0	32,0	50,0	60,0	70.0	130,0	11800	1,0	XO.X1605 / SN.U1306

Spare Parts Accessories Insert clamping torque Insert clamping torque 2 For cutter Insert screw Insert screw 2 T

C04011-T15P

R217.82-SNXO16 - inch

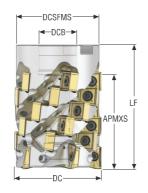
- For insert selection and cutting data recommendations, see page(s) 162-163
 For complete insert programme, see page(s) 813, 837, 838
 For ISO attribute explanation, see page 16
 KAPRS 90°


Designation	ltem number	Type of mounting	DC	ZEFP	ZNP	APMXS	DMM	LUX	LPR	OAL	RPMX	Weight	Insert
			inch			inch	inch	inch	inch	inch		lbs	
R217.82-02.00-3-1.85-SNXO16.3A	10127485	Weldon	2.000	3	12	1.850	1.500	2.362	2.441	5.169	11800	2.650	XO.X1605 / SN.U1306

Spare Parts			Accessories			
For cutter	Insert screw	Insert screw 2	Insert clamping torque	Insert clamping torque 2	Torque key	Torque key 2
	C55011-T15P	C04011-T15P	5.0NM	3.5NM	T00-15P50	T00-15P35

R220.82-SNXO16 - Metric

- For insert selection and cutting data recommendations, see page(s) 162-163
 For complete insert programme, see page(s) 813, 837, 838
 For ISO attribute explanation, see page 16


- KAPRS 90°

	Item	Type of				4.004/0	202	202110				
Designation	number	mounting	DC	ZEFP	ZNP	APMXS	DCB	DCSFMS	LF	RPMX	Weight	Insert
			mm			mm	mm	mm	mm		kg	
R220.82-0063-047-SNXO16.4A	10127481	Arbor	63,0	4	16	47,0	27,0	59,0	70,0	10500	0,9	XO.X1605 / SN.U1306
R220.82-0063-069-SNXO16.5A	10127482	Arbor	63,0	5	30	69,0	27,0	59,0	90,0	10500	1,2	XO.X1605 / SN.U1306
R220.82-0080-068-SNXO16.5A	10127483	Arbor	80,0	5	30	68,0	32,0	75,0	90,0	6500	2,0	XO.X1605 / SN.U1306
R220.82-0080-079-SNXO16.6A	10127484	Arbor	80,0	6	42	79,0	32,0	75,0	100,0	6500	2,2	XO.X1605 / SN.U1306

Spare Parts Accessories Insert clamping torque Insert clamping torque 2 For cutter Arbor screw Insert screw Insert screw 2 R220.82-0063-047 MC6S12X60 C55011-T15P C04011-T15P 5.0NM 3.5NM T00-15P50 T00-15P35 R220.82-0063-069 MC6S12X80 C55011-T15P C04011-T15P 3.5NM T00-15P35 5.0NM T00-15P50 R220.82-0080 MP6S16X80 C55011-T15P C04011-T15P 5.0NM 3.5NM T00-15P50 T00-15P35

R220.82-SNXO16 - inch

- For insert selection and cutting data recommendations, see page(s) 162-163
 For complete insert programme, see page(s) 813, 837, 838
 For ISO attribute explanation, see page 16
 KAPRS 90°

Designation	Item number	Type of mounting	DC	ZEFP	ZNP	APMXS	DCB	DCSFMS	LF	RPMX	Weight	Insert
			inch			inch	inch	inch	inch		lbs	
R220.82-02.50-1.85-SNXO16.4A	10127486	Arbor	2.500	4	16	1.850	1.000	2.323	2.750	10500	1.980	XO.X1605 / SN.U1306
R220.82-02.50-2.75-SNXO16.5A	10127487	Arbor	2.500	5	30	2.717	1.000	2.323	3.500	10500	2.650	XO.X1605 / SN.U1306
R220.82-03.00-2.68-SNXO16.5A	10127488	Arbor	3.000	5	30	2.677	1.250	2.795	3.500	6500	3.750	XO.X1605 / SN.U1306
R220.82-03.00-3.11-SNXO16.6A	10127489	Arbor	3.000	6	42	3.110	1.250	2.795	3.938	6500	4.190	XO.X1605 / SN.U1306

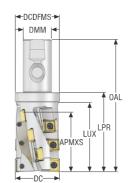
Spare Parts Accessories

For cutter	Arbor screw	Insert screw	Insert screw 2	Insert clamping torque	Insert clamping torque 2	Torque key	Torque key 2
R220.82-02.50.4A	UC6S1/2UNFX2-1/4	C55011-T15P	C04011-T15P	5.0NM	3.5NM	T00-15P50	T00-15P35
R220.82-02.50.5A	UC6S1/2UNFX3	C55011-T15P	C04011-T15P	5.0NM	3.5NM	T00-15P50	T00-15P35
R220.82-03.00	UP6S5/8UNFX3-1/4	C55011-T15P	C04011-T15P	5.0NM	3.5NM	T00-15P50	T00-15P35

R217/220.82-SNXO16 - Insert selection - mm/lnch

SMG				f _z	
J.II.G			100%	30%	10%
P1	XOMX160508TR-M13 MP2501	SNXU130612TN-M12 MP2501	0,15	0,16	0,24
			0.0060 0,15	0.0065 0,16	0.0095 0,25
P2	XOMX160508TR-M13 MP2501	SNXU130612TN-M12 MP2501	0.0060	0.0065	0.010
P3	XOMX160508TR-M13 MP2501	SNXU130612TN-M12 MP2501	0,14 0.0055	0,15 0.0060	0,24 0.0095
P4	XOMX160508TR-M13 MP2501	SNXU130612TN-M12 MP2501	0,14	0,15	0,24
P5	XOMX160508TR-MD14 MP1501		0.0055 0,15	0.0060 0,16	0.0095 0,24
		SNGU130612TN-M14 MP1501	0.0060 0,14	0.0065 0,16	0.0095 0,24
P6	XOMX160508TR-MD14 MP1501	SNGU130612TN-M14 MP1501	0.0055	0.0065	0.0095
P7	XOMX160508TR-MD14 MP1501	SNGU130612TN-M14 MP1501	0,14 0.0055	0,16 0.0065	0,24 0.0095
P8	XOMX160508TR-MD14 MP1501	SNGU130612TN-M14 MP1501	0,15 <i>0.0060</i>	0,17 0.0065	0,25 0.010
P11	XOMX160508TR-ME11 T350M	SNXU130612TN-M12 T350M	0,11	0,12	0,19
	ACMATOGOGOTIC METITIOGNI	5117(0 1000 12111 W112 1000W	0.0044 0,080	0.0048 0,085	0.0075 0,13
P12	XOMX160508TR-ME11 T350M	SNXU130612TN-M12 T350M	0.0032	0.0034	0.0050
M1	XOMX160508R-M09 MS2050	SNGU130612EN-ME10 MS2050	0,10	0,11	0,17
MO	VOMV400500D M00 M00050	CNICH420C42EN ME40 MC20C0	0.0040 0,095	0.0044 0,10	0.0065 0,16
M2	XOMX160508R-M09 MS2050	SNGU130612EN-ME10 MS2050	0.0038	0.0040	0.0065
M3	XOMX160508R-M09 MS2050	SNGU130612EN-ME10 MS2050	0,075 0.0030	0,080 0.0032	0,13 <i>0.0050</i>
M4	XOMX160508TR-ME11 MS2050	SNGU130612EN-ME10 MS2050	0,080	0,085	0,13
M5	XOMX160508TR-ME11 MS2050	SNGU130612EN-ME10 MS2050	0.0032 0,080	0.0034 0,085	0.0050 0,13
IVIO		3NG0 1300 12EN-IVIE 10 NI32030	0.0032 0,15	0.0034 0,16	0.0050 0,25
K1	XOMX160508TR-M13 MK2050	SNGU130612TN-M14 MK2050	0.0060	0.0065	0.010
K2	XOMX160508TR-M13 MK2050	SNGU130612TN-M14 MK2050	0,14 0.0055	0,15 0.0060	0,22 0.0085
K3	XOMX160508TR-M13 MK2050	SNGU130612TN-M14 MK2050	0,14	0,15	0,22
K4	XOMX160508TR-M13 MK2050	SNGU130612TN-M14 MK2050	0.0055 0,14	0.0060 0,15	0.0085 0,22
			0.0055 0,12	0.0060 0,13	0.0085 0,20
K5	XOMX160508TR-M13 MK2050	SNGU130612TN-M14 MK2050	0.0048	0.0050	0.0080
K6	XOMX160508TR-M13 MK2050	SNGU130612TN-M14 MK2050	0,14 0.0055	0,15 0.0060	0,22 0.0085
K7	XOMX160508TR-M13 MK2050	SNGU130612TN-M14 MK2050	0,12 <i>0.0048</i>	0,13 0.0050	0,20 <i>0.0080</i>
S1	XOMX160508TR-ME11 F40M	SNGU130612EN-ME10 MS2050	0,080	0,085	0,13
			0.0032 0,080	0.0034 0,085	0.0050 0,13
S2	XOMX160508TR-ME11 F40M	SNGU130612EN-ME10 MS2050	0.0032	0.0034	0.0050
S3	XOMX160508TR-ME11 F40M	SNGU130612EN-ME10 MS2050	0,075 0.0030	0,080 0.0032	0,12 <i>0.0048</i>
S11	XOMX160508TR-ME11 MS2050	SNGU130612EN-ME10 MS2050	0,090 0.0036	0,10 0.0040	0,15 0.0060
S12	XOMX160508TR-ME11 MS2050	SNGU130612EN-ME10 MS2050	0,090	0,10	0,15
S13	XOMX160508TR-ME11 MS2050	SNGU130612EN-ME10 MS2050	0.0036 0,080	0.0040 0,085	0.0060 0,13
			0.0032	0.0034	0.0050
H5	XOMX160508TR-ME11 MS2050	SNGU130612EN-ME10 MS2050	_	_	_
H8	XOMX160508TR-MD14 MP1501	SNGU130612TN-M14 MP1501	0,075 0.0030	0,085 0.0034	0,13 <i>0.0050</i>
H11	XOMX160508TR-MD14 MP1501	SNGU130612TN-M14 MP1501	0,10 <i>0.0040</i>	0,11 0.0044	0,17 0.0065
H12	XOMX160508TR-MD14 MP1501	SNGU130612TN-M14 MP1501	0,075	0,085	0,13
2		5.10010001211111111111111111111111111111	0.0030	0.0034	0.0050

SMG = Seco material group f_z = mm/tooth (in/tooth), v_c = m/min (sf/min), a_e /DC = % All cutting data are start values

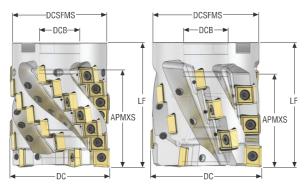


R217/220.82-SNXO16 – Cutting data $v_c = (m/min)/(sf/min)$

						- TO - TO	<u> </u>		01/11/11															
SMG		MP1501			MP2501			T350M			MS2500			MK2050		ا	MS2050			MP2050			F40M	
	100%	30%	10%	100%	30%	10%	100%	30%	10%	100%	30%	10%	100%	30%	10%	100%	30%	10%	100%	30%	10%	100%	30%	10%
P1	140	155 510	165	135	150	160	130 425	145 475	155 510	140	155 510	165	135	150	160	125	140	150 490	140	155	165	120	135	145 475
DO.	460 140	155	540 165	445 135	490 150	520 160	125	140	150	460 140	155	540 165	445 135	490 150	520 160	410 125	460 140	150	460 140	510 155	540 160	395 120	445 135	145
P2	460	510	540	445	490	520	410	460	490	460	510	540	445	490	520	410	460	490	460	510	520	395	445	475
P3	130 425	145 475	155 510	125 410	140 460	150 490	120 395	135 <i>445</i>	145 <i>4</i> 75	130 425	145 475	155 510	125 410	140 460	150 490	115 375	130 425	140 460	130 425	145 475	155 510	110 360	125 410	135 <i>44</i> 5
P4	125	140	150	120	135	145	110	130	135	125	140	150	120	135	145	110	125	135	125	140	150	105	120	130
	410 120	460 140	490 150	395 120	445 135	475 145	360 110	425 125	445 135	410 125	460 140	490 150	395 120	445 130	475 140	360 110	410 125	445 135	410 120	460 135	490 145	345 105	395 120	425 130
P5	395	460	490	395	445	475	360	410	445	410	460	490	395	425	460	360	410	445	395	445	475	345	395	425
P6	130 425	145 475	155 510	125 410	140 460	150 490	115 375	135 445	140 460	130 425	145 475	155 510	125 410	140 460	150 490	115 375	130 425	140 460	130 425	145 475	155 510	110 360	125 410	135 <i>445</i>
DZ	125	140	150	120	135	145	115	130	140	125	140	150	120	135	145	110	125	135	125	140	150	105	120	130
P7	410	460	490	395	445	475	375	425	460	410	460	490	395	445	475	360	410	445	410	460	490	345	395	425
P8	120 395	135 <i>44</i> 5	145 475	115 375	135 <i>445</i>	140 460	110 360	125 410	135 <i>445</i>	120 395	140 460	145 <i>4</i> 75	115 375	130 425	140 460	105 345	125 410	130 425	120 395	135 <i>445</i>	145 475	100 330	120 395	125 410
P11	125	140	150	120	135	145	110	130	135	125	140	150	120	135	145	110	125	135	125	140	150	105	120	130
	410 100	460 115	490 125	395 95	445 110	475 120	360 90	425 105	445 115	410 100	460 115	490 125	395 95	445 110	475 120	360 85	410 100	445 110	410 100	460 115	490 125	345 80	395 95	425 105
P12	330	375	410	310	360	395	295	345	375	330	375	410	310	360	395	280	330	360	330	375	410	260	310	345
M1	_	_	_	115 375	130 425	140 460	110 360	130 425	140 460	120 395	135 445	145 <i>4</i> 75	_	_	_	110 360	130 <i>4</i> 25	140 460	120 395	135 445	145 475	105 345	120 395	130 425
M2	_	_	_	105	120	130	105	115	125	110	125	135	_	_	_	105	115	125	110	125	135	95	110	120
IVIZ	_	_	_	345 95	395 110	425 120	345 90	375 105	410 115	360 100	<i>410</i> 115	445 125	_	_	_	345 90	375 105	410 115	360	410 115	445 120	310 85	360 100	395 110
M3	=	_	_	310	360	395	295	345	375	330	375	410	_	_	_	295	345	375	95 310	375	395	280	330	360
M4	_	_	_	80	95	105	105	120	130	85	100	110	_	_	_	75 245	90	100	85	100	110	70	85	95
145	_	_	_	260 70	310 85	345 95	345 105	395 120	425 130	280 75	33 <i>0</i> 90	360 100	_	_	_	245 65	295 80	330 90	280 75	33 <i>0</i> 90	360 100	230 60	280 75	310 85
M5	_	_	_	230	280	310	345	395	425	245	295	330	_	_	_	215	260	295	245	295	330	195	245	280
K1	125 410	140 460	150 490	120 395	135 445	145 475	115 375	130 425	140 460	_	_	_	135 445	155 510	165 540	_	_	_	_	_	_	105 345	120 395	130 <i>425</i>
K2	120	135	145	115	130	140	110	120	135	_	_	_	130	145	155	_	_	_	_	_	_	100	115	125
	395 110	445 125	475 135	375 105	425 120	460 130	360 100	395 115	445 125	_	_	_	425 120	475 135	510 145	_	_	_	_	_	_	330 90	375 105	410 115
K3	360	410	445	345	395	425	330	375	410	_	_	_	395	445	475	_	_	_	_	_	_	295	345	375
K4	110 360	125 410	135 445	105 345	120 395	130 425	95 310	110 360	120 395	_	_	_	120 395	135 445	145 475	_	_	_	_	_	_	90 295	105 345	115 375
K5	80	95	105	75	90	100	70	85	95	_	_	_	95	110	115	_	_	_	_	_	_	60	75	85
No	260	310	345	245	295	330	230	280	310	_	_	_	310	360	375	_	_	_	_	_	_	195	245	280
K6	100 330	115 375	125 410	95 310	110 360	120 395	90 295	105 345	115 375	_	_	_	115 375	125 <i>410</i>	140 460	_	_	_	_	_	_	80 260	95 310	105 345
K7	95	110	120	90	105	115	85	100	105	_	_	_	105	120	130	_	_	_	_	_	_	75	90	100
	310	360	395	295 42	345 55	375 65	280 38	330 50	345 60	46	60	70	345	395	425	38	50	60	45	60	70	245 35	295 46	330 55
S1	_	_	_	140	180	215	125	165	195	150	195	230	_	_	_	125	165	195	150	195	230	115	150	180
S2	=		_	34 110	46 150	55 180	31 100	41 135	48 155	37 120	50 165	60 195	_	_		31 100	41 135	48 155	36 120	48 155	55 180	28 90	37 120	43 140
S3	_	_	_	30	40	47	27	36	42	33	43	50	_	_	_	27	36	42	32	42	50	25	32	38
00	_	_	_	100 60	130 75	155 85	90 55	120 70	140 75	110 65	140 80	165 90	_	_	_	90 55	120 70	140 75	105 65	140 80	165 85	80 48	105 65	125 70
S11	=		_	195	245	280	180	230	245	215	260	295		_	_	180	230	245	215	260	280	155	215	230
S12	_	_	_	41	55	65	37	49	55	45 150	60	70	_	-	_	37	49	55	44	60	65	34	44	50 165
		_	_	135 24	180 32	215 37	120 21	160 28	180 33	150 26	195 35	230 40		_	_	120 21	160 28	180 33	145 25	195 34	215 40	110 19	145 26	165 30
S13	_	_	_	80	105	120	70	90	110	85	115	130	_	_	_	70	90	110	80	110	130	60	85	100
H5	42 140	55 180	65 215	35 115	46 150	55 180	34 110	44 145	55 180	_	_	_	_	_	_	_	_	_	_	_	_	29 95	39 130	46 150
H8	46	60	70	38	50	60	36	48	55	_	_	_	_	_	_	_	_	_	_	_	_	31	41	48
110	150 55	195 70	230 80	125 45	165 60	195 70	120 43	155 55	180 65	_	_	_	_	_	_	_	_	_	47		 70	100 37	135 49	155 60
H11	180	230	260	150	195	230	140	180	215	_	_	_	_	_	=	_	=	_	155	195	230	120	160	195
H12	75 245	90	100	70	85	95	65	80	90	75 245	90	100	_	_	_	_	_	_	75 245	90	100	55 180	70	80
	∠45	295	330	230	280	310	215	260	295	245	295	330		_	_	_	_	_	245	295	330	180	230	260

R217.81-SNAC15 Left Helix Troubleshooter – Metric

- For insert selection and cutting data recommendations, see page(s) 168-169
 For complete insert programme, see page(s) 791, 813
 For ISO attribute explanation, see page 16


- KAPRS 90°

Designation	Item number	Type of mounting	DC	ZEFP	ZNP	APMXS	DMM	DCSFMS	LUX	LPR	OAL	RPMX	Weight	Insert
			mm			mm	mm	mm	mm	mm	mm		kg	
R217.81-3250.3S-068-SNAC15.2	10127496	Seco-Weldon	50,0	2	12	68,0	32,0	50,0	79,0	90,0	150,0	8300	1,1	AC.T1506 / SN.U1306

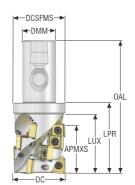
Spare Parts		Accessories
For cutter	Insert screw	Insert clamping torque Torque key
R217.81	C55011-T15P	5.0NM T00-15P50

R220.81-SNAC15 - Left Helix Troubleshooter - Metric

- For insert selection and cutting data recommendations, see page(s) 168-169
 For complete insert programme, see page(s) 791, 813
 For ISO attribute explanation, see page 16

- KAPRS 90°

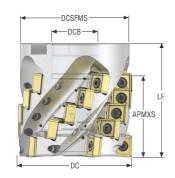
Designation	Item number	Type of mounting	DC	ZEFP	ZNP	APMXS	DCB	DCSFMS	LF	RPMX	Weight	Insert
			mm			mm	mm	mm	mm		kg	
R220.81-0063-068-SNAC15.2A	10127497	Arbor	63,0	2	12	68,0	27,0	59,0	90,0	7400	1,2	AC.T1506 / SN.U1306
R220.81-0063-068-SNAC15.4KA	10127494	Arbor	63,0	4	24	68,0	27,0	59,0	90,0	7400	1,1	AC.T1506 / SN.U1306
R220.81-0080-068-SNAC15.3A	10127498	Arbor	80,0	3	18	68,0	32,0	75,5	90,0	6500	2,2	AC.T1506 / SN.U1306
R220.81-0080-079-SNAC15.5KA	10127495	Arbor	80,0	5	35	79,0	32,0	75,0	100,0	6500	2,2	AC.T1506 / SN.U1306
R220.81-0100-068-SNAC15.4A	10127499	Arbor	100.0	4	24	68.0	40.0	91.0	90.0	5800	3.4	AC.T1506 / SN.U1306


Spare Parts Accessories

For cutter	Arbor screw	Insert screw	Insert clamping torque	Torque key
R220.81-0063	MP6S12X80	C55011-T15P	5.0NM	T00-15P50
R220.81-0080	MP6S16X80	C55011-T15P	5.0NM	T00-15P50
R220.81-0100	MP6S20X80	C55011-T15P	5.0NM	T00-15P50

R217.82-SNAC15 - Right Helix for Heavy Duty - Metric

- For insert selection and cutting data recommendations, see page(s) 154-156
 For complete insert programme, see page(s) 791, 813
 For ISO attribute explanation, see page 16


- KAPRS 90°

Designation	ltem number	Type of mounting	DC	ZEFP	ZNP	APMXS	DMM	DCSFMS	LUX	LPR	OAL	RPMX	Weight	Insert
			mm			mm	mm	mm	mm	mm	mm		kg	
R217.82-3250.3S-046-SNAC15.3HA	10127490	Seco-Weldon	50,0	3	12	47,0	32,0	50,0	57,0	68,0	128,0	8300	1,0	AC.T1506 / SN.U1306

Spare Parts Accessories For cutter Insert screw Insert clamping torque Torque key C55011-T15P 5.0NM T00-15P50

SECO I

R220-82-SNAC15 Right Helix for Heavy Duty – Metric

- For insert selection and cutting data recommendations, see page(s) 168-169
 For complete insert programme, see page(s) 791, 813
 For ISO attribute explanation, see page 16

- KAPRS 90°

Designation	ltem number	Type of mounting	DC	ZEFP	ZNP	APMXS	DCB	DCSFMS	LF	RPMX	Weight	Insert
			mm			mm	mm	mm	mm		kg	
R220.82-0063-046-SNAC15.4HA	10127491	Arbor	63,0	4	16	46,0	27,0	59,0	70,0	7400	0,9	AC.T1506 / SN.U1306
R220.82-0080-057-SNAC15.5HA	10127492	Arbor	80,0	5	25	57,0	32,0	75,0	80,0	6500	1,8	AC.T1506 / SN.U1306
R220.82-0100-057-SNAC15.6HA	10127493	Arbor	100,0	6	30	57,0	40,0	90,0	75,0	5800	2,6	AC.T1506 / SN.U1306

Spare Parts Accessories

For cutter	Arbor screw	Insert screw	Arbor screw	Insert clamping torque	Torque key
					p. Committee of the com
R220.82-0063	MC6S12X60	C55011-T15P	-	5.0NM	T00-15P50
R220.82-0080	MC6S16X70	C55011-T15P	-	5.0NM	T00-15P50
R220.82-0100	<u> </u>	C55011-T15P	MC6S20X50	5.0NM	T00-15P50

Square shoulder and slot milling cutters

Helical milling cutter

rs Face milling

High feed milling cutters

Copy milling cutte

rs Plunge milling cutte

facing cutters Cha

Inserts

R217/220.82-SNAC15 - Insert selection - mm/lnch

SMG				f _z	
J.II.G			100%	30%	10%
P1	ACET150612TR-M11 MP2501	SNXU130612TN-M12 MP2501	0,12	0,13	0,20
			0.0048 0,13	0.0050 0,14	0.0080 0,22
P2	ACET150612TR-M11 MP2501	SNXU130612TN-M12 MP2501	0.0050	0.0055	0.0085
P3	ACET150612TR-M11 MP2501	SNXU130612TN-M12 MP2501	0,12 0.0048	0,13 0.0050	0,20 0.0080
P4	ACET150612TR-M11 MP2501	SNXU130612TN-M12 MP2501	0,12 0.0048	0,13 0.0050	0,20 0.0080
P5	ACET150612TR-M11 MP2501	SNGU130612TN-M14 MP2501	0,11	0,12	0,19
P6	ACET150612TR-M11 MP2501	SNGU130612TN-M14 MP2501	0.0044 0,11	0.0048 0,12	0.0075 0,19
			0.0044 0,11	0.0048 0,12	0.0075 0,19
P7	ACET150612TR-M11 MP2501	SNGU130612TN-M14 MP2501	0.0044	0.0048	0.0075
P8	ACET150612TR-M11 MP2501	SNGU130612TN-M14 MP2501	0,12 0.0048	0,13 0.0050	0,20 0.0080
P11	ACET150612TR-M11 T350M	SNXU130612TN-M12 T350M	0,11 0.0044	0,12 0.0048	0,19 <i>0.0075</i>
P12	ACET150612TR-M11 T350M	SNXU130612TN-M12 T350M	0,080	0,085	0,13
1 12	AOL113001211(-W1111300W)		0.0032 0,11	0.0034 0,12	0.0050 0,19
M1	ACET150612TR-ME10 MS2050	SNGU130612EN-ME10 MS2050	0.0044	0.0048	0.0075
M2	ACET150612TR-ME10 MS2050	SNGU130612EN-ME10 MS2050	0,10	0,11	0,17
MO	A CETAFOCACTO MEAO MOCOCO	ONOUM 2004 25 N ME 40 M C 2005 2	0.0040 0,085	0.0044 0,090	0.0065 0,14
M3	ACET150612TR-ME10 MS2050	SNGU130612EN-ME10 MS2050	0.0034	0.0036	0.0055
M4	ACET150612TR-M11 T350M	SNXU130612TN-M12 T350M	0,080 0.0032	0,090 0.0036	0,13 <i>0.0050</i>
M5	ACET150612TR-M11 T350M	SNXU130612TN-M12 T350M	0,080 0.0032	0,090 <i>0.0036</i>	0,13 <i>0.0050</i>
K1	ACET150612TR-M14 MK1500	SNGU130612TN-M14 MK2050	0,16	0,17	0,26 0,010
K2	ACET150612TR-M14 MK1500	SNGU130612TN-M14 MK2050	0.0065 0,15	0.0065 0,16	0,24
K3	ACET150612TR-M14 MK1500	SNGU130612TN-M14 MK2050	0.0060 0,15	0.0065 0,16	0.0095 0,24
No		3NGO 1300 121N-W14 WIK2030	0.0060 0,15	0.0065 0,16	0.0095 0,24
K4	ACET150612TR-M14 MK1500	SNGU130612TN-M14 MK2050	0.0060	0.0065	0.0095
K5	ACET150612TR-M14 MK1500	SNGU130612TN-M14 MK2050	0,13 <i>0.0050</i>	0,14 0.0055	0,22 0.0085
K6	ACET150612TR-M14 MK1500	SNGU130612TN-M14 MK2050	0,15 0.0060	0,16 0.0065	0,24 0.0095
K7	ACET150612TR-M14 MK1500	SNGU130612TN-M14 MK2050	0,13 <i>0.0050</i>	0,14 <i>0.0055</i>	0,22 0.0085
S1	ACET150612TR-M11 F40M	SNXU130612TN-M12 F40M	0,080 0.0032	0,090 0.0036	0,13 0.0050
S2	ACET150612TR-M11 F40M	SNXU130612TN-M12 F40M	0,080	0,090	0,13
S3	ACET150612TR-M11 F40M	SNXU130612TN-M12 F40M	0.0032 0,075	0.0036 0,080	0.0050 0,12
S11	ACET150612TR-ME10 MS2050	SNGU130612EN-ME10 MS2050	0.0030 0,085	0.0032 0,090	0.0048 0,14
			0.0034 0,085	0.0036 0,090	0.0055 0,14
S12	ACET150612TR-ME10 MS2050	SNGU130612EN-ME10 MS2050	0.0034 0,075	0.0036 0,080	0.0055 0,12
S13	ACET150612TR-ME10 MS2050	SNGU130612EN-ME10 MS2050	0.0030	0.0032	0.0048
H5	ACET150612TR-M11 T350M	SNXU130612TN-M12 T350M	0,080 0.0032	0,085 0.0034	0,13 0.0050
Н8	ACET150612TR-M11 T350M	SNXU130612TN-M12 T350M	0,060 0.0024	0,065 0.0026	0,10 <i>0.0040</i>
H11	ACET150612TR-M11 T350M	SNXU130612TN-M12 T350M	0,080 0.0032	0,085 0.0034	0,13 <i>0.0050</i>
H12	ACET150612TR-M11 T350M	SNXU130612TN-M12 T350M	0,060 0.0024	0,065 0.0026	0,10 0,10 0.0040
			0.0024	0.0020	0.0040

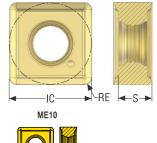
SMG = Seco material group f_z = mm/tooth (in/tooth), v_c = m/min (sf/min), a_e /DC = % All cutting data are start values

R217/220.82-SNAC15 – Cutting data $v_c = (m/min)/(sf/min)$

							(,	01/11111															
SMG		MP1501		ا	MP2501			T350M			MS2500		ı	MK2050			MS2050			MP2050			F40M	
	100%	30%	10%	100%	30%	10%	100%	30%	10%	100%	30%	10%	100%	30%	10%	100%	30%	10%	100%	30%	10%	100%	30%	10%
P1	145 475	160 520	170 560	140 460	155 510	165 <i>540</i>	130 425	145 <i>4</i> 75	155 510	145 475	160 520	170 560	140 460	150 490	160 520	130 425	145 475	155 510	140 460	155 510	165 <i>540</i>	125 410	140 460	150 490
P2	140 460	155 <i>510</i>	165 <i>540</i>	135 445	150 <i>4</i> 90	160 520	130 <i>4</i> 25	145 <i>4</i> 75	155 510	140 <i>460</i>	155 510	165 540	135 <i>445</i>	150 490	160 520	125 410	140 <i>460</i>	150 490	140 460	155 <i>510</i>	165 <i>540</i>	120 395	135 <i>445</i>	145 475
P3	135 445	150 490	160 520	130 425	145 <i>4</i> 75	155 510	120 395	135 <i>44</i> 5	145 475	135 445	150 490	160 520	130 <i>425</i>	145 475	155 510	120 395	135 <i>44</i> 5	145 475	130 425	150 <i>4</i> 90	155 510	115 375	130 <i>4</i> 25	140 <i>460</i>
P4	125 410	145 475	150 490	120 395	140 <i>460</i>	145 <i>4</i> 75	115 375	130 <i>4</i> 25	140 460	125 410	140 <i>460</i>	150 490	120 395	135 <i>44</i> 5	145 475	110 360	130 <i>425</i>	135 445	125 410	140 <i>460</i>	150 490	105 345	120 395	130 <i>4</i> 25
P5	125 410	140 460	150 490	120 395	135 <i>445</i>	145 <i>4</i> 75	115 375	125 410	140 460	125 410	140 460	150 490	120 395	135 445	145 475	110 360	125 410	135 445	125 410	140 460	150 490	105 345	120 395	130 425
P6	130 425	145 475	155 510	125 410	140 <i>460</i>	150 490	120 395	135 <i>445</i>	145 <i>4</i> 75	130 <i>4</i> 25	145 <i>4</i> 75	155 510	125 410	140 <i>460</i>	150 490	115 375	130 <i>425</i>	140 460	130 425	145 475	155 510	110 360	125 410	135 <i>44</i> 5
P7	130 425	145 475	155 510	125 410	140 460	150 490	115 375	130 425	140 460	130 425	145 475	155 510	125 410	140 460	150 490	115 375	130 425	140 460	125 410	145 475	150 490	110 360	125 410	135 <i>445</i>
P8	125 410	140 460	150 490	120 395	135 445	145 475	110 360	125 410	135 <i>445</i>	125 410	140 460	150 490	120 395	135 445	145 475	110 360	125 410	135 445	125 410	140 460	150 490	105 345	120 395	130 425
P11	125 410	140 460	150 490	120 395	140 460	145 <i>4</i> 75	115 375	130 <i>4</i> 25	140 460	125 410	140 460	150 490	120 395	135 445	145 475	110 360	130 425	135 445	125 410	140 460	150 490	105 345	120 395	130 425
P12	105 345	120 395	130 <i>42</i> 5	100 330	115 375	125 410	90 295	105 345	115 375	105 345	120 395	130 <i>425</i>	95 310	110 360	120 395	90 295	105 345	115 375	100 330	115 375	125 410	85 280	100 330	110 360
M1	_	_	_	120 395	135 445	145 <i>4</i> 75	115 375	130 <i>4</i> 25	140 460	120 395	140 460	150 490	_	_	_	115 375	130 <i>425</i>	140 460	120 395	140 460	145 475	110 360	125 410	135 445
M2	_	_	_	110 360	125 410	135 <i>445</i>	105 345	120 395	130 <i>4</i> 25	115 375	130 <i>4</i> 25	140 460	_	_	_	105 345	120 395	130 <i>425</i>	110 360	125 410	135 <i>445</i>	100 330	115 375	125 410
M3	_	_	_	95 310	110 360	120 395	95 310	110 360	115 375	100 330	115 375	125 410	_	_	_	95 310	110 360	115 375	100 330	115 375	125 410	85 280	105 345	110 360
M4	=	_	_	80 260	100 330	105 345	110 360	125 410	135 <i>44</i> 5	85 280	105 345	110 360	_	_	_	80 260	95 310	105 345	85 280	100 330	110 360	75 245	90 295	100 330
M5	_	_	_	70 230	90 295	95 310	110 360	125 410	135 445	75 245	95 310	100 330	_	_	_	70 230	85 280	95 310	75 245	90 295	100 330	65 215	80 260	90 295
K1	130 425	145 475	155 510	125 410	140 460	150 490	115 375	130 <i>4</i> 25	140 460	_	_	_	140 460	155 510	165 540	=	_	_	=	_	_	110 360	125 410	135 <i>44</i> 5
K2	120 395	135 445	145 475	120 395	130 425	140 460	110 360	125 410	135 445	_	_	_	135 445	150 490	160 520	_	_	_	_	_	_	100 330	115 375	125 410
K3	110 360	130 425	140 460	110 360	125 410	135 445	100 330	115 375	125 410	_	_	_	125 410	140 <i>460</i>	150 490	=	_	_	=	_	_	95 310	110 360	120 395
K4	110 360	125 410	135 445	105 345	120 395	130 <i>425</i>	100 330	115 375	125 410	_	_	_	120 395	135 445	145 475	_	_	_	_	_	_	90 295	105 345	115 375
K5	85 280	100 330	110 360	80 260	95 310	105 345	70 230	85 280	95 310	_	=	_	95 310	110 360	120 395	_	=	_	_	_	_	65 215	80 260	90 295
K6	105 345	120 395	130 425	100 330	115 375	125 410	90 295	105 345	115 375	_	_	_	115 375	130 <i>425</i>	140 460	_	_	_	_	_	_	85 280	100 330	110 360
K7	95 310	115 375	120 395	90 295	110 360	115 375	85 280	100 330	110 360	_	_	_	110 360	125 410	135 445	_	_	_	_	_	_	75 245	95 310	100 330
S1	=	_	_	44 145	60 195	65 215	39 130	55 180	60 195	48 155	65 215	70 230	_	_	_	39 130	55 180	60 195	47 155	60 195	70 230	36 120	48 155	55 180
S2	_	_	_	35 115	47 155	55 180	32 105	42 140	50 165	39 130	50 165	60 195	_	_	_	32 105	42 140	50 165	38 125	50 165	60 195	29 95	38 125	45 150
S3	_	_	_	32 105	41 135	49 160	28 90	37 120	43 140	34 110	45 150	55 180	_	_	_	28 90	37 120	43 140	33 110	44 145	50 165	26 85	34 110	39 130
S11	_	_	_	60 195	75 245	85 280	55 180	70 230	80 260	65 215	80 260	90 295	_	_	_	55 180	70 230	80 260	65 215	80 260	90 295	50 165	65 215	75 245
S12	_	_	_	43 140	55 180	65 215	38 125	50 165	60 195	47 155	60 195	70 230	_	_	_	38 125	50 165	60 195	45 150	60 195	70 230	35 115	46 150	55 180
S13	=	_	_	25 80	33 110	39 130	22 70	30 100	35 115	27 90	36 120	42 140	_	_	=	22 70	30 100	35 115	26 85	35 115	41 135	20 65	27 90	31 100
H5	44 145	60 195	65 215	37 120	48 155	55 180	35 115	46 150	55 180	_	_	_	_	_	_	_	_	_	_	_	_	31 100	40 130	48 155
H8	48 155	60 195	70 230	39 130	50 165	60 195	37 120	49 160	60 195	_	_	_	_	_	=	_	_	_	_	_	_	33 110	43 140	50 165
H11	55 180	70 230	80 260	47 155	60 195	70 230	45 150	60 195	70 230	_	_	_	_	_	_	_	_	_	49 160	65 215	75 245	39 130	50 165	60 195
H12	80 260	95 310	105 345	75 245	90 295	100 330	65 215	80 260	90 295	80 260	95 310	100 330	=	_		=	=	=	75 245	90 295	100 330	60 195	75 245	80 260

AC..15

ME10

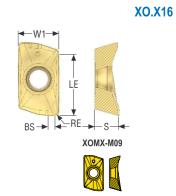


				_																			
Designation	RE	BS	L	W1	s	GAN								Grades Coated								Unco	ated
	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		MP1501	MP2050	MP2501	MP3000	MH1000	MM4500	MK1500	MK2050	MS2050	MS2500	T25M	T350M	F15M	F30M	F40M	H15	H25
ACET150612TR-ME10	1,2 0.047	0,13 0.005	15,0 0.591	12,7 0.500	6,35 0.250	22,0 °									•								
ACET150612TL-M11	1,2 0.047	0,13 0.005	15,0 0.591	12,7 0.500	6,35 0.250	14,0 °																	
ACET150612TR-M11	1,2 0.047	0,13 0.005	15,0 0.591	12,7 0.500	6,35 0.250	14,0 °	•										•						
ACET150631TR-M11	3,1 0.122	0,0	15,0 0.591	12,7 0.500	6,35 0.250	14,0 °															•		
ACET150612TL-M14	1,2 0.047	0,13 0.005	15,0 0.591	12,7 0.500	6,35 0.250	15,0 °																	
ACET150612TR-M14	1,2 0.047	0,13 0.005	15,0 0.591	12,7 0.500	6,35 0.250	15,0 °			•				•					•			٠		
ACET150630TR-M14	3,0 0.118	0,0	15,0 0.591	12,7 0.500	6,35 0.250	15,0 °																	
ACET150631TR-M14	3,1 0.122	0,0	15,0 0.591	12,7 0.500	6,35 0.250	15,0 °															•		
ACET150660TL-M14	6,0 0.236	0,0	15,0 0.591	12,7 0.500	6,35 0.250	15,0 °																	
ACET150660TR-M14	6,0 0.236	0,0	15,0 0.591	12,7 0.500	6,35 0.250	15,0 °												•			٠		
ACET150612TR-MD15	1,2 0.047	0,13 0.005	15,0 0.591	12,7 0.500	6,35 0.250	15,0 °				•													
ACET150630TR-MD15	3,0 <i>0.118</i>	0,0	15,0 0.591	12,7 0.500	6,35 0.250	15,0 °	•																
ACMT150612TR-M14	1,2 0.047	0,13 0.005	15,0 0.591	12,7 0.500	6,35 0.250	15,0 °																	

SN.U13

												Grades									
Designation	IC	RE	S	GAN								Coated								Unco	oated
	mm Inch	mm Inch	mm Inch		MP1501	MP2050	MP2501	MP3000	MH1000	MM4500	MK1500	MK2050	MS2050	MS2500	T25M	T350M	F15M	F30M	F40M	H15	H25
SNGU130612EN-ME10	13,587 0.535	1,2 0.047	5,56 0.219	26,0 °																	
SNGU130612TN-M14	13,6 <i>0.535</i>	1,2 0.047	5,56 0.219	23,0 °	•		٠					-									
SNXU130612TN-M12	13,587 <i>0.535</i>	1,2 0.047	5,56 0.219	21,0 °									•								

SNHX11/14



													Grades									
Designation	CHW	S	IC	KCH°	GAN		Coated											Uncoated				
	mm Inch	mm Inch	mm Inch	mm		MP1501	MP2050	MP2501	MP3000	MH1000	MM4500	MK1500	MK2050	MS2050	MS2500	T25M	T350M	F15M	F30M	F40M	H15	H25
SNHX1106TN8-M11	0,5 0.020	6,35 0.250	11,0 0.433	45,0	10,0°												•			•		
SNHX1406TN8-M12	0,8 0.031	6,35 0.250	14,5 0.571	45,0	10,0°												•			•		

E07/M09

					_																		
Designation	RE	вѕ	LE	W1	s	GAN								Grades Coated								Unco	ated
	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		MP1501	MP2050	MP2501	MP3000	MH1000	MM4500	MK1500	MK2050	MS2050	MS2500	T25M	T350M	F15M	F30M	F40M	H15	H25
XOEX160504FR-E07	0,4 0.016	2,0 0.079	15,4 0.606	10,2 0.402	5,9 0.232	23,0 °																	
XOEX160508FR-E07	0,8 0.031	2,0 0.079	15,4 0.606	10,2 0.402	5,9 0.232	23,0 °																	•
XOEX160504R-M09	0,4 0.016	2,0 0.079	15,4 0.606	10,2 0.402	5,9 0.232	14,0 °				•													
XOEX160508R-M09	0,8 0.031	2,0 0.079		10,2 0.402	5,9 0.232	14,0 °		•	•	•					•	•		•			•		
XOEX160516R-M09	1,6 0.063	2,0 0.079	15,4 0.606	10,2 0.402	5,9 0.232	14,0 °															•		
XOEX160520R-M09	2,0 0.079	2,0 0.079		10,2 0.402	5,9 0.232	14,0 °									•						•		
XOEX160524R-M09	2,4 0.094	1,8 0.071	15,4 0.606	10,2 0.402	5,9 0.232	14,0 °		•							•						٠		
XOEX160531R-M09	3,1 0.122	1,6 0.063	15,3 0.602	10,2 0.402	5,9 0.232	14,0 °		•							•	•					•		
XOEX160540R-M09	4,0 0.157	1,2 0.047		10,2 0.402		14,0 °									•						•		
XOEX160550R-M09	5,0 0.197	0,3 0.012	15,0 0.591	10,2 0.402		14,0 °									•						•		
XOEX160563R-M09	6,3 0.248	0,2 0.008		10,2 <i>0.402</i>	5,34 0.210	14,0 °									•						•		
XOMX160504TR-ME11	0,4 0.016	2,0 0.079		10,2 <i>0.402</i>	5,94 0.234	19,0 °			•														
XOMX160508TR-ME11	0,8 0.031	2,0 0.079	15,4 0.606	10,2 0.402	5,94 0.234	19,0 °		•	•						•			•			٠		
XOMX160512TR-ME11	1,2 0.047	2,0 0.079	15,4 0.606	10,2 <i>0.402</i>	5,94 0.234	19,0 °			•														
XOMX160516TR-ME11						18,0 °															•		
XOMX160520TR-ME11	2,0	1,9	15,4	10,2 <i>0.402</i>	5,94	18,0 °			•						•						•		
XOMX160531TR-ME11	3,1 0.122	1,6 0.063	15,4 0.606	10,2 0.402	5,93 0.233	19,0 °															•		
XOMX160540TR-ME11				10,2 0.402		19,0 °									•								
XOMX160550TR-ME11	5,0 0.197	0,3 0.012	15,0 0.591	10,2 0.402	5,56 0.219	18,0 °															•		
XOMX160563TR-ME11	6,3 0.248	0,2 0.008	14,6 0.575	10,2 0.402	5,3 0.209	18,0 °									•						•		
XOMX160508R-M09				10,2 0.402		14,0 °															•		
XOMX160508TR-M13	0,8 0.031			10,2 0.402		9,0 °	•		•	•			•	•				•			•		
XOMX160516TR-M13	1,6 0.063			10,2 0.402		9,0 °															•		

Designation	RE	BS	LE	W1	s	GAN	Grades Coated U										Unco	ated					
	mm Inch	mm Inch	mm Inch	mm Inch	mm Inch		MP1501	MP2050	MP2501	MP3000	MH1000	MM4500	MK1500	MK2050	MS2050	MS2500	T25M	T350M	F15M	F30M	F40M	H15	H25
XOMX160531TR-M13	3,1 0.122	1,6 0.063	15,4 0.606	10,2 0.402	5,98 0.235	9,0 °															•		
XOMX160504TR-MD14	0,4 0.016	2,0 0.079	15,4 0.606	10,2 0.402	6,01 0.237	4,0 °								•									
XOMX160508TR-MD14	0,8 0.031	2,0 0.079	15,4 0.606	10,2 <i>0.402</i>	6,01 0.237	4,0 °	•			•				•				•					

EXPAND YOUR TOOL HOLDING VERSATILITY

SECO HYDRAULIC CHUCKS

YOUR CHALLENGE

Machines sit idle because complicated, time-consuming costly holders require special systems and operator training.

OUR SOLUTION

Tool changes are fast, easy and simple to perform with Seco Hydraulic Chucks and Reduction Sleeves, in drilling, reaming, tapping and light milling.

YOUR CHALLENGE

Inability to reach narrow and deep part areas during light milling and drilling operations.

OUR SOLUTION

The HCS Slim version Seco Hydraulic Chuck provides extended tooling reach for effective workpiece accessibility.

YOUR CHALLENGE

Varied, challenging materials and machining conditions require multiple tool holders.

OUR SOLUTION

With its compact and robust design, the Seco reinforced HCR Hydraulic Chuck ensure strong clamping and withstand high radial cutting forces when to provide full tool engagement while machining a variety of tough materials.

CUSTOMER BENEFITS

- Comprehensive range of hydraulic chucks
- Compatible with all common machine tool spindle interfaces
- Range includes conventional (HC), reinforced power (HCR) and slim (HCS) designs
- Available slotted reduction sleeves in sealed and peripherical coolant versions
- Chucks support Seco round tools for the utmost performance

SECO HYDRAULIC CHUCKS

ELIMINATE COMPLICATED TOOL HOLDING

Seco Hydraulic Chucks and Reduction Sleeves provide simple, easy-to-use, versatile tool holding. To overcome specific machining challenges cost effectively, these chucks are available in three versions, each able to accommodate several tool shank size variations for reduced tooling inventory. The HC Conventional version delivers precision holding for drilling, reaming and light milling. As a universal solution, the HCR Reinforced version provides effective holding for all applications from HSM to HPM, and for all kind of tool shank types like Cylindrical, Weldon and Whistle Notch. The HCS Slim holder is ideal to access deep, narrow part cavities during 5-axis machining at high speeds

PRODUCT NUMBER	DESIGNATION	HC: Conven- Tional	HCR: REIN- FORCED	HCS: SLIM
10137125	HSKA63-HCR12-080		•	
10137126	HSKA63-HCR20-080			
10137127	HSKA100-HCR20-090			
10137128	HSKA100-HCR32-100		-	
10137129	DIN40ADB-HCR12-050		•	
10137130	DIN40ADB-HCR20-064			
10137131	DIN50ADB-HCR20-064		•	
10137132	DIN50ADB-HCR32-081		-	
10137133	CAT40ADB-HCR20-064		•	
10137134	CAT40TFADB-HCR20-064		-	
10137135	CAT50ADB-HCR32-081		•	
10137136	BT30ADB-HCR12-069		-	
10137137	BT30ADB-HCR20-090		•	
10137138	BT30TFADB-HCR12-069		-	
10137139	BT30TFADB-HCR20-090		•	
10137140	BT40ADB-HCR12-058			
10137141	BT40ADB-HCR20-072		•	
10137142	BT40TFADB-HCR12-058		-	
10137143	BT40TFADB-HCR20-072		•	
10137144	BT50ADB-HCR20-083			
10137145	BT50ADB-HCR32-090			
10137146	C6-HCR12-065			
10137147	C6-HCR20-080			
10137148	HSKA50-HCR20-094		-	
10137261	HSKA63-HC06-070	•		
10137262	HSKA63-HC08-070	-		
10137263	HSKA63-HC10-080	•		
10137264	HSKA63-HC12-085	-		
10137265	HSKA63-HC14-085	•		
10137266	HSKA63-HC16-090	-		
10137267	HSKA63-HC20-090	•		
10137268	HSKA63-HC25-120	-		
10137269	HSKA63-HC32-125	•		
10137270	HSKA100-HC12-095	-		
10137271	HSKA100-HC16-100	•		
10137272	HSKA100-HC20-105	•		
10137273	HSKA100-HC25-110	•		
10137274	HSKA100-HC32-110	•		
10137275	DIN40ADB-HC06-080	•		
10137276	DIN40ADB-HC08-080	•		

PRODUCT		HC: CONVEN-	HCR: REIN-	HCS:	PRODUCT	
NUMBER	DESIGNATION	TIONAL	FORCED	SLIM	NUMBER	DESIGNATION
10137277	DIN40ADB-HC10-080	-			10137337	HSKA100-HCS12-150
10137278	DIN40ADB-HC12-080				10137338	HSKA100-HCS16-150
10137279	DIN40ADB-HC16-080	•			10137339	HSKA100-HCS20-150
10137280	DIN50ADB-HC12-080	•			10137340	BT40ADB-HCS06-150
10138581	DIN40ADB-HC20-080	•			10137341	BT40ADB-HCS08-150
10138582	DIN50ADB-HC20-080	•			10137342	BT40ADB-HCS10-150
10138583	DIN50ADB-HC32-103	•			10137343	BT40ADB-HCS12-150
10137281	CAT40ADB-HC06-063	•			10137344	BT40ADB-HCS16-150
10137282	CAT40ADB-HC08-063	•			10137345	BT40ADB-HCS20-150
10137283	CAT40ADB-HC10-063	•			10137346	BT40TFADB-HCS06-150
10137284	CAT40ADB-HC12-063	•			10137347	BT40TFADB-HCS08-150
10137285	CAT40ADB-HC16-063	•			10137348	BT40TFADB-HCS10-150
10137286	CAT40ADB-HC20-063	•			10137349	BT40TFADB-HCS12-150
10137287	CAT40TFADB-HC06-080	•			10137350	BT40TFADB-HCS16-150
10137288	CAT40TFADB-HC08-080	•			10137351	BT40TFADB-HCS20-150
10137289	CAT40TFADB-HC10-080	-			10137352	ST20-HC12-100
10137290	CAT40TFADB-HC12-080	•			10137353	ST20-HC20-100
10137291	CAT40TFADB-HC16-080	-			10137354	ST32-HC20-140
10137292	CAT40TFADB-HC20-080	•			10137305	C5-HC06-065
10137293	CAT50ADB-HC12-081	-			10137306	C5-HC08-065
10137294	CAT50ADB-HC20-081	•			10137307	C5-HC10-075
10137295	CAT50ADB-HC25-081	-			10137308	C5-HC12-080
10137296	CAT50ADB-HC32-081	•			10137309	C5-HC16-085
10137297	BT40ADB-HC06-090	•			10137310	C5-HC20-085
10137298	BT40ADB-HC08-090	•			10137311	C5-HC25-095
10137299	BT40ADB-HC10-090	•			10137312	C6-HC06-065
10137300	BT40ADB-HC12-090	•			10137313	C6-HC08-065
10137301	BT40ADB-HC16-090	-			10137314	C6-HC10-075
10137302	BT40ADB-HC20-090	•			10137315	C6-HC12-080
10137303	BT50ADB-HC20-090	•			10137316	C6-HC16-085
10137304	BT50ADB-HC32-120	•			10137317	C6-HC20-085
10137328	HSKA63-HCS06-145				10137318	C6-HC25-095
10137329	HSKA63-HCS08-145			-	10137319	C6-HC32-100
10137330	HSKA63-HCS10-145				10137320	C8-HC20-095
10137331	HSKA63-HCS12-145			-	10137321	C8-HC32-105
10137332	HSKA63-HCS16-145				10137322	G5-HC20-090
10137333	HSKA63-HCS20-145			-	10137323	G6-HC25-100
10137334	HSKA100-HCS06-150				10137324	G6-HC32-100
10137335	HSKA100-HCS08-150			-		
10137336	HSKA100-HCS10-150					

SECO I

Tool holders for round tools clamping

001	noiders for round tools clam	ping			
		Power milling chuck	Hydraulic chuck HC	Hydraulic chuck HCR	Hydraulic chuck HCS
		PMC	HC 5834		
Operations	Finishing milling Medium milling Rough milling High speed milling Drilling Reaming Tapping		NA NA	NA	NA ON
	Clamping range (mm)	Ø6 − Ø32	Ø3 – Ø32	Ø12 − Ø20 − Ø32 in direct Ø3 − Ø32 through sleeves	∅6 – ∅20
	Clamping range (inch)	∅0.75 – ∅1.25	Ø0.118 − Ø1.25	Ø0.472 – Ø0.787 – Ø125 in direct Ø0.118 – Ø1.25 through sleeves	∅0.236 – ∅0.787
	Run-out Max RPM*	>10 µm/.0004" (3x Ø) 15 000 rpm	≤3 μm/.0001' 40 000 rpm	≤3 µm/.0001" 50 000 rpm (Ø32/1.25" max 25 000 rpm)	≤3 μm/.0001' 40 000 rpm
stics	Transmittable torque	1500 Nm/1106 ft/lb (⊘32 mm/1.25")	650 Nm/480 ft/lb (Ø32 mm/1.25") (250 Nm for Seco-Capto/Graflex)	900 Nm/664 ft/lb (∅32 mm/1.25")	231 Nm/170 ft/lb (∅20 mm/0.787")
Characteristics	Tool change	Spanner	Locking hex key	Locking hex key	Locking hex key
ပ်	Axial adjustment	Screw		Screw	Screw
	Max coolant pressure*	30 bar/435 psi	80 bar/1160 psi (70 bar/1015 psi for Seco-Capto/ Graflex)	80 bar/1160 psi	80 bar/1160 psi
	Type of cooling	Central		Central	Central
	Balancing quality	Pre-balanced	G2.5 - 25 000 or U≤1g.mm (except Seco-Capto)	G2.5 - 25 000 or U≤1g.mm	G2.5 - 25 000 or U≤1g.mm
	Option	Stop screws for through coolant Sleeves	Sleeves (sealed or peripheral coolant)	Sleeves (sealed or peripheral coolant)	Sleeves (sealed or peripheral coolant)
Rec	ommandations	Ideal for heavy duty operations, high chips removale rates Alternative to shrinkfit or Weldon Easy to implement Versatile through use of reduction sleeves	Semi-finishing and finishing operations in High Speed Cutting (HSC) Not recommended for heavy milling with big radial loads Simple to use, but needs maintenance Flexibility thru red. sleeves Dampening effect	Universal chuck, for heavy roughing applications (HPM) or High Speed Cutting (HSC) in all kind of applications High rigidity, high torques Very easy to use Flexibility thru red. Sleeves Damping effect	 For semi-finishing and finishing applications in deep cavities, like M&D Very easy to use Flexibility thru red. Sleeves
Tool	l shank quality	Recommanded: h6 (max h7)	Needs to be: h6		
* De	pending on the holder's machin	e side taper type and size			

Hydraulic expansion chucks - HC (former 5834), HCR and HCS

Hydraulic chucks, that use oil pressure to compress an internal membrane within the holder body, feature repeatable low runout, quick and easy tool change, and are effective for reaming, drilling, threading and light milling with end mills at high spindle speeds. The HCR Power version can perform High Machining Performance thanks to a high radial rigidity, as well as High-Speed Machining.

Мо	st important features
1	Fine balanced in standard at G2,5-25,000 rpm or ≤1 g.mm (Seco-Capto: G6,3-20.000 rpm)
2	HC version with body shape according to DIN69882-7
3	Made from Premium material, high mechanical strength and good resistance to thermal shocks
4	Very easy to use, just turn one screw until stop. Not additional equipment needed
5	Good gripping forces (shank tolerance h6 maximum), especially Power version offering high clamping forces
6	Repeatable runout ≤ 3 µm
	HC Straight shanks: runout ≤ 6 μm
7	Helical groove to ensure oil-free or debris-free tool shank surface
8	Oil reservoir acts as a damping agent
9	Axial stop screw for tool length adjustment

Shrinkfi

Our standard designs

HC Conventional version

The HC conventional hydro-chucks are an easy and efficient solution for high precision works like for drilling, reaming, threading, and light milling in all kind of components. Can be used along with slotted reduction sleeves offering a great flexibility.

Very easy tool changes, reducing set-up times, without need of peripherical equipment's.

HCR Reinforced version

The HCR reinforced version is a universal solution for round tools, dedicated for all kind of machining applications from high performance machining (HPM) to high-speed cutting (HSC)

Its short and compact design offers a high radial rigidity, and high gripping forces (up to 900 Nm for diam 32!)

Fine balanced, it is suitable for high-speed applications up to 50.000 rpm (diam. 12 and 20 mm).

The range features a direct clamping for diam. 12, 20 and 32, but various other diameters can be clamped through slotted reduction sleeves. All kind of tool shank types can be clamped even in direct mount.

HCS Slim 3° version

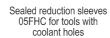
The HCS Slim 3° designs are ideal for excellent workpiece accessibility, machining of narrow and deep areas in light milling and drilling operations.

This range is completed with cylindrical extensions enabling to build long and slim assemblies once mounted into the HCR Power chucks for example.

Reduction sleeves for hydraulic chucks

Slotted reduction sleeves from diam. 12, 20 and 32 mm allow the clamping of several different tool shank sizes with just one toolholder, offering a great flexibility and reducing inventory costs.

They are available in two versions:


- coolant-proof for tools with coolant facilities,
- with peripheral coolant channels for tools without internal cooling holes.

Both versions are equipped with a length pre-adjustement ring.

Runout and transmissible torque will remain unchanged.

All kind of tool shank types can be mounted into the sleeves

Reduction sleeves 05FHC...L1 with peripheral coolant channels for tools without coolant holes

SECU

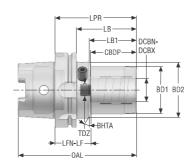
Acceptable tool shanks

	Designs	Cylindrical Form A	Weldon 1 flat Form B	Weldon 2 flats Form B	Whistle Notch Form E
Direct clamping	HC (Conventional)	Ø 6 - 32 mm Ø 0.236 - 1.260"	Ø 6 - 20 mm Ø 0.236 - 0.787"	Ø 25 - 32 mm Ø 1 - 1.260"	Ø 6 - 32 mm Ø 0.236 - 1.260"
	HCR (Reinforced)	Ø 6 - 32 mm Ø 0.236 - 1.260"	Ø 6 - 20 mm Ø 0.236 - 0.787"	Ø 25 - 32 mm Ø 1 - 1.260"	Ø 6 - 32 mm Ø 0.236 - 1.260"
	HC (Capto/Graflex)	Ø 6 - 32 mm Ø 0.236 - 1.260"	Ø 6 - 20 mm Ø 0.236 - 0.787"	cannot be clamped in direct	cannot be clamped in direct
	HCS (Slim)	Ø 6 - 32 mm Ø 0.236 - 1.260"	Ø 6 - 20 mm Ø 0.236 - 0.787"	cannot be clamped in direct	cannot be clamped in direct
Through reduction sleeves	HC (Conventional)	∅ 3 - 25 mm ∅ 0.118 - 1"	Ø 6 - 20 mm Ø 0.236 - 0.787"	∅ 25 mm ∅ 1"	Ø 6 - 25 mm Ø 0.236 - 1"
	HCR (Reinforced)	Ø 3 - 25 mm Ø 0.118 - 1"	Ø 6 - 20 mm Ø 0.236 - 0.787"	Ø 25 mm Ø 1"	Ø 6 - 25 mm Ø 0.236 - 1"
	HCS (Slim)	Ø 3 - 25 mm Ø 0.118 - 1"	Ø 6 - 20 mm Ø 0.236 - 0.787"	Ø 25 mm Ø 1"	Ø 6 - 25 mm Ø 0.236 - 1"

Hydraulic chucks are not Shrinkfit chucks: don't heat them!

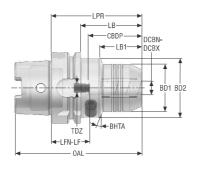
Hydraulic expansion chucks (HC-5834)

			Max rpm (min ⁻¹)			
	Standa	rd design HC	Reinforced design HCR	Slim design 3° HCS	Minimum cla	mping depth
Clamping ∅	HSK-A, DIN, BT, BT T/F, CAT	Seco-Capto, Graflex, CAT T/F	All	All	Standard HC and Reinforced HCR in HSK-A, DIN, BT, BT T/F, CAT, Seco-Capto, Graflex	Standard HC in CAT-T/F, and all slim HCS 3°
6 mm 0.236"	50.000	40.000		40.000	27 mm 1.063"	27 mm 1.063"
8 mm 0.315"	50.000	40.000		40.000	27 mm 1.063"	27 mm 1.063"
10 mm 0.394"	50.000	40.000		40.000	31 mm 1.220"	32 mm 1.260"
12 mm 0.472"	50.000	40.000	50.000	40.000	36 mm 1.417"	37 mm 1.457"
14 mm 0.551"	50.000	40.000		40.000	36 mm 1.417"	37 mm 1.457"
16 mm 0.630"	50.000	40.000		40.000	39 mm 1.535"	42 mm 1.654"
20 mm 0.787"	50.000	40.000	50.000	40.000	41 mm 1.614"	42 mm 1.654"
25 mm 0.984"	25.000	25.000		25.000	47 mm 1.850"	48 mm 1.890"
32 mm 1.260"	25.000	25.000	25.000	25.000	51 mm 2.000"	55 mm 2.165"


- Operating temperature: 20-50°C
 Max. coolant pressure: 80 bar/1160 psi, Seco-Capto and Graflex: 70 bar/1015 psi
 Adjustment range of the length: 10 mm. Tool must be inserted at recommended minimum clamping length (see chart)
 Tool shank quality: h6 or better
 Adapt your parameters in case of long tools, heavy tools, and when using extensions
 HC Straight shanks limited to maxi 10.000 rpm

HC - Hydraulic chucks - DIN69882-7 - Metric / Inch

- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For HSK sealing plugs, coolant tubes and tube spanners, see page(s) 394
 For ISO attribute explanation, see page 14

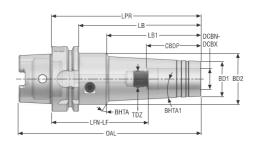

Design	ation	Item number	стмѕ	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	RFID hole	Balan- cing	Weight
				mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg Ibs
HSKA6	3-HC06-070	10137261	HSK-A63	6,0 0.236	70,0 2.756	44,05 1.734	24,0 0.945	38,5 1.516	50,0 1.969	26,0 1.024	101,9 <i>4.012</i>	33,0 1.299	43,0 1.693	M5	20,0	1	G2.5	1,0 2.200
HSKA6	3-HC08-070	10137262	HSK-A63	8,0 <i>0.315</i>	70,0 2.756	44,05 1.734	25,0 0.984	38,5 1.516	50,0 1.969	28,0 1.102	101,9 <i>4.012</i>	33,0 1.299	43,0 1.693	M6	20,0	1	G2.5	1,0 2.200
HSKA6	3-HC10-080	10137263	HSK-A63	10,0 <i>0.</i> 394	80,0 3.150	54,05 2.128	35,0 1.378	42,5 1.673	50,0 1.969	30,0 1.181	111,9 <i>4.406</i>	39,0 1.535	49,0 1.929	M8x1	20,0	1	G2.5	1,0 2.200
HSKA6	3-HC12-085	10137264	HSK-A63	12,0 <i>0.4</i> 72	85,0 3.346	59,05 2.325	40,0 1.575	47,5 1.870	50,0 1.969	32,0 1.260	116,9 <i>4.602</i>	39,0 1.535	49,0 1.929	M10x1	20,0	1	G2.5	1,1 2.430
HSKA6	3-HC14-085	10137265	HSK-A63	14,0 <i>0.551</i>	85,0 3.346	59,05 2.325	40,0 1.575	47,5 1.870	50,0 1.969	34,0 1.339	116,9 <i>4.602</i>	39,0 1.535	49,0 1.929	M10x1	20,0	1	G2.5	1,1 2.430
HSKA6	3-HC16-090	10137266	HSK-A63	16,0 <i>0.630</i>	90,0 3.543	64,05 2.522	46,0 1.811	50,5 1.988	50,0 1.969	38,0 1.496	121,9 <i>4.</i> 799	41,0 1.614	51,0 2.008	M12x1	20,0	1	G2.5	1,2 2.650
HSKA6	3-HC20-090	10137267	HSK-A63	20,0 0.787	90,0 3.543	64,05 2.522	48,0 1.890	52,5 2.067	50,0 1.969	42,0 1.654	121,9 <i>4</i> .799	39,0 1.535	49,0 1.929	M16x1	20,0	1	G2.5	1,2 2.650
HSKA6	3-HC25-120	10137268	HSK-A63	25,0 0.984	120,0 4.724	94,05 3.703	-	58,5 2.303	-	57,0 2.244	151,9 5.980	63,0 2.480	73,0 2.874	M16x1	-	1	G2.5	2,1 4.630
HSKA6	3-HC32-125	10137269	HSK-A63	32,0 1.260	125,0 4.921	99,05 3.900	82,8 3.260	62,5 2.461	50,0 1.969	62,0 2.441	156,9 6.177	64,0 2.520	74,0 2.913	M16x1	-	1	G2.5	2,3 5.070
HSKA1	00-HC12-095	10137270	HSK-A100	12,0 0.472	95,0 3.740	66,05 2.600	47,0 1.850	47,5 1.870	50,3 1.978	32,0 1.260	144,9 5.705	49,0 1.929	59,0 2.323	M10x1	20,0	1	G2.5	2,5 5.510
HSKA1	00-HC16-100	10137271	HSK-A100	16,0 0.630	100,0 3.937	71,05 2.797	53,0 2.087	50,5 1.988	50,3 1.978	38,0 1.496	149,9 5.902	51,0 2.008	61,0 2.402	M12x1	20,0	1	G2.5	2,6 5.730
HSKA1	00-HC20-105	10137272	HSK-A100	20,0 <i>0.787</i>	105,0 4.134	76,05 2.994	59,0 2.323	52,5 2.067	50,3 1.978	42,0 1.654	154,9 6. <i>0</i> 98	54,0 2.126	64,0 2.520	M16x1	20,0	1	G2.5	2,7 5.950
HSKA1	00-HC25-110	10137273	HSK-A100	25,0 0.984	110,0 <i>4.</i> 331	81,05 3.191	62,0 2.441	58,5 2.303	63,3 2.490	57,0 2.244	159,9 6.295	53,0 2.087	63,0 2.480	M16x1	20,0	1	G2.5	3,4 7.500
HSKA1	00-HC32-110	10137274	HSK-A100	32,0 1.260	110,0 <i>4.331</i>	81,05 3.191	62,0 2.441	62,5 2.461	75,3 2.963	64,0 2.520	159,9 6.295	49,0 1.929	59,0 2.323	M16x1	20,0	1	G2.5	3,7 8.160

For size	Key
HSKA63, DCBN = 6-20	H05-4
HSKA63, DCBN = 25-32	H06-4
HSKA100, DCBN = 12-20	H05-4
HSKA100, DCBN = 25-32	H06-4

HSK-A/ ISO12164-1-HSK-A

HCR – Hydraulic chucks, reinforced - Metric / Inch

- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For HSK sealing plugs, coolant tubes and tube spanners, see page(s) 394
 For ISO attribute explanation, see page 14


Designation	Item number	CTMS	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg <i>Ibs</i>
HSKA50-HCR20-094	10137148	HSK-A50	20,0 0.787	94,0 3.701	68,05 2.679	51,8 2.039	52,5 2.067	40,3 1.585	42,0 1.654	118,9 <i>4.681</i>	41,5 1.634	41,5 1.634	-	-	1	G2.5	1,0 2.200
HSKA63-HCR12-080	10137125	HSK-A63	12,0 0.472	80,0 3.150	54,05 2.128	36,5 1.437	47,5 1.870	52,5 2.067	42,0 1.654	111,9 <i>4.406</i>	34,0 1.339	44,0 1.732	M8x1	20,0	1	G2.5	1,3 2.870
HSKA63-HCR20-080	10137126	HSK-A63	20,0 0.787	80,0 3.150	54,05 2.128	-	52,5 2.067	-	52,5 2.067	111,9 <i>4.406</i>	29,0 1.142	39,0 1.535	M8x1	-	1	G2.5	1,3 2.870
HSKA100-HCR20-090	10137127	HSK-A100	20,0 0.787	90,0 3.543	61,05 2.404	-	52,5 2.067	-	52,5 2.067	139,9 5.508	39,0 1.535	49,0 1.929	M8x1	-	1	G2.5	2,8 6.170
HSKA100-HCR32-100	10137128	HSK-A100	32,0 1.260	100,0 3.937	71,05 2.797		62,5 2.461	-	72,0 2.835	149,9 5.902	39,0 1.535	49,0 1.929	M8x1	-	1	G2.5	3,7 8.160

For	Кеу
HSKA50	H05-4
HSKA63	H05-4
HSKA100-HCR20	H05-4
HSKA100-HCR32	H06-4

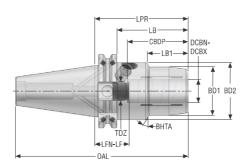
HCS – Hydraulic chucks, slim - Metric / Inch

HSK-A/ ISO12164-1-HSK-A

- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For HSK sealing plugs, coolant tubes and tube spanners, see page(s) 394
 For ISO attribute explanation, see page 14

Designation	ltem number	стмѕ	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	BHTA1°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch						kg Ibs
HSKA63-HCS06-145	10137328	HSK-A63	6,0 <i>0.236</i>	145,0 5.709	119,0 <i>4.685</i>	90,0 3.543	37,0 1.457	50,0 1.969	20,0 0.787	177,0 6.969	108,0 <i>4.2</i> 52	118,0 <i>4.646</i>	M5x0.8	30,0	3,0	1	G2.5	1,5 3.310
HSKA63-HCS08-145	10137329	HSK-A63	8,0 0.315	145,0 5.709	119,0 4.685	90,0 3.543	37,0 1.457	50,0 1.969	22,0 0.866	177,0 6.969	108,0 <i>4.2</i> 52	118,0 <i>4.646</i>	M6x1	30,0	3,0	1	G2.5	1,5 3.310
HSKA63-HCS10-145	10137330	HSK-A63	10,0 <i>0.</i> 394	145,0 5.709	119,0 4.685	90,0 3.543	42,0 1.654	50,0 1.969	24,0 0.945	177,0 6.969	103,0 <i>4.055</i>	113,0 <i>4.44</i> 9	M8x1	30,0	3,0	1	G2.5	1,5 3.310
HSKA63-HCS12-145	10137331	HSK-A63	12,0 0.472	145,0 5.709	119,0 4.685	90,0 3.543	49,0 1.929	50,0 1.969	25,0 0.984	177,0 6.969	98,0 3.858	108,0 4.252	M10x1	30,0	3,0	1	G2.5	1,6 3.530
HSKA63-HCS16-145	10137332	HSK-A63	16,0 <i>0.630</i>	145,0 5.709	119,0 <i>4.685</i>	90,0 3.543	51,0 2.008	50,0 1.969	32,0 1.260	177,0 6.969	93,0 3.661	103,0 4.055	M12x1	30,0	3,0	1	G2.5	1,8 3.970
HSKA63-HCS20-145	10137333	HSK-A63	20,0 <i>0.787</i>	145,0 5.709	119,0 4.685	90,0 3.543	53,0 2.087	50,0 1.969	34,0 1.339	177,0 6.969	93,0 3.661	103,0 4.055	M16x1	30,0	3,0	1	G2.5	1,9 <i>4.190</i>
HSKA100-HCS06-150	10137334	HSK-A100	6,0 0.236	150,0 5.906	121,0 4.764	90,0 3.543	37,0 1.457	50,0 1.969	20,0 0.787	200,0 7.874	113,0 <i>4.44</i> 9	123,0 4.843	M5x0.8	30,0	3,0	1	G2.5	3,0 6.610
HSKA100-HCS08-150	10137335	HSK-A100	8,0 0.315	150,0 5.906	121,0 4.764	90,0 3.543	37,0 1.457	50,0 1.969	22,0 0.866	200,0 7.874	113,0 <i>4.44</i> 9	123,0 4.843	M6x1	30,0	3,0	1	G2.5	3,1 6.830
HSKA100-HCS10-150	10137336	HSK-A100	10,0 <i>0.</i> 394	150,0 5.906	121,0 <i>4.764</i>	90,0 3.543	42,5 1.673	50,0 1.969	24,0 0.945	200,0 7.874	108,0 <i>4.2</i> 52	118,0 4.646	M8x1	30,0	3,0	1	G2.5	3,1 6.830
HSKA100-HCS12-150	10137337	HSK-A100	12,0 <i>0.4</i> 72	150,0 5.906	121,0 <i>4.764</i>	90,0 3.543	48,0 1.890	50,0 1.969	25,0 0.984	200,0 7.874	103,0 <i>4.055</i>	113,0 <i>4.44</i> 9	M10x1	30,0	3,0	1	G2.5	3,1 6. <i>830</i>
HSKA100-HCS16-150	10137338	HSK-A100	16,0 <i>0.630</i>	150,0 5.906	121,0 <i>4.764</i>	90,0 3.543	52,0 2.047	50,0 1.969	32,0 1.260	200,0 7.874	98,0 3.858	108,0 <i>4.252</i>	M12x1	30,0	3,0	1	G2.5	3,4 7.500
HSKA100-HCS20-150	10137339	HSK-A100	20,0 <i>0.787</i>	150,0 5.906	121,0 4.764	90,0 3.543	52,0 2.047	50,0 1.969	34,0 1.339	200,0 7.874	100,0 3.937	110,0 4.331	M16x1	30,0	3,0	1	G2.5	3,4 7.500

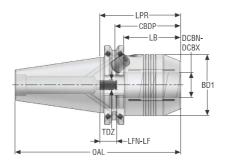
Accessories


For

HC - Hydraulic chucks, standard - Metric / Inch

DIN 69871-ADB

- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14


Designation	Item number	стмѕ	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	BHTA°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg Ibs
DIN40ADB-HC06-080	10137275	DIN40 ADB	6,0 0.236	80,5 3.169	61,45 2.419	29,5 1.161	38,5 1.516	49,3 1.939	26,0 1.024	148,75 5.856	43,5 1.713	53,5 2.106	M5	20,0	1	G2.5	1,3 2.870
DIN40ADB-HC08-080	10137276	DIN40 ADB	8,0 0.315	80,5 3.169	61,45 2.419	30,0 1.181	38,5 1.516	49,3 1.939	28,0 1.102	148,75 5.856	43,5 1.713	53,5 2.106	M6	20,0	1	G2.5	1,3 2.870
DIN40ADB-HC10-080	10137277	DIN40 ADB	10,0 <i>0.394</i>	80,5 3.169	61,45 2.419	31,0 1.220	42,5 1.673	49,3 1.939	30,0 1.181	148,75 5.856	39,5 1.555	49,5 1.949	M8x1	20,0	1	G2.5	1,3 2.870
DIN40ADB-HC12-080	10137278	DIN40 ADB	12,0 <i>0.472</i>	80,5 3.169	61,45 2.419	31,5 1.240	47,5 1.870	49,3 1.939	32,0 1.260	148,75 5.856	34,5 1.358	44,5 1.752	M10x1	20,0	1	G2.5	1,3 2.870
DIN40ADB-HC16-080	10137279	DIN40 ADB	16,0 <i>0.630</i>	80,5 3.169	61,45 2.419	33,0 1.299	50,5 1.988	49,3 1.939	38,0 1.496	148,75 5.856	31,5 1.240	41,5 1.634	M12x1	20,0	1	G2.5	1,4 3.090
DIN40ADB-HC20-080	10138581	DIN40 ADB	20,0 0.787	80,5 3.169	61,45 2.419	34,0 1.339	52,5 2.067	49,3 1.939	42,0 1.654	148,75 5.856	29,5 1.161	39,5 1.555	M16x1	20,0	1	G2.5	1,4 3.090
DIN50ADB-HC12-080	10137280	DIN50 ADB	12,0 0.472	80,5 3.169	61,45 2.419	31,5 1.240	47,5 1.870	49,3 1.939	32,0 1.260	182,1 7.169	34,5 1.358	44,5 1.752	M10x1	20,0	1	G2.5	3,0 6.610
DIN50ADB-HC20-080	10138582	DIN50 ADB	20,0 <i>0.787</i>	80,5 3.169	61,45 2.419	34,0 1.339	52,5 2.067	49,3 1.939	42,0 1.654	182,1 7.169	29,5 1.161	39,5 1.555	M16x1	20,0	1	G2.5	3,2 7.050
DIN50ADB-HC32-103	10138583	DIN50 ADB	32,0 1.260	103,2 <i>4.063</i>	84,15 3.313	62,5 2.461	62,5 2.461	70,3 2.766	64,0 2.520	204,8 8.063	42,2 1.661	52,2 2.055	M16x1	20,0	1	G2.5	4,3 9.480

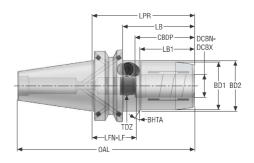
Accessories

For DIN40 H05-4 H05-4 DIN50, DCBN = 12-20 DIN50, DCBN = 32 H06-4

DIN 69871-ADB

HCR – Hydraulic chucks, reinforced - Metric / Inch

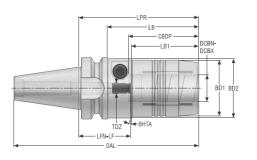
- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14


Designation	Item number	CTMS	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	BHTA°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg <i>lbs</i>
DIN40ADB-HCR12-050	10137129	DIN40 ADB	12,0 <i>0.4</i> 72	50,0 1.969	31,0 1.220	-	47,5 1.870	-	42,0 1.654	118,25 <i>4.656</i>	4,0 0.157	14,0 0.551	M8x1	-	0	G2.5	1,1 2.430
DIN40ADB-HCR20-064	10137130	DIN40 ADB	20,0 0.787	64,5 2.539	45,45 1.789	-	52,5 2.067	-	49,25 1.939	132,75 5.226	13,5 0.531	23,5 0.925	M8x1	-	0	G2.5	1,1 2.430
DIN50ADB-HCR20-064	10137131	DIN50 ADB	20,0 0.787	64,5 2.539	45,5 1.791	-	52,5 2.067	-	49,25 1.939	166,0 6.535	13,5 0.531	23,5 0.925	M8x1	-	0	G2.5	3,1 6.830
DIN50ADB-HCR32-081	10137132	DIN50 ADB	32,0 1.260	81,0 3.189	61,95 2.439	-	62,5 2.461	-	72,0 2.835	182,6 7.189	20,0 0.787	30,0 1.181	M8x1	-	0	G2.5	4,1 9. <i>040</i>

For size	Key
DIN40	H05-4
DIN50, DCBN = 20	H05-4
DIN50, DCBN = 32	H06-4

HC – Hydraulic chucks, standard - Metric / Inch

BT JIS B 6339-ADB


- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14

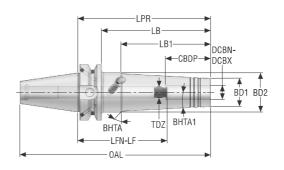
Designation	ltem number	CTMS	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg <i>lbs</i>
BT40ADB-HC06-090	10137297	BT40 ADB	6,0 <i>0.236</i>	90,0 3.543	63,0 2.480	43,0 1.693	38,5 1.516	44,5 1.752	26,05 1.026	155,4 6. <i>118</i>	53,0 2.087	63,0 2.480	M5	20,0	1	G2.5	1,3 2.870
BT40ADB-HC08-090	10137298	BT40 ADB	8,0 <i>0.315</i>	90,0 3.543	63,0 2.480	44,5 1.752	38,5 1.516	44,5 1.752	28,0 1.102	155,4 6. <i>118</i>	53,0 2.087	63,0 2.480	M6x1	20,0	1	G2.5	1,4 3.090
BT40ADB-HC10-090	10137299	BT40 ADB	10,0 <i>0.394</i>	90,0 3.543	63,0 2.480	44,5 1.752	42,5 1.673	44,5 1.752	30,0 1.181	155,4 6. <i>118</i>	49,0 1.929	59,0 2.323	M8x1	20,0	1	G2.5	1,4 3.090
BT40ADB-HC12-090	10137300	BT40 ADB	12,0 0.472	90,0 3.543	63,0 2.480	44,5 1.752	47,5 1.870	44,5 1.752	32,0 1.260	155,4 6. <i>118</i>	44,0 1.732	54,0 2.126	M10x1	20,0	1	G2.5	1,4 3.090
BT40ADB-HC16-090	10137301	BT40 ADB	16,0 <i>0.630</i>	90,0 3.543	63,0 2.480	47,5 1.870	50,5 1.988	44,5 1.752	38,0 1.496	155,4 6.118	41,0 1.614	51,0 2.008	M12x1	20,0	1	G2.5	1,4 3.090
BT40ADB-HC20-090	10137302	BT40 ADB	20,0 0.787	90,0 3.543	63,0 2.480	47,5 1.870	52,5 2.067	44,5 1.752	42,0 1.654	155,4 6. <i>118</i>	39,0 1.535	49,0 1.929	M16x1	20,0	1	G2.5	1,5 3.310
BT50ADB-HC20-090	10137303	BT50 ADB	20,0 0.787	90,0 3.543	52,0 2.047	34,0 1.339	52,5 2.067	49,3 1.939	42,0 1.654	191,8 7.551	39,0 1.535	49,0 1.929	M16x1	20,0	1	G2.5	3,9 8.600
BT50ADB-HC32-120	10137304	BT50 ADB	32,0 1.260	120,0 4.724	82,0 3.228	62,5 2.461	62,5 2.461	70,3 2.766	64,0 2.520	221,8 8.732	59,0 2.323	69,0 2.717	M16x1	20,0	1	G2.5	5,1 11.240

For size	Key
BT40, DCBN = 6	H05-4
BT40, DCBN = 8-20	H05-4
BT50, DCBN = 20	H05-4
BT50, DCBN = 32	H06-4

BT JIS B 6339-ADB

HCR – Hydraulic chucks, reinforced - Metric / Inch

- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14


Designation	Item number	CTMS	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch					kg Ibs						
BT30ADB-HCR12-069	10137136	BT30 ADB	12,0 0.472	69,0 2.717	47,0 1.850	32,0 1.260	47,5 1.870	44,5 1.752	42,0 1.654	117,4 <i>4</i> .622	23,0 0.906	33,0 1.299	M8x1	20,0	0	G2.5	0,9 1.980
BT30ADB-HCR20-090	10137137	BT30 ADB	20,0 0.787	90,0 3.543	68,0 2.677	50,0 1.969	52,5 2.067	44,5 1.752	42,0 1.654	138,4 5.449	39,0 1.535	49,0 1.929	M8x1	20,0	0	G2.5	1,0 2.200
BT40ADB-HCR12-058	10137140	BT40 ADB	12,0 0.472	58,0 2.283	31,0 1.220	-	47,5 1.870	-	42,0 1.654	123,4 4.858	12,0 0.472	22,0 0.866	M8x1	-	0	G2.5	1,2 2.650
BT40ADB-HCR20-072	10137141	BT40 ADB	20,0 0.787	72,5 2.854	45,5 1.791	-	52,5 2.067	_	49,25 1.939	137,9 5.429	21,5 0.846	31,5 1.240	M8x1	-	0	G2.5	1,4 3.090
BT50ADB-HCR20-083	10137144	BT50 ADB	20,0 0.787	83,5 3.287	45,5 1.791	-	52,5 2.067	=	49,25 1.939	185,3 7.295	32,5 1.280	42,5 1.673	M8x1	-	0	G2.5	4,1 9.040
BT50ADB-HCR32-090	10137145	BT50 ADB	32,0 1.260	90,0 3.543	52,0 2.047	-	62,5 2.461	_	72,0 2.835	191,8 7.551	29,0 1.142	39,0 1.535	M8x1	-	0	G2.5	4,7 10.360

For size	Кеу
BT30	H05-4
BT40	H05-4
BT50, DCBN = 20	H05-4
BT50_DCBN = 32	H06-4

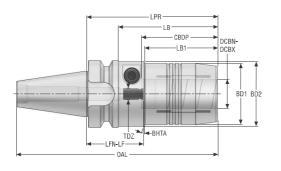
HCS – Hydraulic chucks, slim - Metric / Inch

BT JIS B 6339-ADB

- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14

Designation	ltem number	CTMS	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	BHTA°	BHTA1°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch						kg <i>lbs</i>
BT40ADB-HCS06-150	10137340	BT40 ADB	6,0 0.236	150,0 5.906	123,0 <i>4.843</i>	100,0 3.937	37,0 1.457	44,5 1.752	20,0 0.787	215,4 8.480	113,0 <i>4.44</i> 9	123,0 4.843	M5x0.8	30,0	3,0	1	G2.5	1,7 3.750
BT40ADB-HCS08-150	10137341	BT40 ADB	8,0 <i>0.315</i>	150,0 5.906	123,0 4.843	100,0 3.937	37,0 1.457	44,5 1.752	22,0 0.866	215,4 8.480	113,0 <i>4.44</i> 9	123,0 4.843	M6x1	30,0	3,0	1	G2.5	1,8 3.970
BT40ADB-HCS10-150	10137342	BT40 ADB	10,0 <i>0.394</i>	150,0 5.906	123,0 4.843	100,0 3.937	42,0 1.654	44,5 1.752	24,0 0.945	215,4 8.480	110,0 <i>4.331</i>	120,0 <i>4.724</i>	M8x1	30,0	3,0	1	G2.5	1,8 3.970
BT40ADB-HCS12-150	10137343	BT40 ADB	12,0 <i>0.4</i> 72	150,0 5.906	123,0 4.843	100,0 3.937	47,0 1.850	44,5 1.752	25,0 0.984	215,4 8.480	105,0 <i>4.134</i>	115,0 <i>4.5</i> 28	M10x1	30,0	3,0	1	G2.5	1,8 3.970
BT40ADB-HCS16-150	10137344	BT40 ADB	16,0 <i>0.630</i>	150,0 5.906	123,0 <i>4.84</i> 3	100,0 3.937	52,0 2.047	44,5 1.752	32,0 1.260	215,4 8.480	100,0 3.937	110,0 <i>4.331</i>	M12x1	30,0	3,0	1	G2.5	2,0 4.410
BT40ADB-HCS20-150	10137345	BT40 ADB	20,0 0.787	150,0 5.906	123,0 4.843	-	52,0 2.047	46,9 1.846	34,0 1.339	215,4 8.480	100,0 3.937	110,0 <i>4.331</i>	M16x1	-	3,0	1	G2.5	2,1 4.630

Accessories


For size

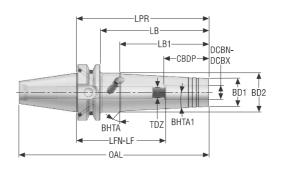
All H04-4

BT Taper-Face-ADB

HCR – Hydraulic chucks, reinforced - Metric / Inch

- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14

Designation	Item number	стмѕ	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch					kg <i>lbs</i>						
BT30TFADB-HCR12-069	10137138	BT30 TF ADB	12,0 0.472	69,0 2.717	47,0 1.850	32,0 1.260	47,5 1.870	44,5 1.752	42,0 1.654	117,4 <i>4</i> .622	23,0 0.906	33,0 1.299	M8x1	20,0	0	G2.5	0,9 1.980
BT30TFADB-HCR20-090	10137139	BT30 TF ADB	20,0 0.787	90,0 3.543	68,0 2.677	50,0 1.969	52,5 2.067	44,5 1.752	42,0 1.654	138,4 5.449	39,0 1.535	49,0 1.929	M8x1	20,0	0	G2.5	1,0 2.200
BT40TFADB-HCR12-058	10137142	BT40 TF ADB	12,0 0.472	58,0 2.283	31,0 1.220	-	47,5 1.870	-	42,0 1.654	123,4 4.858	12,0 0.472	22,0 0.866	M8x1	-	0	G2.5	1,2 2.650
BT40TFADB-HCR20-072	10137143	BT40 TF ADB	20,0 0.787	72,5 2.854	45,5 1.791	-	52,5 2.067	-	49,25 1.939	137,9 5.429	21,5 0.846	31,5 1.240	M8x1	-	0	G2.5	1,4 3.090


Accessories

For size Key H05-4 All

HCS – Hydraulic chucks, slim - Metric / Inch

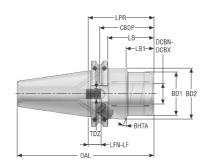
BT Taper-Face-ADB

- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14

Designation	ltem number	CTMS	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	BHTA°	BHTA1°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch						kg Ibs
BT40TFADB-HCS06-150	10137346	BT40 TF ADB	6,0 0.236	150,0 5.906	123,0 4.843	100,0 3.937	37,0 1.457	44,5 1.752	20,0 0.787	215,4 8.480	113,0 <i>4.44</i> 9	123,0 4.843	M5x0.8	30,0	3,0	1	G2.5	1,6 3.530
BT40TFADB-HCS08-150	10137347	BT40 TF ADB	8,0 <i>0.315</i>	150,0 5.906	123,0 4.843	100,0 3.937	37,0 1.457	44,5 1.752	22,0 0.866	215,4 8.480	113,0 <i>4.44</i> 9	123,0 4.843	M6x1	30,0	3,0	1	G2.5	1,7 3.750
BT40TFADB-HCS10-150	10137348	BT40 TF ADB	10,0 <i>0.</i> 394	150,0 5.906	123,0 4.843	100,0 3.937	42,0 1.654	44,5 1.752	24,0 0.945	215,4 8.480	110,0 <i>4.331</i>	120,0 4.724	M8x1	30,0	3,0	1	G2.5	1,7 3.750
BT40TFADB-HCS12-150	10137349	BT40 TF ADB	12,0 0.472	150,0 5.906	123,0 4.843	100,0 3.937	47,0 1.850	44,5 1.752	25,0 0.984	215,4 8.480	103,0 4.055	113,0 <i>4.44</i> 9	M10x1	30,0	3,0	1	G2.5	1,8 3.970
BT40TFADB-HCS16-150	10137350	BT40 TF ADB	16,0 <i>0.630</i>	150,0 5.906	123,0 4.843	100,0 3.937	52,0 2.047	44,5 1.752	32,0 1.260	215,4 8.480	100,0 3.937	110,0 <i>4.331</i>	M12x1	30,0	3,0	1	G2.5	2,0 4.410
BT40TFADB-HCS20-150	10137351	BT40 TF ADB	20,0 0.787	150,0 5.906	123,0 4.843	-	52,0 2.047	46,9 1.846	34,0 1.339	215,4 8.480	100,0 3.937	110,0 <i>4.331</i>	M16x1	-	3,0	1	G2.5	2,1 4.630

Accessories

For size

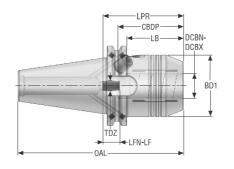

All

HC - Hydraulic chucks, standard - Metric / Inch

CAT / ASME B5.50-1994-ADB

- Run-out ≤3 µm For reduction sleeves, see page(s) 405, 406 For ISO attribute explanation, see page 14

Designation	Item number	CTMS	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg <i>lbs</i>
CAT40ADB-HC06-063	10137281	CAT40 ADB	6,0 0.236	63,5 2.500	44,45 1.750	24,56 0.967	38,5 1.516	44,5 1.750	26,0 1.024	131,75 <i>5.187</i>	26,5 1.043	36,5 1.437	M5	20,0	1	G2.5	1,1 2.430
CAT40ADB-HC08-063	10137282	CAT40 ADB	8,0 0.315	63,5 2.500	44,45 1.750	25,56 1.006	38,5 1.516	49,0 1.929	28,0 1.102	131,75 <i>5.187</i>	26,5 1.043	36,5 1.437	M5	20,0	1	G2.5	1,2 2.650
CAT40ADB-HC10-063	10137283	CAT40 ADB	10,0 0.394	63,5 2.500	44,45 1.750	27,56 1.085	42,5 1.673	49,0 1.929	30,0 1.181	131,75 <i>5.187</i>	22,5 0.886	32,5 1.280	M5	20,0	1	G2.5	1,2 2.650
CAT40ADB-HC12-063	10137284	CAT40 ADB	12,0 0.472	63,5 2.500	44,45 1.750	26,56 1.046	47,5 1.870	49,0 1.929	32,0 1.260	131,75 <i>5.187</i>	17,5 0.689	27,5 1.083	M10x1	20,0	1	G2.5	1,2 2.650
CAT40ADB-HC16-063	10137285	CAT40 ADB	16,0 0.630	63,5 2.500	44,45 1.750	27,56 1.085	51,0 2.008	49,0 1.929	38,0 1.496	131,75 <i>5.187</i>	14,5 0.571	24,5 0.965	M10x1	20,0	1	G2.5	1,2 2.650
CAT40ADB-HC20-063	10137286	CAT40 ADB	20,0 <i>0.787</i>	63,5 2.500	44,45 1.750	25,56 1.006	52,5 2.067	49,0 1.929	42,0 1.654	131,75 <i>5.187</i>	12,5 0.492	22,5 0.886	M10x1	20,0	1	G2.5	1,2 2.650
CAT50ADB-HC12-081	10137293	CAT50 ADB	12,0 0.472	81,0 3.189	61,95 2.439	40,0 1.575	47,5 1.870	49,0 1.929	32,0 1.260	182,6 7.189	35,0 1.378	45,0 1.772	M10x1	20,0	1	G2.5	3,1 6.830
CAT50ADB-HC20-081	10137294	CAT50 ADB	20,0 0.787	81,0 3.189	61,95 2.439	46,0 1.811	52,5 2.067	51,0 2.008	42,0 1.654	182,6 7.189	30,0 1.181	40,0 1.575	M10x1	20,0	1	G2.5	3,1 6.830
CAT50ADB-HC25-081	10137295	CAT50 ADB	25,0 0.984	81,0 3.189	61,95 2.439	36,0 1.417	58,5 2.303	68,0 2.677	48,0 1.890	182,6 7.189	24,0 0.945	34,0 1.339	M10x1	20,0	1	G2.5	3,6 7.940
CAT50ADB-HC32-081	10137296	CAT50 ADB	32,0 1.260	81,0 3.189	61,95 2.439	40,0 1.575	62,5 2.461	75,0 2.953	62,0 2.441	182,6 7.189	20,0 0.787	30,0 1.181	M10x1	20,0	1	G2.5	3,8 8.380


For size	Key
CAT40	H05-4
CAT50, DCBN = 12-25	H05-4
CAT50, DCBN = 32	H06-4

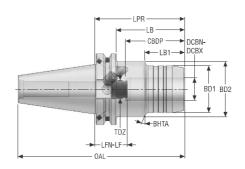
CAT

SECO I

CAT / ASME B5.50-1994-ADB

HCR – Hydraulic chucks, reinforced - Metric / Inch

- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14


Designation	Item number	стмѕ	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg Ibs
CAT40ADB-HCR20-064	10137133	CAT40 ADB	20,0 0.787	64,5 2.539	45,45 1.789	-	52,5 2.067	-	49,25 1.939	132,75 5.226	13,5 0.531	23,5 0.925	M8x1	-	0	G2.5	1,3 2.870
CAT50ADB-HCR32-081	10137135	CAT50 ADB	32,0 1.260	81,0 3.189	61,95 2.439	_	62,5 2.461	-	72,0 2.835	182,6 7.189	20,0 0.787	30,0 1.181	M8x1	-	0	G2.5	4,0 8.820

For size	Кеу	
CAT40	H05-4	
CAT50	H06-4	

HC - Hydraulic chucks, standard - Metric / Inch

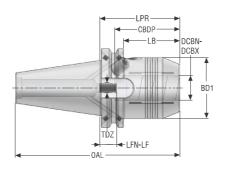
CAT TF / ASME B5.50-2009-ADB

- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14

Designation	ltem number	CTMS	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	BHTA°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg <i>lbs</i>
CAT40TFADB-HC06-080	10137287	CAT40 TF ADB	6,0 <i>0.236</i>	80,0 3.150	60,95 2.400	29,5 1.161	37,0 1.457	49,5 1.949	26,0 1.024	148,25 5.837	43,0 1.693	53,0 2.087	M5x0.8	30,0	1	G2.5	1,5 3.310
CAT40TFADB-HC08-080	10137288	CAT40 TF ADB	8,0 <i>0.315</i>	80,0 3.150	60,95 2.400	30,0 1.181	37,0 1.457	49,5 1.949	28,0 1.102	148,25 5.837	43,0 1.693	53,0 2.087	M6x1	30,0	1	G2.5	1,4 3. <i>0</i> 90
CAT40TFADB-HC10-080	10137289	CAT40 TF ADB	10,0 <i>0.394</i>	80,0 3.150	60,95 2.400	31,0 1.220	42,0 1.654	49,5 1.949	30,0 1.181	148,25 5.837	40,0 1.575	50,0 1.969	M8x1	30,0	1	G2.5	1,4 3. <i>0</i> 90
CAT40TFADB-HC12-080	10137290	CAT40 TF ADB	12,0 <i>0.4</i> 72	80,0 3.150	60,95 2.400	31,5 1.240	47,0 1.850	49,5 1.949	32,0 1.260	148,25 5.837	35,0 1.378	45,0 1.772	M10x1	30,0	1	G2.5	1,5 3.310
CAT40TFADB-HC16-080	10137291	CAT40 TF ADB	16,0 0.630	80,0 3.150	60,95 2.400	33,0 1.299	52,0 2.047	49,5 1.949	38,0 1.496	148,25 5.837	30,0 1.181	40,0 1.575	M12x1	30,0	1	G2.5	1,5 3.310
CAT40TFADB-HC20-080	10137292	CAT40 TF ADB	20,0 0.787	80,0 3.150	60,95 2.400	34,0 1.339	52,0 2.047	49,5 1.949	42,0 1.654	148,25 5.837	30,0 1.181	40,0 1.575	M16x1	30,0	1	G2.5	1,5 3.310

Accessories

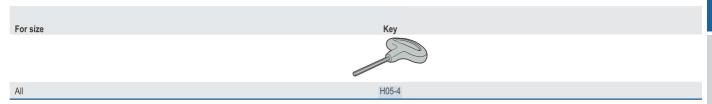
For size



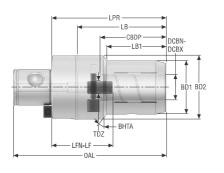
All

CAT TF / ASME B5.50-2009-ADB

SECO!


HCR – Hydraulic chucks, reinforced - Metric / Inch

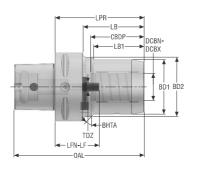
- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14


Designation	Item number	CTMS	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg <i>lb</i> s
CAT40TFADB-HCR20-064	10137134	CAT40 TF ADB	20,0 0.787	64,5 2.539	45,45 1.789	-	52,5 2.067	-	49,25 1.939	132,75 5.226	13,5 0.531	23,5 0.925	M8x1	-	0	G2.5	1,3 2.870

Graflex®

HC – Hydraulic chucks, standard - Metric / Inch

- For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14


Designation	Item number	CTMS	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg Ibs
G5-HC20-090	10137322	G5	20,0 0.787	90,0 3.543	70,0 2.756	47,0 1.850	52,0 2.047	50,0 1.969	42,0 1.654	120,0 4.724	38,0 1.496	48,0 1.890	M10x1.5	30,0	0	PB	1,2 2.650
G6-HC25-100	10137323	G6	25,0 0.984	100,0 3.937	74,0 2.913	50,0 1.969	58,0 2.283	63,0 2.480	58,0 2.283	140,0 5.512	42,0 1.654	52,0 2.047	M10x1.5	45,0	0	РВ	2,3 5.070
G6-HC32-100	10137324	G6	32,0	100,0	74,0 2,913	-	63,0	_	64,0 2.520	140,0 5.512	37,0 1,457	62,0 2.441	_	_	0	РВ	2,3 5,070

Accessories

For size Key All H04-4

Seco-Capto™

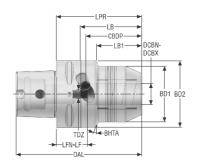
HC – Hydraulic chucks, standard - Metric / Inch

- Run-out ≤3 μm
 For ISO attribute explanation, see page 14

Designation	Item number	стмѕ	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	внта°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg Ibs
C5-HC06-065	10137305	C5	6,0 0.236	65,0 2.559	45,0 1.772	23,0 0.906	38,0 1.496	50,0 1.969	26,0 1.024	95,0 3.740	27,0 1.063	37,0 1.457	M5x0.8	30,0	1	-	0,8 1.760
C5-HC08-065	10137306	C5	8,0 0.315	65,0 2.559	45,0 1.772	24,0 0.945	38,0 1.496	50,0 1.969	28,0 1.102	95,0 3.740	27,0 1.063	37,0 1.457	M5x0.8	30,0	1	-	0,8 1.760
C5-HC10-075	10137307	C5	10,0 0.394	75,0 2.953	55,0 2.165	34,0 1.339	42,0 1.654	50,0 1.969	30,0 1.181	105,0 <i>4.134</i>	33,0 1.299	43,0 1.693	M8x1.25	30,0	1	-	0,9 1.980
C5-HC12-080	10137308	C5	12,0 0.472	80,0 3.150	60,0 2.362	40,0 1.575	47,0 1.850	50,0 1.969	32,0 1.260	110,0 <i>4.331</i>	33,0 1.299	43,0 1.693	M10x1.5	30,0	1	-	0,9 1.980
C5-HC16-085	10137309	C5	16,0 0.630	85,0 3.346	65,0 2.559	46,0 1.811	50,0 1.969	50,0 1.969	38,0 1.496	115,0 <i>4.</i> 528	35,0 1.378	45,0 1.772	M10x1.5	30,0	1	-	1,0 2.200
C5-HC20-085	10137310	C5	20,0 0.787	85,0 3.346	65,0 2.559	47,0 1.850	52,0 2.047	50,0 1.969	42,0 1.654	115,0 <i>4.5</i> 28	33,0 1.299	43,0 1.693	M10x1.5	30,0	1	-	1,1 2.430
C5-HC25-095	10137311	C5	25,0 0.984	95,0 3.740	75,0 2.953	-	58,0 2.283	-	58,0 2.283	125,0 4.921	37,0 1.457	47,0 1.850	M10x1.5	-	1	-	1,7 3.750
C6-HC06-065	10137312	C6	6,0 0.236	65,0 2.559	40,0 1.575	23,0 0.906	38,0 1.496	50,0 1.969	26,0 1.024	103,0 4.055	27,0 1.063	37,0 1.457	M5x0.8	30,0	1	-	1,2 2.650
C6-HC08-065	10137313	C6	8,0 0.315	65,0 2.559	40,0 1.575	24,0 0.945	38,0 1.496	50,0 1.969	28,0 1.102	103,0 4.055	27,0 1.063	37,0 1.457	M5x0.8	30,0	1	-	1,2 2.650
C6-HC10-075	10137314	C6	10,0 0.394	75,0 2.953	50,0 1.969	34,0 1.339	42,0 1.654	50,0 1.969	30,0 1.181	113,0 <i>4.44</i> 9	33,0 1.299	43,0 1.693	M8x1.25	30,0	1	-	1,2 2.650
C6-HC12-080	10137315	C6	12,0 0.472	80,0 3.150	55,0 2.165	40,0 1.575	47,0 1.850	50,0 1.969	32,0 1.260	118,0 4.646	33,0 1.299	43,0 1.693	M10x1.5	30,0	1	-	1,3 2.870
C6-HC16-085	10137316	C6	16,0 0.630	85,0 3.346	60,0 2.362	46,0 1.811	50,0 1.969	50,0 1.969	38,0 1.496	123,0 4.843	35,0 1.378	45,0 1.772	M10x1.5	30,0	1	-	1,4 3.090
C6-HC20-085	10137317	C6	20,0 0.787	85,0 3.346	60,0 2.362	47,0 1.850	52,0 2.047	50,0 1.969	42,0 1.654	123,0 4.843	33,0 1.299	43,0 1.693	M10x1.5	30,0	1	-	1,4 3.090
C6-HC25-095	10137318	C6	25,0 0.984	95,0 3.740	70,0 2.756	_	58,0 2.283	-	58,0 2.283	133,0 5.236	37,0 1.457	47,0 1.850	-	-	1	-	2,0 4.410
C6-HC32-100	10137319	C6	32,0 1.260	100,0 3.937	78,0 3.071	-	63,0 2.480	-	64,0 2.520	138,0 5.433	37,0 1.457	47,0 1.850	M10x1.5	-	1	-	2,3 5.070
C8-HC20-095	10137320	C8	20,0 0.787	95,0 3.740	62,0 2.441	47,0 1.850	52,0 2.047	50,0 1.969	42,0 1.654	143,0 5.630	43,0 1.693	53,0 2.087	M10x1.5	30,0	1	-	2,4 5.290
C8-HC32-105	10137321	C8	32,0 1.260	105,0 4.134	72,0 2.835	60,0 2.362	63,0 2.480	70,0 2.756	64,0 2.520	153,0 6.024	42,0 1.654	52,0 2.047	M10x1.5	30,0	1	G6.3	3,2 7.050

Accessories

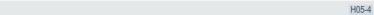
For size



H04-4 All

HCR – Hydraulic chucks, reinforced - Metric / Inch

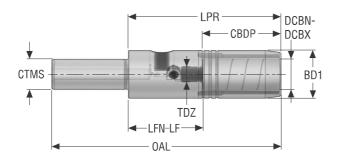
Seco-Capto™



- Run-out ≤3 µm
 For reduction sleeves, see page(s) 405, 406
 For ISO attribute explanation, see page 14

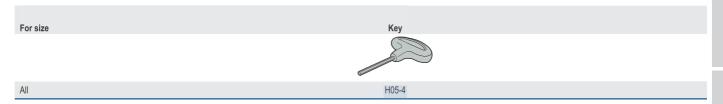
Designation	ltem number	стмѕ	DCBN- DCBX	LPR	LB	LB1	CBDP	BD2	BD1	OAL	LFN	LF	TDZ	BHTA°	RFID hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch					kg Ibs
C6-HCR12-075	10137146	C6	12,0 <i>0.472</i>	75,0 2.953	53,0 2.087	33,0 1.299	47,5 1.870	62,5 2.461	42,0 1.654	113,0 <i>4.44</i> 9	29,0 1.142	39,0 1.535	M8x1	20,0	0	G2.5	1,5 3.310
C6-HCR20-080	10137147	C6	20,0 0.787	80,0 3.150	57,4 2.260	41,0 1.614	52,5 2.067	62,5 2.461	52,5 2.067	118,0 <i>4.646</i>	29,0 1.142	39,0 1.535	M8x1	20,0	0	G2.5	1,6 3.530

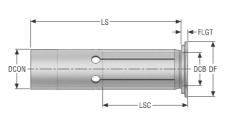
Accessories


For size

417

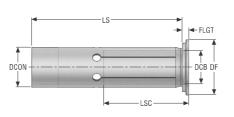
Cylindrical


HC – Hydraulic chucks, standard - Metric / Inch


- Run-out ≤6 μm
 For ISO attribute explanation, see page 14

	Mana.										RFID	Dalan	
Designation	Item number	CTMS	DCBN-DCBX	LPR	CBDP	BD1	OAL	LFN	LF	TDZ	hole	Balan- cing	Weight
			mm inch	mm inch	mm inch	mm inch	mm inch	mm inch	mm inch				kg <i>Ib</i> s
ST20-HC12-100	10137352	20	12,0 <i>0.472</i>	100,0 3.937	47,5 1.870	25,0 0.984	150,0 5.906	54,0 2.126	64,0 2.520	M6	0	G2.5	0,5 1.100
ST20-HC20-100	10137353	20	20,0 0.787	100,0 3.937	51,5 2.028	31,5 1.240	150,0 5.906	49,0 1.929	59,0 2.323	M10x1	0	G2.5	0,6 1.320
ST32-HC20-090	10137354	32	20,0 0.787	90,0 3.543	51,5 2.028	31,5 1.240	150,0 5.906	39,0 1.535	49,0 1.929	M10x1	0	G2.5	0,8 1.760

Reduction sleeves for hydraulic chucks - Metric / Inch



- Nominal clamping diameter only (no clamping range): tool shank tolerance h6 maximum
 ...L1 = with peripheral coolant
 For ISO attribute explanation, see page 14

Designation	Item number	Machine side DCON	Workpiece side DCB	LS	FLGT	DF	LSC
		mm inch	mm inch	mm inch	mm inch	mm inch	mm inch
05FHC1203	10137358	12,0 <i>0.4</i> 72	3,0 <i>0.118</i>	45,0 0.608	2,0 0.079	16,5 0.650	15,45 <i>0.608</i>
05FHC1204	10137359	12,0 0.472	4,0 <i>0.157</i>	45,0 0.620	2,0 0.079	16,5 <i>0.650</i>	15,75 <i>0.620</i>
05FHC1205	10137360	12,0 0.472	5,0 <i>0.</i> 197	45,0 0.634	2,0 0.079	16,5 0.650	16,1 <i>0.634</i>
05FHC1206	10137361	12,0 <i>0.4</i> 72	6,0 <i>0.236</i>	45,0 0.953	2,0 0.079	16,5 <i>0.650</i>	24,21 0.953
05FHC1208	10137362	12,0 0.472	8,0 <i>0.315</i>	45,0 0.977	2,0 0.079	16,5 0.650	24,81 0.977
05FHC1210	10137363	12,0 0.472	10,0 <i>0</i> .394	45,0 1.000	2,0 0.079	16,5 0.650	25,41 1.000
05FHC2003	10137364	20,0 <i>0.787</i>	3,0 <i>0.118</i>	50,5 0.616	2,0 0.079	24,0 0.945	15,65 <i>0.616</i>
05FHC2004	10137365	20,0 <i>0.787</i>	4,0 <i>0.157</i>	50,5 0.628	2,0 0.079	24,0 0.945	15,95 <i>0.6</i> 28
05FHC2005	10137366	20,0 0.787	5,0 <i>0.</i> 197	50,5 0.640	2,0 0.079	24,0 0.945	16,25 <i>0.640</i>
05FHC2006	10137367	20,0 0.787	6,0 <i>0.236</i>	50,5 1.006	2,0 0.079	24,0 0.945	25,55 1.006
05FHC2008	10137368	20,0 0.787	8,0 <i>0.315</i>	50,5 1.030	2,0 0.079	24,0 0.945	26,15 1.030
05FHC2010	10137369	20,0 0.787	10,0 <i>0.</i> 39 <i>4</i>	50,5 1.211	2,0 0.079	24,0 0.945	30,75 1.211
05FHC2012	10137370	20,0 0.787	12,0 <i>0.472</i>	50,5 1.367	2,0 0.079	24,0 0.945	34,71 1.367
05FHC2014	10137371	20,0 0.787	14,0 <i>0.551</i>	50,5 1.390	2,0 0.079	24,0 0.945	35,31 1.390
05FHC2016	10137372	20,0 0.787	16,0 <i>0.630</i>	50,5 1.414	2,0 0.079	24,0 0.945	35,91 1.414
05FHC3206	10137373	32,0 1.260	6,0 <i>0.</i> 236	60,5 0.922	2,0 0.079	35,5 1.398	23,42 0.922
05FHC3208	10137374	32,0 1.260	8,0 <i>0.315</i>	60,5 0.946	2,0 0.079	35,5 1.398	24,03 <i>0.94</i> 6
5FHC3210	10137375	32,0 1.260	10,0 0.394	60,5 1.107	2,0 0.079	35,5 1.398	28,13 1.107
5FHC3212	10137376	32,0 1.260	12,0 <i>0.47</i> 2	60,5 1.131	2,0 0.079	35,5 1.398	28,73 1.131
5FHC3214	10137377	32,0 1.260	14,0 <i>0.551</i>	60,5 1.155	2,0 0.079	35,5 1.398	29,33 1.155
05FHC3216	10137378	32,0 1.260	16,0 <i>0.630</i>	60,5 1.583	2,0 0.079	35,5 1.398	40,2 1.583

Designation	Item number	Machine side DCON	Workpiece side DCB	LS	FLGT	DF	LSC
		mm inch	mm inch	mm inch	mm inch	mm inch	mm inch
05FHC3218	10137379	32,0 1.260	18,0 <i>0.</i> 709	60,5 1.594	2,0 0.079	35,5 1.398	40,5 1.594
5FHC3220	10137380	32,0 1.260	20,0 <i>0</i> .787	60,5 1.618	2,0 0.079	35,5 1.398	41,1 1.618
05FHC3225	10137381	32,0 1.260	25,0 0.984	60,5 1.846	2,0 0.079	35,5 1.398	46,9 1.846
05FHC1203L1	10137409	12,0 <i>0.472</i>	3,0 <i>0.118</i>	45,0 0.608	2,0 0.079	16,5 0.650	15,45 0.608
05FHC1204L1	10137410	12,0 <i>0.472</i>	4,0 <i>0.157</i>	45,0 0.620	2,0 0.079	16,5 <i>0.650</i>	15,75 0.620
05FHC1205L1	10137411	12,0 <i>0.4</i> 72	5,0 <i>0.197</i>	45,0 0.632	2,0 0.079	16,5 0.650	16,05 <i>0.6</i> 32
05FHC1206L1	10137412	12,0 <i>0.4</i> 72	6,0 <i>0.</i> 236	45,0 0.953	2,0 0.079	16,5 <i>0.650</i>	24,21 0.953
05FHC1208L1	10137413	12,0 <i>0.472</i>	8,0 <i>0.315</i>	45,0 0.977	2,0 0.079	16,5 0.650	24,81 0.977
05FHC2003L1	10137414	20,0 0.787	3,0 0.118	50,5 0.616	2,0 0.079	24,0 0.945	15,65 0.616
05FHC2004L1	10137415	20,0 0.787	4,0 0.157	50,5 0.628	2,0 0.079	24,0 0.945	15,95 <i>0.6</i> 28
05FHC2005L1	10137416	20,0 <i>0.787</i>	5,0 <i>0.</i> 197	50,5 0.640	2,0 0.079	24,0 0.945	16,25 0.640
05FHC2006L1	10137417	20,0 <i>0.787</i>	6,0 <i>0.</i> 236	50,5 1.007	2,0 0.079	24,0 0.945	25,57 1.007
05FHC2008L1	10137418	20,0 <i>0.787</i>	8,0 <i>0.315</i>	50,5 1.030	2,0 0.079	24,0 0.945	26,15 1.030
05FHC2010L1	10137419	20,0 <i>0.787</i>	10,0 <i>0.394</i>	50,5 1.211	2,0 0.079	24,0 0.945	30,75 1.211
05FHC2012L1	10137420	20,0 <i>0.787</i>	12,0 <i>0.472</i>	50,5 1.367	2,0 0.079	24,0 0.945	34,71 1.367
05FHC2014L1	10137421	20,0 <i>0.787</i>	14,0 <i>0.551</i>	50,5 1.390	2,0 0.079	24,0 0.945	35,31 1.390
05FHC2016L1	10137422	20,0 <i>0.787</i>	16,0 <i>0.630</i>	50,5 1.414	2,0 0.079	24,0 0.945	35,91 <i>1.414</i>
05FHC3206L1	10137423	32,0 1.260	6,0 0.236	60,5 0.922	2,0 0.079	35,5 1.398	23,42 0.922
05FHC3208L1	10137424	32,0 1.260	8,0 0.315	60,5 0.946	2,0 0.079	35,5 1.398	24,02 0.946
05FHC3210L1	10137425	32,0 1.260	10,0 <i>0.</i> 39 <i>4</i>	60,5 1.107	2,0 0.079	35,5 1.398	28,13 1.107
05FHC3212L1	10137426	32,0 1.260	12,0 <i>0.4</i> 72	60,5 1.131	2,0 0.079	35,5 1.398	28,73 1.131
05FHC3214L1	10137427	32,0 1.260	14,0 0.551	60,5 1.155	2,0 0.079	35,5 1.398	29,33 1.155
05FHC3216L1	10137428	32,0 1.260	16,0 0.630	60,5 1.583	2,0 0.079	35,5 1.398	40,2 1.583
05FHC3218L1	10137429	32,0 1.260	18,0 0.709	60,5 1.594	2,0 0.079	35,5 1.398	40,5 1.594
05FHC3220L1	10137430	32,0 1.260	20,0 0.787	60,5 1.618	2,0 0.079	35,5 1.398	41,1 1.618
05FHC3225L1	10137431	32,0 1.260	25,0 0.984	60,5 1.847	2,0 0.079	35,5 1.398	46,91 <i>1.847</i>

Reduction sleeves for hydraulic chucks - Metric / Inch

- Nominal clamping diameter only (no clamping range): tool shank tolerance h6 maximum
 ...L1 = with peripheral coolant
 For ISO attribute explanation, see page 14

Decignation	Item number	Machine side DCON	Workpiece side DCB	LS	FLGT	DF	LSC
Designation	item number	mm	mm	mm	mm	mm	mm
		inch	inch	inch	inch	inch	inch
05FHC120125	10137382	12,0 <i>0.4</i> 72	3,175 <i>0.125</i>	45,0 0.610	2,0 <i>0.07</i> 9	16,5 <i>0.650</i>	15,5 <i>0.610</i>
05FHC120187	10137383	12,0 <i>0.4</i> 72	4,763 <i>0.</i> 188	45,0 0.629	2,0 0.079	16,5 <i>0.650</i>	15,98 <i>0.62</i> 9
05FHC120250	10137384	12,0 <i>0.472</i>	6,35 0.250	45,0 0.957	2,0 0.079	16,5 0.650	24,31 0.957
05FHC120312	10137385	12,0 <i>0.4</i> 72	7,938 <i>0.313</i>	45,0 0.976	2,0 0.079	16,5 0.650	24,79 0.976
05FHC120375	10137386	12,0 0.472	9,525 <i>0.375</i>	45,0 0.995	2,0 0.079	16,5 0.650	25,27 0.995
05FHC200125	10137387	20,0 0.787	3,175 <i>0.12</i> 5	50,5 0.618	2,0 0.079	24,0 0.945	15,7 0.618
05FHC200187	10137388	20,0 0.787	4,763 <i>0.188</i>	50,5 0.637	2,0 0.079	24,0 0.945	16,18 0.637
05FHC200250	10137389	20,0 0.787	6,35 0.250	50,5 1.010	2,0 0.079	24,0 0.945	25,65 1.010
05FHC200312	10137390	20,0 0.787	7,938 <i>0.313</i>	50,5 1.029	2,0 0.079	24,0 0.945	26,13 1.029
05FHC200375	10137391	20,0 <i>0.787</i>	9,525 <i>0.375</i>	50,5 1.048	2,0 0.079	24,0 0.945	26,61 1.048
05FHC200437	10137392	20,0 <i>0.787</i>	11,113 <i>0.438</i>	50,5 1.224	2,0 0.079	24,0 0.945	31,08 1.224
05FHC200500	10137393	20,0 <i>0.787</i>	12,7 0.500	50,5 1.375	2,0 0.079	24,0 0.945	34,92 1.375
05FHC200562	10137394	20,0 <i>0.787</i>	14,288 <i>0.563</i>	50,5 1.394	2,0 0.079	24,0 0.945	35,4 1.394
05FHC200625	10137395	20,0 <i>0.787</i>	15,875 <i>0.625</i>	50,5 1.412	2,0 0.079	24,0 0.945	35,87 1.412
05FHC320250	10137396	32,0 1.260	6,35 <i>0.250</i>	60,5 0.926	2,0 0.079	35,5 1.398	23,53 0.926
05FHC320312	10137397	32,0 1.260	7,938 <i>0.313</i>	60,5 0.945	2,0 0.079	35,5 1.398	24,0 0.945
05FHC320375	10137398	32,0 1.260	9,525 <i>0.375</i>	60,5 1.102	2,0 0.079	35,5 1.398	27,98 1.102
05FHC320437	10137399	32,0 1.260	11,113 <i>0.4</i> 38	60,5 1.120	2,0 0.079	35,5 1.398	28,46 1.120
05FHC320500	10137400	32,0 1.260	12,7 0.500	60,5 1.139	2,0 0.079	35,5 1.398	28,94 1.139
05FHC320562	10137401	32,0 1.260	14,288 <i>0.</i> 563	60,5 1.158	2,0 0.079	35,5 1.398	29,41 <i>1.15</i> 8
05FHC320625	10137402	32,0 1.260	15,875 <i>0.625</i>	60,5 1.581	2,0 0.079	35,5 1.398	40,16 1.581

aptoTM

g & set-

ō	∵⊏
ð	0
U	S
71	S
27	ssecon
=	Ö
≓	ပ
_	ā
Ū	_
5	$\mathcal{Q}_{\mathcal{I}}$
≂	⊑
<u>ر</u>	≔

Designation	Item number	Machine side DCON	Workpiece side DCB	LS	FLGT	DF	LSC
		mm inch	mm inch	mm inch	mm inch	mm inch	mm inch
05FHC320687	10137403	32,0 1.260	17,462 <i>0.687</i>	60,5 1.588	2,0 0.079	35,5 1.398	40,34 1.588
05FHC320750	10137404	32,0 1.260	19,05 <i>0.750</i>	60,5 1.607	2,0 0.079	35,5 1.398	40,81 <i>1.607</i>
05FHC320812	10137405	32,0 1.260	20,637 <i>0.812</i>	60,5 1.600	2,0 0.079	35,5 1.398	40,63 1.600
05FHC320875	10137406	32,0 1.260	22,225 0.875	60,5 1.619	2,0 0.079	35,5 1.398	41,11 <i>1.61</i> 9
05FHC320937	10137407	32,0 1.260	23,812 <i>0.</i> 937	60,5 1.833	2,0 0.079	35,5 1.398	46,55 1.833
05FHC321000	10137408	32,0 1.260	25,4 1.000	60,5 1.850	2,0 0.079	35,5 1.398	47,0 1.850
05FHC120125L1	10137432	12,0 <i>0.4</i> 72	3,175 <i>0.125</i>	45,0 0.610	2,0 0.079	16,5 <i>0.650</i>	15,5 0.610
05FHC120187L1	10137433	12,0 <i>0.4</i> 72	4,763 <i>0.188</i>	45,0 0.629	2,0 0.079	16,5 <i>0.650</i>	15,98 0.629
05FHC120250L1	10137434	12,0 <i>0.4</i> 72	6,35 0.250	45,0 0.957	2,0 0.079	16,5 <i>0.650</i>	24,31 0.957
05FHC120312L1	10137435	12,0 <i>0.4</i> 72	7,938 <i>0.313</i>	45,0 0.976	2,0 0.079	16,5 <i>0.650</i>	24,79 0.976
05FHC120375L1	10137436	12,0 0.472	9,525 <i>0.</i> 375	45,0 0.995	2,0 0.079	16,5 <i>0.650</i>	25,27 0.995
05FHC200187L1	10137438	20,0 0.787	4,763 <i>0.188</i>	50,5 <i>0.637</i>	2,0 0.079	24,0 0.945	16,18 <i>0.637</i>
05FHC200250L1	10137439	20,0 0.787	6,35 0.250	50,5 1.010	2,0 0.079	24,0 0.945	25,65 1.010
05FHC200312L1	10137440	20,0 0.787	7,938 <i>0.313</i>	50,5 1.029	2,0 0.079	24,0 0.945	26,13 1.029
05FHC200375L1	10137441	20,0 0.787	9,525 <i>0.</i> 375	50,5 1.048	2,0 0.079	24,0 0.945	26,61 1.048
05FHC200437L1	10137442	20,0 <i>0.</i> 787	11,113 <i>0.4</i> 38	50,5 1.224	2,0 0.079	24,0 0.945	31,1 1.224
05FHC200500L1	10137443	20,0 0.787	12,7 0.500	50,5 1.375	2,0 0.079	24,0 0.945	34,92 1.375
05FHC200562L1	10137444	20,0 0.787	14,288 <i>0.563</i>	50,5 1.394	2,0 0.079	24,0 0.945	35,4 1.394
05FHC200625L1	10137445	20,0 0.787	15,875 0.625	50,5 1.412	2,0 0.079	24,0 0.945	35,87 1.412
05FHC201250L1	10137437	20,0 0.787	3,175 <i>0.12</i> 5	50,5 0.618	2,0 0.079	24,0 0.945	15,7 0.618
05FHC320500L1	10137446	32,0 1.260	12,7 0.500	60,5 1.139	2,0 0.079	35,5 1.398	28,94 1.139
05FHC320625L1	10137447	32,0 1.260	15,875 0.625	60,5 1.581	2,0 0.079	35,5 1.398	40,16 1.581
05FHC320750L1	10137448	32,0 1.260	19,05 <i>0.750</i>	60,5 1.607	2,0 0.079	35,5 1.398	40,82 1.607
05FHC320875L1	10137449	32,0 1.260	22,225 0.875	60,5 1.619	2,0 0.079	35,5 1.398	41,11 <i>1.61</i> 9
05FHC321000L1	10137450	32,0 1.260	25,4 1.000	60,5 1.850	2,0 0.079	35,5 1.398	47,0 1.850